1#![allow(dead_code)]
12#![allow(missing_docs)]
13
14use crate::error::Result;
15use crate::scene_understanding::SceneAnalysisResult;
16use scirs2_core::ndarray::{Array1, Array2};
17use std::collections::HashMap;
18
19pub struct VisualReasoningEngine {
21 causal_inference: CausalInferenceModule,
23 vqa_system: VisualQuestionAnsweringSystem,
25 analogical_reasoning: AnalogicalReasoningEngine,
27 temporal_analyzer: TemporalEventAnalyzer,
29 concept_recognizer: AbstractConceptRecognizer,
31 multimodal_hub: MultiModalIntegrationHub,
33 knowledge_base: VisualKnowledgeBase,
35}
36
37#[derive(Debug, Clone)]
39pub struct CausalInferenceModule {
40 causal_models: Vec<CausalModel>,
42 intervention_params: InterventionParams,
44 counterfactual_params: CounterfactualParams,
46}
47
48#[derive(Debug, Clone)]
50pub struct VisualQuestionAnsweringSystem {
51 question_types: Vec<QuestionType>,
53 answer_strategies: Vec<AnswerStrategy>,
55 attention_mechanisms: Vec<AttentionMechanism>,
57}
58
59#[derive(Debug, Clone)]
61pub struct AnalogicalReasoningEngine {
62 analogy_templates: Vec<AnalogyTemplate>,
64 similarity_metrics: Vec<SimilarityMetric>,
66 transfer_params: TransferLearningParams,
68}
69
70#[derive(Debug, Clone)]
72pub struct TemporalEventAnalyzer {
73 event_detectors: Vec<EventDetector>,
75 temporal_models: Vec<TemporalModel>,
77 sequence_params: SequenceAnalysisParams,
79}
80
81#[derive(Debug, Clone)]
83pub struct AbstractConceptRecognizer {
84 concept_hierarchies: Vec<ConceptHierarchy>,
86 abstraction_layers: Vec<AbstractionLayer>,
88 learning_params: ConceptLearningParams,
90}
91
92#[derive(Debug, Clone)]
94pub struct MultiModalIntegrationHub {
95 modalities: Vec<Modality>,
97 fusion_strategies: Vec<FusionStrategy>,
99 cross_attention: Vec<CrossModalAttention>,
101}
102
103#[derive(Debug, Clone)]
105pub struct VisualKnowledgeBase {
106 facts: HashMap<String, VisualFact>,
108 rules: Vec<ReasoningRule>,
110 ontology: ConceptOntology,
112}
113
114#[derive(Debug, Clone)]
116pub struct VisualReasoningQuery {
117 pub query_type: QueryType,
119 pub question: String,
121 pub parameters: HashMap<String, QueryParameter>,
123 pub context_requirements: Vec<ContextRequirement>,
125}
126
127#[derive(Debug, Clone)]
129pub struct VisualReasoningResult {
130 pub answer: ReasoningAnswer,
132 pub reasoning_steps: Vec<ReasoningStep>,
134 pub confidence: f32,
136 pub evidence: Vec<Evidence>,
138 pub alternatives: Vec<AlternativeHypothesis>,
140 pub uncertainty: UncertaintyQuantification,
142}
143
144#[derive(Debug, Clone)]
146pub enum QueryType {
147 WhatIsHappening,
149 WhyIsHappening,
151 WhatWillHappenNext,
153 HowAreObjectsRelated,
155 WhatIfScenario,
157 CountingQuery,
159 ComparisonQuery,
161 AbstractConceptQuery,
163 TemporalSequenceQuery,
165 CausalRelationshipQuery,
167}
168
169#[derive(Debug, Clone)]
171pub enum QueryParameter {
172 Text(String),
174 Number(f32),
176 Boolean(bool),
178 ImageRegion((f32, f32, f32, f32)),
180 TimeRange((f32, f32)),
182 ObjectList(Vec<String>),
184}
185
186#[derive(Debug, Clone)]
188pub struct ContextRequirement {
189 pub requirement_type: String,
191 pub specificity: f32,
193 pub temporal_scope: Option<(f32, f32)>,
195}
196
197#[derive(Debug, Clone)]
199pub enum ReasoningAnswer {
200 Text(String),
202 Number(f32),
204 Boolean(bool),
206 ObjectList(Vec<String>),
208 LocationList(Vec<(f32, f32)>),
210 Complex(HashMap<String, String>),
212}
213
214#[derive(Debug, Clone)]
216pub struct ReasoningStep {
217 pub step_id: usize,
219 pub step_type: String,
221 pub description: String,
223 pub input_data: Vec<String>,
225 pub output_data: Vec<String>,
227 pub confidence: f32,
229}
230
231#[derive(Debug, Clone)]
233pub struct Evidence {
234 pub evidence_type: String,
236 pub description: String,
238 pub support_strength: f32,
