Skip to main content

scirs2_vision/integration_modules/
data_structures.rs

1//! Data Structures for Advanced Integration
2//!
3//! This module provides data structures and result types for advanced
4//! cross-module processing and integration.
5
6use scirs2_core::ndarray::{Array1, Array2, Array3};
7use std::time::Instant;
8
9/// Advanced input data structure supporting multiple module types,
10/// allowing for flexible cross-module coordination and processing.
11#[derive(Debug, Default)]
12pub struct AdvancedInputData {
13    /// Image or vision processing data (height, width, channels)
14    pub vision_data: Option<Array3<f64>>,
15    /// Data for clustering algorithms
16    pub clustering_data: Option<Array2<f64>>,
17    /// Spatial processing data
18    pub spatial_data: Option<Array2<f64>>,
19    /// Neural network input data
20    pub neural_data: Option<Array2<f64>>,
21}
22
23/// Result of cross-module Advanced processing with comprehensive metrics
24///
25/// Contains the fused results from multiple modules along with performance
26/// metrics and efficiency measurements.
27#[derive(Debug)]
28pub struct CrossModuleAdvancedProcessingResult {
29    /// Fused results from all participating modules
30    pub fused_result: CrossModuleFusedResult,
31    /// Detailed performance metrics for the processing session
32    pub performance_metrics: AdvancedPerformanceMetrics,
33    /// Synergy factor achieved between modules (1.0 = baseline)
34    pub cross_module_synergy: f64,
35    /// Resource utilization efficiency (0.0-1.0)
36    pub resource_efficiency: f64,
37    /// Meta-learning improvement factor over baseline
38    pub meta_learning_improvement: f64,
39    /// Total processing time in seconds
40    pub processing_time: f64,
41}
42
43/// Fused output data from multiple processing modules
44///
45/// Contains the processed outputs from different modules along with
46/// fusion confidence and methodology information.
47#[derive(Debug)]
48pub struct CrossModuleFusedResult {
49    /// Processed vision/image data output
50    pub vision_output: Option<Array3<f64>>,
51    /// Clustering results (cluster assignments)
52    pub clustering_output: Option<Array1<usize>>,
53    /// Spatial processing results
54    pub spatial_output: Option<Array2<f64>>,
55    /// Neural network processing output
56    pub neural_output: Option<Array2<f64>>,
57    /// Confidence in the fusion process (0.0-1.0)
58    pub fusion_confidence: f64,
59    /// Description of the fusion methodology used
60    pub fusion_method: String,
61}
62
63/// Comprehensive performance metrics for Advanced mode processing
64///
65/// Tracks performance across all modules and processing paradigms
66/// including quantum, neuromorphic, and AI optimization metrics.
67#[derive(Debug, Clone)]
68pub struct AdvancedPerformanceMetrics {
69    /// Overall system performance score (normalized 0.0-1.0)
70    pub overall_performance: f64,
71    /// Vision processing module performance score
72    pub vision_performance: f64,
73    /// Clustering module performance score
74    pub clustering_performance: f64,
75    /// Spatial processing module performance score
76    pub spatial_performance: f64,
77    /// Neural network module performance score
78    pub neural_performance: f64,
79    /// Quantum coherence measure for quantum-inspired algorithms
80    pub quantum_coherence: f64,
81    /// Neuromorphic adaptation efficiency measure
82    pub neuromorphic_adaptation: f64,
83    /// AI optimization performance gain factor
84    pub ai_optimization_gain: f64,
85}
86
87/// Current status of Advanced mode across all modules
88///
89/// Provides a comprehensive view of the current state of Advanced
90/// processing capabilities and their activation status.
91#[derive(Debug)]
92pub struct AdvancedModeStatus {
93    /// Whether Advanced mode is currently active
94    pub active: bool,
95    /// List of modules currently using Advanced features
96    pub active_modules: Vec<String>,
97    /// Overall system performance under Advanced mode
98    pub system_performance: f64,
99    /// Estimated performance improvement over baseline
100    pub performance_improvement: f64,
101    /// Resource utilization under Advanced mode
102    pub resource_utilization: f64,
103    /// Time since Advanced mode was activated
104    pub time_active: f64,
105    /// Current quantum coherence levels
106    pub quantum_coherence: f64,
107    /// Current neuromorphic adaptation efficiency
108    pub neuromorphic_efficiency: f64,
109    /// AI optimization effectiveness
110    pub ai_optimization_effectiveness: f64,
111}
112
113/// Quantum processing metrics
114///
115/// Tracks quantum-inspired algorithm performance and coherence measures.