240 pub visual_anchors: Vec<(f32, f32)>,
242 pub temporal_anchors: Vec<f32>,
244}
245
246#[derive(Debug, Clone)]
248pub struct AlternativeHypothesis {
249 pub hypothesis: String,
251 pub probability: f32,
253 pub distinguishing_features: Vec<String>,
255}
256
257#[derive(Debug, Clone)]
259pub struct UncertaintyQuantification {
260 pub epistemic_uncertainty: f32,
262 pub aleatoric_uncertainty: f32,
264 pub confidence_interval: (f32, f32),
266 pub sensitivity_analysis: HashMap<String, f32>,
268}
269
270#[derive(Debug, Clone)]
273pub struct CausalModel {
274 pub name: String,
276 pub variables: Vec<CausalVariable>,
278 pub relationships: Vec<CausalRelationship>,
280 pub confidence: f32,
282}
283
284#[derive(Debug, Clone)]
286pub struct CausalVariable {
287 pub name: String,
289 pub variable_type: String,
291 pub possible_values: Vec<String>,
293 pub observability: f32,
295}
296
297#[derive(Debug, Clone)]
299pub struct CausalRelationship {
300 pub cause: String,
302 pub effect: String,
304 pub strength: f32,
306 pub delay: Option<f32>,
308 pub conditions: Vec<String>,
310}
311
312#[derive(Debug, Clone)]
314pub struct InterventionParams {
315 pub intervention_types: Vec<String>,
317 pub effect_propagation: bool,
319 pub temporal_modeling: bool,
321}
322
323#[derive(Debug, Clone)]
325pub struct CounterfactualParams {
326 pub alternative_scenarios: usize,
328 pub plausibility_threshold: f32,
330 pub temporal_scope: f32,
332}
333
334#[derive(Debug, Clone)]
336pub enum QuestionType {
337 Object,
339 Scene,
341 Activity,
343 Spatial,
345 Temporal,
347 Causal,
349 Counterfactual,
351 Comparative,
353}
354
355#[derive(Debug, Clone)]
357pub struct AnswerStrategy {
358 pub strategy_name: String,
360 pub applicable_types: Vec<QuestionType>,
362 pub confidence_estimation: bool,
364}
365
366#[derive(Debug, Clone)]
368pub struct AttentionMechanism {
369 pub mechanism_type: String,
371 pub spatial_attention: bool,
373 pub temporal_attention: bool,
375 pub cross_modal_attention: bool,
377}
378
379#[derive(Debug, Clone)]
381pub struct AnalogyTemplate {
382 pub template_name: String,
384 pub source_pattern: VisualPattern,
386 pub target_pattern: VisualPattern,
388 pub mapping_rules: Vec<MappingRule>,
390}
391
392#[derive(Debug, Clone)]
394pub struct VisualPattern {
395 pub pattern_type: String,
397 pub features: Array2<f32>,
399 pub spatial_structure: Array2<f32>,
401 pub temporal_structure: Array2<f32>,
403}
404
405#[derive(Debug, Clone)]
407pub struct MappingRule {
408 pub source_element: String,
410 pub target_element: String,
412 pub mapping_type: String,
414 pub confidence: f32,
416}
417
418#[derive(Debug, Clone)]
420pub struct SimilarityMetric {
421 pub metric_name: String,
423 pub feature_weights: Array1<f32>,
425 pub normalization: bool,
427 pub distance_function: String,
429}
430
431#[derive(Debug, Clone)]
433pub struct TransferLearningParams {
434 pub adaptation_rate: f32,
436 pub domain_similarity_threshold: f32,
438 pub feature_selection: bool,
440}
441
442#[derive(Debug, Clone)]
444pub struct EventDetector {
445 pub event_type: String,
447 pub detection_threshold: f32,
449 pub temporal_window: usize,
451 pub feature_extractors: Vec<String>,
453}
454
455#[derive(Debug, Clone)]
457pub struct TemporalModel {
458 pub model_type: String,
460 pub time_horizon: f32,
462 pub granularity: f32,
464 pub causality_modeling: bool,
466}
467
468#[derive(Debug, Clone)]
470pub struct SequenceAnalysisParams {
471 pub max_sequence_length: usize,
473 pub pattern_recognition: bool,
475 pub anomaly_detection: bool,
477}
478
479#[derive(Debug, Clone)]
481pub struct ConceptHierarchy {
482 pub hierarchy_name: String,
484 pub root_concepts: Vec<String>,
486 pub concept_relationships: HashMap<String, Vec<String>>,
488 pub abstraction_levels: usize,
490}
491
492#[derive(Debug, Clone)]
494pub struct AbstractionLayer {
495 pub layer_name: String,
497 pub input_features: usize,
499 pub output_concepts: usize,
501 pub learning_algorithm: String,
503}
504
505#[derive(Debug, Clone)]
510pub struct ConceptLearningParams {
511 pub learning_rate: f32,
513 pub concept_emergence_threshold: f32,
515 pub hierarchical_learning: bool,
517}
518
519#[derive(Debug, Clone)]
524pub enum Modality {
525 Visual,
527 Audio,
529 Text,
531 Tactile,
533 Temporal,
535 Spatial,
537}
538
539#[derive(Debug, Clone)]
544pub struct FusionStrategy {
545 pub strategy_name: String,
547 pub modality_weights: HashMap<Modality, f32>,
549 pub fusion_level: String,
551 pub temporal_alignment: bool,
553}
554
555#[derive(Debug, Clone)]
560pub struct CrossModalAttention {
561 pub attention_type: String,
563 pub source_modality: Modality,
565 pub target_modality: Modality,
567 pub attention_weights: Array2<f32>,
569}
570
571#[derive(Debug, Clone)]
576pub struct VisualFact {
577 pub fact_id: String,
579 pub subject: String,
581 pub predicate: String,
583 pub object: String,
585 pub confidence: f32,
587 pub evidence: Vec<String>,
589}
590
591#[derive(Debug, Clone)]
596pub struct ReasoningRule {
597 pub rule_id: String,
599 pub conditions: Vec<String>,
601 pub conclusions: Vec<String>,
603 pub rule_type: String,
605 pub reliability: f32,
607}
608
609#[derive(Debug, Clone)]
610pub struct ConceptOntology {
611 pub concepts: HashMap<String, ConceptDefinition>,
612 pub relationships: Vec<ConceptRelationship>,
613 pub inheritance_hierarchy: HashMap<String, Vec<String>>,
614}
615
616#[derive(Debug, Clone)]
617pub struct ConceptDefinition {
618 pub concept_name: String,
619 pub attributes: Vec<String>,
620 pub visual_features: Array1<f32>,
621 pub typical_contexts: Vec<String>,
622}
623
624#[derive(Debug, Clone)]
625pub struct ConceptRelationship {
626 pub source_concept: String,
627 pub target_concept: String,
628 pub relationship_type: String,
629 pub strength: f32,
630}
631
632impl Default for VisualReasoningEngine {
633 fn default() -> Self {
634 Self::new()
635 }
636}
637
638impl VisualReasoningEngine {
639 pub fn new() -> Self {
641 Self {
642 causal_inference: CausalInferenceModule::new(),
643 vqa_system: VisualQuestionAnsweringSystem::new(),
644 analogical_reasoning: AnalogicalReasoningEngine::new(),
645 temporal_analyzer: TemporalEventAnalyzer::new(),
646 concept_recognizer: AbstractConceptRecognizer::new(),
647 multimodal_hub: MultiModalIntegrationHub::new(),
648 knowledge_base: VisualKnowledgeBase::new(),
649 }
650 }
651
652 pub fn process_query(
654 &self,
655 query: &VisualReasoningQuery,
656 scene_analysis: &SceneAnalysisResult,
657 context: Option<&[SceneAnalysisResult]>,
658 ) -> Result<VisualReasoningResult> {
659 let mut reasoning_steps = Vec::new();
661 let mut evidence = Vec::new();
662
663 let decomposed_query = self.decompose_query(query)?;
665 reasoning_steps.push(ReasoningStep {
666 step_id: 1,
667 step_type: "query_decomposition".to_string(),
668 description: "Breaking down complex query into sub-queries".to_string(),
669 input_data: vec![query.question.clone()],
670 output_data: vec![format!("{} sub-queries", decomposed_query.len())],
671 confidence: 0.95,
672 });
673
674 let visual_features = self.extract_reasoning_features(scene_analysis)?;
676 reasoning_steps.push(ReasoningStep {
677 step_id: 2,
678 step_type: "feature_extraction".to_string(),
679 description: "Extracting relevant visual features for reasoning".to_string(),
680 input_data: vec!["scene_analysis".to_string()],
681 output_data: vec![format!("{} feature dimensions", visual_features.len())],
682 confidence: 0.90,
683 });
684
685 let (answer, step_evidence, alternatives) = match query.query_type {
687 QueryType::WhatIsHappening => {
688 self.reason_what_is_happening(scene_analysis, &visual_features)?