116#[derive(Debug, Clone)]
117pub struct QuantumProcessingMetrics {
118    /// Quantum coherence measure (0.0-1.0)
119    pub coherence: f64,
120    /// Entanglement strength in fusion operations
121    pub entanglement_strength: f64,
122    /// Quantum advantage factor over classical methods
123    pub quantum_advantage: f64,
124    /// Decoherence rate
125    pub decoherence_rate: f64,
126    /// Number of quantum operations performed
127    pub quantum_operations: usize,
128}
129
130/// Neuromorphic processing metrics
131///
132/// Tracks neuromorphic adaptation and learning performance.
133#[derive(Debug, Clone)]
134pub struct NeuromorphicProcessingMetrics {
135    /// Adaptation efficiency (0.0-1.0)
136    pub adaptation_efficiency: f64,
137    /// Learning rate convergence
138    pub learning_convergence: f64,
139    /// Plasticity measure
140    pub plasticity: f64,
141    /// Spike timing precision
142    pub spike_timing_precision: f64,
143    /// Energy efficiency compared to traditional neural networks
144    pub energy_efficiency: f64,
145}
146
147/// Fusion quality indicators
148///
149/// Measures the quality and effectiveness of multi-paradigm fusion.
150#[derive(Debug, Clone)]
151pub struct FusionQualityIndicators {
152    /// Overall fusion quality score (0.0-1.0)
153    pub overall_quality: f64,
154    /// Coherence between different processing paradigms
155    pub paradigm_coherence: f64,
156    /// Information preservation during fusion
157    pub information_preservation: f64,
158    /// Fusion stability over time
159    pub temporal_stability: f64,
160    /// Complementarity measure between approaches
161    pub complementarity: f64,
162}
163
164/// Emergent behavior detection
165///
166/// Tracks and analyzes emergent behaviors in the Advanced system.
167#[derive(Debug, Clone)]
168pub struct EmergentBehaviorDetection {
169    /// Number of emergent patterns detected
170    pub patterns_detected: usize,
171    /// Novelty score of detected behaviors
172    pub novelty_score: f64,
173    /// Complexity increase measure
174    pub complexity_increase: f64,
175    /// Behavioral stability
176    pub stability: f64,
177    /// Potential for system evolution
178    pub evolution_potential: f64,
179}
180
181/// Advanced Advanced Processing Result
182///
183/// Comprehensive result structure for individual Advanced processing operations.
184#[derive(Debug)]
185pub struct AdvancedAdvancedProcessingResult {
186    /// Success status of the operation
187    pub success: bool,
188    /// Detailed processing metrics
189    pub metrics: AdvancedPerformanceMetrics,
190    /// Quantum processing specifics
191    pub quantum_metrics: QuantumProcessingMetrics,
192    /// Neuromorphic processing specifics
193    pub neuromorphic_metrics: NeuromorphicProcessingMetrics,
194    /// Fusion quality assessment
195    pub fusion_quality: FusionQualityIndicators,
196    /// Emergent behavior analysis
197    pub emergent_behavior: EmergentBehaviorDetection,
198    /// Processing time breakdown
199    pub timing_breakdown: ProcessingTimingBreakdown,
200    /// Resource usage statistics
201    pub resource_usage: ResourceUsageStatistics,
202    /// Quality assurance metrics
203    pub quality_assurance: QualityAssuranceMetrics,
204}
205
206/// Processing timing breakdown
207#[derive(Debug, Clone)]
208pub struct ProcessingTimingBreakdown {
209    /// Total processing time
210    pub total_time: f64,
211    /// Quantum processing time
212    pub quantum_time: f64,
213    /// Neuromorphic processing time
214    pub neuromorphic_time: f64,
215    /// Classical processing time
216    pub classical_time: f64,
217    /// Fusion operation time
218    pub fusion_time: f64,
219    /// Overhead time
220    pub overhead_time: f64,
221}
222
223/// Resource usage statistics
224#[derive(Debug, Clone)]
225pub struct ResourceUsageStatistics {
226    /// CPU utilization percentage
227    pub cpu_utilization: f64,
228    /// Memory usage in MB
229    pub memory_usage: f64,
230    /// GPU utilization percentage
231    pub gpu_utilization: f64,
232    /// Energy consumption in joules
233    pub energy_consumption: f64,
234    /// Network bandwidth used
235    pub network_bandwidth: f64,
236}
237
238/// Quality assurance metrics
239#[derive(Debug, Clone)]
240pub struct QualityAssuranceMetrics {
241    /// Output quality score
242    pub output_quality: f64,
243    /// Consistency measure
244    pub consistency: f64,
245    /// Reliability score
246    pub reliability: f64,
247    /// Error rate
248    pub error_rate: f64,
249    /// Confidence interval
250    pub confidence_interval: (f64, f64),
251}
252
253/// Performance metrics structure
254///
255/// Simplified performance tracking for individual operations.