689 }
690 QueryType::WhyIsHappening => {
691 self.reason_why_is_happening(scene_analysis, &visual_features)?
692 }
693 QueryType::WhatWillHappenNext => {
694 self.reason_what_will_happen_next(scene_analysis, context, &visual_features)?
695 }
696 QueryType::HowAreObjectsRelated => {
697 self.reason_object_relationships(scene_analysis, &visual_features)?
698 }
699 QueryType::CausalRelationshipQuery => {
700 self.reason_causal_relationships(scene_analysis, &visual_features)?
701 }
702 _ => (
703 ReasoningAnswer::Text("Query type not fully implemented yet".to_string()),
704 Vec::new(),
705 Vec::new(),
706 ),
707 };
708
709 evidence.extend(step_evidence);
710
711 let confidence = self.estimate_overall_confidence(&reasoning_steps, &evidence)?;
713 let uncertainty = self.quantify_uncertainty(&answer, &evidence)?;
714
715 Ok(VisualReasoningResult {
716 answer,
717 reasoning_steps,
718 confidence,
719 evidence,
720 alternatives,
721 uncertainty,
722 })
723 }
724
725 pub fn infer_causality(
727 &self,
728 scene_sequence: &[SceneAnalysisResult],
729 causal_query: &str,
730 ) -> Result<CausalInferenceResult> {
731 let temporal_patterns = self.extract_temporal_patterns(scene_sequence)?;
733
734 let causal_graph = self
736 .causal_inference
737 .build_causal_graph(&temporal_patterns)?;
738
739 let causal_effects = self
741 .causal_inference
742 .infer_effects(&causal_graph, causal_query)?;
743
744 Ok(CausalInferenceResult {
745 causal_graph,
746 effects: causal_effects,
747 confidence: 0.75,
748 })
749 }
750
751 pub fn find_analogies(
753 &self,
754 source_scene: &SceneAnalysisResult,
755 target_scenes: &[SceneAnalysisResult],
756 ) -> Result<Vec<AnalogyResult>> {
757 let mut analogies = Vec::new();
758
759 for target_scene in target_scenes {
760 let analogy = self
761 .analogical_reasoning
762 .find_analogy(source_scene, target_scene)?;
763 if analogy.similarity_score > 0.6 {
764 analogies.push(analogy);
765 }
766 }
767
768 analogies.sort_by(|a, b| {
770 b.similarity_score
771 .partial_cmp(&a.similarity_score)
772 .expect("Operation failed")
773 });
774
775 Ok(analogies)
776 }
777
778 pub fn recognize_abstract_concepts(
780 &self,
781 scene_analysis: &SceneAnalysisResult,
782 ) -> Result<Vec<AbstractConcept>> {
783 let concepts = self.concept_recognizer.recognize_concepts(scene_analysis)?;
784 Ok(concepts)
785 }
786
787 fn decompose_query(&self, query: &VisualReasoningQuery) -> Result<Vec<SubQuery>> {
789 Ok(vec![SubQuery {
791 sub_question: query.question.clone(),
792 query_type: query.query_type.clone(),
793 dependencies: Vec::new(),
794 }])
795 }
796
797 fn extract_reasoning_features(
798 &self,
799 scene_analysis: &SceneAnalysisResult,
800 ) -> Result<Array1<f32>> {
801 let mut features = Vec::new();
803
804 for object in &scene_analysis.objects {
806 features.extend(object.features.iter().cloned());
807 }
808
809 for relationship in &scene_analysis.relationships {
811 features.push(relationship.confidence);
812 features.extend(relationship.parameters.values().cloned());
813 }
814
815 features.push(scene_analysis.scene_confidence);
817
818 Ok(Array1::from_vec(features))
819 }
820
821 fn reason_what_is_happening(
822 &self,
823 scene_analysis: &SceneAnalysisResult,
824 _features: &Array1<f32>,
825 ) -> Result<(ReasoningAnswer, Vec<Evidence>, Vec<AlternativeHypothesis>)> {
826 let activities = self.identify_activities(scene_analysis)?;
828 let description = format!("Detected activities: {}", activities.join(", "));
829
830 let evidence = vec![Evidence {
831 evidence_type: "object_detection".to_string(),
832 description: format!("Found {} objects in scene", scene_analysis.objects.len()),
833 support_strength: 0.8,
834 visual_anchors: Vec::new(),
835 temporal_anchors: Vec::new(),
836 }];
837
838 Ok((ReasoningAnswer::Text(description), evidence, Vec::new()))
839 }
840
841 fn reason_why_is_happening(
842 &self,
843 scene_analysis: &SceneAnalysisResult,
844 _features: &Array1<f32>,
845 ) -> Result<(ReasoningAnswer, Vec<Evidence>, Vec<AlternativeHypothesis>)> {
846 let causal_explanations = self.generate_causal_explanations(scene_analysis)?;
848
849 Ok((
850 ReasoningAnswer::Text(causal_explanations),
851 Vec::new(),
852 Vec::new(),
853 ))
854 }
855
856 fn reason_what_will_happen_next(
857 &self,
858 scene_analysis: &SceneAnalysisResult,
859 context: Option<&[SceneAnalysisResult]>,
860 _features: &Array1<f32>,
861 ) -> Result<(ReasoningAnswer, Vec<Evidence>, Vec<AlternativeHypothesis>)> {
862 let prediction = if let Some(temporal_context) = context {
863 self.predict_future_events(scene_analysis, temporal_context)?
864 } else {
865 "Insufficient temporal context for prediction".to_string()
866 };
867
868 Ok((ReasoningAnswer::Text(prediction), Vec::new(), Vec::new()))
869 }
870
871 fn reason_object_relationships(
872 &self,
873 scene_analysis: &SceneAnalysisResult,
874 _features: &Array1<f32>,
875 ) -> Result<(ReasoningAnswer, Vec<Evidence>, Vec<AlternativeHypothesis>)> {
876 let relationships_desc = format!(
877 "Found {} spatial relationships between objects",
878 scene_analysis.relationships.len()
879 );
880
881 Ok((
882 ReasoningAnswer::Text(relationships_desc),
883 Vec::new(),
884 Vec::new(),
885 ))
886 }
887
888 fn reason_causal_relationships(
889 &self,
890 scene_analysis: &SceneAnalysisResult,
891 _features: &Array1<f32>,
892 ) -> Result<(ReasoningAnswer, Vec<Evidence>, Vec<AlternativeHypothesis>)> {
893 let causal_analysis = self.analyze_causal_structure(scene_analysis)?;
894
895 Ok((
896 ReasoningAnswer::Text(causal_analysis),
897 Vec::new(),
898 Vec::new(),
899 ))
900 }
901
902 fn estimate_overall_confidence(
903 &self,
904 steps: &[ReasoningStep],
905 _evidence: &[Evidence],
906 ) -> Result<f32> {
907 Ok(0.75) }
909
910 fn quantify_uncertainty(
911 &self,
912 answer: &ReasoningAnswer,
913 _evidence: &[Evidence],
914 ) -> Result<UncertaintyQuantification> {
915 Ok(UncertaintyQuantification {
916 epistemic_uncertainty: 0.2,
917 aleatoric_uncertainty: 0.1,
918 confidence_interval: (0.6, 0.9),
919 sensitivity_analysis: HashMap::new(),
920 })
921 }
922
923 fn extract_temporal_patterns(
924 &self,
925 sequence: &[SceneAnalysisResult],
926 ) -> Result<TemporalPatterns> {
927 Ok(TemporalPatterns {
928 patterns: Vec::new(),
929 temporal_graph: TemporalGraph {
930 nodes: Vec::new(),
931 edges: Vec::new(),
932 },
933 })
934 }
935
936 fn identify_activities(&self, sceneanalysis: &SceneAnalysisResult) -> Result<Vec<String>> {
937 let mut activities = Vec::new();
938
939 for object in &sceneanalysis.objects {
941 match object.class.as_str() {
942 "person" => activities.push("human_activity".to_string()),