256#[derive(Debug, Clone)]
257pub struct PerformanceMetrics {
258    /// Processing accuracy
259    pub accuracy: f64,
260    /// Processing speed (operations per second)
261    pub speed: f64,
262    /// Resource efficiency
263    pub efficiency: f64,
264    /// Quality score
265    pub quality: f64,
266    /// Latency in milliseconds
267    pub latency: f64,
268}
269
270/// Uncertainty quantification for Advanced results
271///
272/// Provides uncertainty measures and confidence intervals for Advanced processing results.
273#[derive(Debug, Clone)]
274pub struct UncertaintyQuantification {
275    /// Overall confidence level (0.0-1.0)
276    pub confidence_level: f64,
277    /// Uncertainty in results
278    pub result_uncertainty: f64,
279    /// Model uncertainty
280    pub model_uncertainty: f64,
281    /// Data uncertainty
282    pub data_uncertainty: f64,
283    /// Confidence intervals for key metrics
284    pub confidence_intervals: std::collections::HashMap<String, (f64, f64)>,
285}
286
287impl AdvancedInputData {
288    /// Create new advanced input data with vision data
289    pub fn with_vision_data(vision_data: Array3<f64>) -> Self {
290        Self {
291            vision_data: Some(vision_data),
292            clustering_data: None,
293            spatial_data: None,
294            neural_data: None,
295        }
296    }
297
298    /// Create new advanced input data with clustering data
299    pub fn with_clustering_data(clustering_data: Array2<f64>) -> Self {
300        Self {
301            vision_data: None,
302            clustering_data: Some(clustering_data),
303            spatial_data: None,
304            neural_data: None,
305        }
306    }
307
308    /// Check if any data is available
309    pub fn has_data(&self) -> bool {
310        self.vision_data.is_some()
311            || self.clustering_data.is_some()
312            || self.spatial_data.is_some()
313            || self.neural_data.is_some()
314    }
315
316    /// Get the number of available data sources
317    pub fn data_source_count(&self) -> usize {
318        let mut count = 0;
319        if self.vision_data.is_some() {
320            count += 1;
321        }
322        if self.clustering_data.is_some() {
323            count += 1;
324        }
325        if self.spatial_data.is_some() {
326            count += 1;
327        }
328        if self.neural_data.is_some() {
329            count += 1;
330        }
331        count
332    }
333}
334
335impl Default for CrossModuleFusedResult {
336    fn default() -> Self {
337        Self {
338            vision_output: None,
339            clustering_output: None,
340            spatial_output: None,
341            neural_output: None,
342            fusion_confidence: 0.0,
343            fusion_method: "none".to_string(),
344        }
345    }
346}
347
348impl Default for AdvancedPerformanceMetrics {
349    fn default() -> Self {
350        Self {
351            overall_performance: 0.0,
352            vision_performance: 0.0,
353            clustering_performance: 0.0,
354            spatial_performance: 0.0,
355            neural_performance: 0.0,
356            quantum_coherence: 0.0,
357            neuromorphic_adaptation: 0.0,
358            ai_optimization_gain: 0.0,
359        }
360    }
361}
362
363impl Default for QuantumProcessingMetrics {
364    fn default() -> Self {
365        Self {
366            coherence: 0.0,
367            entanglement_strength: 0.0,
368            quantum_advantage: 1.0,
369            decoherence_rate: 0.0,
370            quantum_operations: 0,
371        }
372    }
373}
374
375impl Default for NeuromorphicProcessingMetrics {
376    fn default() -> Self {
377        Self {
378            adaptation_efficiency: 0.0,
379            learning_convergence: 0.0,
380            plasticity: 0.0,
381            spike_timing_precision: 0.0,
382            energy_efficiency: 1.0,
383        }
384    }
385}
386
387impl Default for ProcessingTimingBreakdown {
388    fn default() -> Self {
389        Self {
390            total_time: 0.0,
391            quantum_time: 0.0,
392            neuromorphic_time: 0.0,
393            classical_time: 0.0,
394            fusion_time: 0.0,
395            overhead_time: 0.0,
396        }
397    }
398}
399
400impl Default for ResourceUsageStatistics {
401    fn default() -> Self {
402        Self {
403            cpu_utilization: 0.0,
404            memory_usage: 0.0,
405            gpu_utilization: 0.0,
406            energy_consumption: 0.0,
407            network_bandwidth: 0.0,
408        }
409    }
410}