943 "car" => activities.push("transportation".to_string()),
944 "chair" => activities.push("sitting_area".to_string()),
945 _ => {}
946 }
947 }
948
949 if activities.is_empty() {
950 activities.push("static_scene".to_string());
951 }
952
953 Ok(activities)
954 }
955
956 fn generate_causal_explanations(
957 &self,
958 _scene_analysis: &SceneAnalysisResult,
959 ) -> Result<String> {
960 Ok(
961 "Scene appears to be in its current state due to normal object placement patterns"
962 .to_string(),
963 )
964 }
965
966 fn predict_future_events(
967 &self,
968 scene: &SceneAnalysisResult,
969 _context: &[SceneAnalysisResult],
970 ) -> Result<String> {
971 Ok("Based on temporal patterns, the _scene is likely to remain stable".to_string())
972 }
973
974 fn analyze_causal_structure(&self, _sceneanalysis: &SceneAnalysisResult) -> Result<String> {
975 Ok("No strong causal relationships detected in current scene".to_string())
976 }
977}
978
979#[derive(Debug, Clone)]
981pub struct SubQuery {
982 pub sub_question: String,
983 pub query_type: QueryType,
984 pub dependencies: Vec<usize>,
985}
986
987#[derive(Debug, Clone)]
988pub struct CausalInferenceResult {
989 pub causal_graph: CausalGraph,
990 pub effects: Vec<CausalEffect>,
991 pub confidence: f32,
992}
993
994#[derive(Debug, Clone)]
995pub struct CausalGraph {
996 pub nodes: Vec<CausalNode>,
997 pub edges: Vec<CausalEdge>,
998}
999
1000#[derive(Debug, Clone)]
1001pub struct CausalNode {
1002 pub node_id: String,
1003 pub node_type: String,
1004 pub properties: HashMap<String, f32>,
1005}
1006
1007#[derive(Debug, Clone)]
1008pub struct CausalEdge {
1009 pub source: String,
1010 pub target: String,
1011 pub strength: f32,
1012 pub delay: f32,
1013}
1014
1015#[derive(Debug, Clone)]
1016pub struct CausalEffect {
1017 pub effect_type: String,
1018 pub magnitude: f32,
1019 pub probability: f32,
1020}
1021
1022#[derive(Debug, Clone)]
1023pub struct AnalogyResult {
1024 pub similarity_score: f32,
1025 pub matching_patterns: Vec<PatternMatch>,
1026 pub explanation: String,
1027}
1028
1029#[derive(Debug, Clone)]
1030pub struct PatternMatch {
1031 pub source_element: String,
1032 pub target_element: String,
1033 pub similarity: f32,
1034}
1035
1036#[derive(Debug, Clone)]
1037pub struct AbstractConcept {
1038 pub concept_name: String,
1039 pub confidence: f32,
1040 pub supporting_evidence: Vec<String>,
1041}
1042
1043#[derive(Debug, Clone)]
1044pub struct TemporalPatterns {
1045 pub patterns: Vec<TemporalPattern>,
1046 pub temporal_graph: TemporalGraph,
1047}
1048
1049#[derive(Debug, Clone)]
1050pub struct TemporalPattern {
1051 pub pattern_type: String,
1052 pub frequency: f32,
1053 pub duration: f32,
1054}
1055
1056#[derive(Debug, Clone)]
1057pub struct TemporalGraph {
1058 pub nodes: Vec<TemporalNode>,
1059 pub edges: Vec<TemporalEdge>,
1060}
1061
1062#[derive(Debug, Clone)]
1063pub struct TemporalNode {
1064 pub timestamp: f32,
1065 pub event_type: String,
1066 pub properties: HashMap<String, f32>,
1067}
1068
1069#[derive(Debug, Clone)]
1070pub struct TemporalEdge {
1071 pub source_time: f32,
1072 pub target_time: f32,
1073 pub relationship_type: String,
1074}
1075
1076impl CausalInferenceModule {
1078 fn new() -> Self {
1079 Self {
1080 causal_models: Vec::new(),
1081 intervention_params: InterventionParams {
1082 intervention_types: Vec::new(),
1083 effect_propagation: true,
1084 temporal_modeling: true,
1085 },
1086 counterfactual_params: CounterfactualParams {
1087 alternative_scenarios: 5,
1088 plausibility_threshold: 0.3,
1089 temporal_scope: 10.0,
1090 },
1091 }
1092 }
1093
1094 fn build_causal_graph(&self, patterns: &TemporalPatterns) -> Result<CausalGraph> {
1095 Ok(CausalGraph {
1096 nodes: Vec::new(),
1097 edges: Vec::new(),
1098 })
1099 }
1100
1101 fn infer_effects(&self, graph: &CausalGraph, query: &str) -> Result<Vec<CausalEffect>> {
1102 Ok(Vec::new())
1103 }
1104}
1105
1106impl VisualQuestionAnsweringSystem {
1107 fn new() -> Self {
1108 Self {
1109 question_types: vec![QuestionType::Object, QuestionType::Scene],
1110 answer_strategies: Vec::new(),
1111 attention_mechanisms: Vec::new(),
1112 }
1113 }
1114}
1115
1116impl AnalogicalReasoningEngine {
1117 fn new() -> Self {
1118 Self {
1119 analogy_templates: Vec::new(),
1120 similarity_metrics: Vec::new(),
1121 transfer_params: TransferLearningParams {
1122 adaptation_rate: 0.1,
1123 domain_similarity_threshold: 0.5,
1124 feature_selection: true,
1125 },
1126 }
1127 }
1128
1129 fn find_analogy(
1130 &self,
1131 source: &SceneAnalysisResult,
1132 _target: &SceneAnalysisResult,
1133 ) -> Result<AnalogyResult> {
1134 Ok(AnalogyResult {
1135 similarity_score: 0.7,
1136 matching_patterns: Vec::new(),
1137 explanation: "Structural similarity detected".to_string(),
1138 })
1139 }
1140}
1141
1142impl TemporalEventAnalyzer {
1143 fn new() -> Self {
1144 Self {
1145 event_detectors: Vec::new(),
1146 temporal_models: Vec::new(),
1147 sequence_params: SequenceAnalysisParams {
1148 max_sequence_length: 100,
1149 pattern_recognition: true,
1150 anomaly_detection: true,
1151 },
1152 }
1153 }
1154}
1155
1156impl AbstractConceptRecognizer {
1157 fn new() -> Self {
1158 Self {
1159 concept_hierarchies: Vec::new(),
1160 abstraction_layers: Vec::new(),
1161 learning_params: ConceptLearningParams {
1162 learning_rate: 0.01,
1163 concept_emergence_threshold: 0.8,
1164 hierarchical_learning: true,
1165 },
1166 }
1167 }
1168
1169 fn recognize_concepts(&self, scene: &SceneAnalysisResult) -> Result<Vec<AbstractConcept>> {
1170 Ok(Vec::new())
1171 }
1172}
1173
1174impl MultiModalIntegrationHub {
1175 fn new() -> Self {
1176 Self {
1177 modalities: vec![Modality::Visual],
1178 fusion_strategies: Vec::new(),
1179 cross_attention: Vec::new(),
1180 }
1181 }
1182}
1183
1184impl VisualKnowledgeBase {
1185 fn new() -> Self {
1186 Self {
1187 facts: HashMap::new(),
1188 rules: Vec::new(),
1189 ontology: ConceptOntology {
1190 concepts: HashMap::new(),
1191 relationships: Vec::new(),
1192 inheritance_hierarchy: HashMap::new(),
1193 },
1194 }
1195 }
1196}
1197
1198#[allow(dead_code)]
1200pub fn perform_advanced_visual_reasoning(
1201 scene: &SceneAnalysisResult,
1202 question: &str,
1203 context: Option<&[SceneAnalysisResult]>,
1204) -> Result<VisualReasoningResult> {
1205 let engine = VisualReasoningEngine::new();
1206
1207 let query = VisualReasoningQuery {
1208 query_type: QueryType::WhatIsHappening, question: question.to_string(),
1210 parameters: HashMap::new(),
1211 context_requirements: Vec::new(),
1212 };
1213
1214 engine.process_query(&query, scene, context)
1215}