1use crate::auto_feature_engineering::{TransformationConfig, TransformationType};
7use crate::error::{Result, TransformError};
8use ndarray::{Array1, Array2, ArrayView2};
9use rand::Rng;
10use scirs2_core::parallel_ops::*;
11use scirs2_core::simd_ops::SimdUnifiedOps;
12use scirs2_core::validation::check_not_empty;
13use std::collections::HashMap;
14
15#[derive(Debug, Clone)]
17pub struct QuantumParticle {
18 position: Array1<f64>,
20 velocity: Array1<f64>,
22 best_position: Array1<f64>,
24 best_fitness: f64,
26 superposition: Array1<f64>,
28 phase: f64,
30 entanglement: f64,
32}
33
34pub struct QuantumInspiredOptimizer {
36 particles: Vec<QuantumParticle>,
38 global_best_position: Array1<f64>,
40 global_best_fitness: f64,
42 bounds: Vec<(f64, f64)>,
44 maxiterations: usize,
46 collapse_probability: f64,
48 entanglement_strength: f64,
50 decay_rate: f64,
52}
53
54impl QuantumInspiredOptimizer {
55 pub fn new(
57 dimension: usize,
58 population_size: usize,
59 bounds: Vec<(f64, f64)>,
60 maxiterations: usize,
61 ) -> Result<Self> {
62 if bounds.len() != dimension {
63 return Err(TransformError::InvalidInput(
64 "Bounds must match dimension".to_string(),
65 ));
66 }
67
68 let mut rng = rand::rng();
69 let mut particles = Vec::with_capacity(population_size);
70
71 for _ in 0..population_size {
73 let position: Array1<f64> =
74 Array1::from_iter(bounds.iter().map(|(min, max)| rng.gen_range(*min..*max)));
75
76 let velocity = Array1::zeros(dimension);
77 let superposition = Array1::from_iter((0..dimension).map(|_| rng.gen_range(0.0..1.0)));
78
79 particles.push(QuantumParticle {
80 position: position.clone(),
81 velocity,
82 best_position: position,
83 best_fitness: f64::NEG_INFINITY,
84 superposition,
85 phase: rng.gen_range(0.0..2.0 * std::f64::consts::PI),
86 entanglement: rng.gen_range(0.0..1.0),
87 });
88 }
89
90 Ok(QuantumInspiredOptimizer {
91 particles,
92 global_best_position: Array1::zeros(dimension),
93 global_best_fitness: f64::NEG_INFINITY,
94 bounds,
95 maxiterations,
96 collapse_probability: 0.1,
97 entanglement_strength: 0.3,
98 decay_rate: 0.95,
99 })
100 }
101
102 pub fn optimize<F>(&mut self, objectivefunction: F) -> Result<(Array1<f64>, f64)>
104 where
105 F: Fn(&Array1<f64>) -> f64,
106 {
107 let mut rng = rand::rng();
108
109 for iteration in 0..self.maxiterations {
110 let quantum_data: Vec<(Array1<f64>, f64)> = self
113 .particles
114 .iter()
115 .map(|particle| {
116 let quantum_position = self.apply_quantum_superposition(particle)?;
117 let fitness = objectivefunction(&quantum_position);
118 Ok((quantum_position, fitness))
119 })
120 .collect::<Result<Vec<_>>>()?;
121
122 for (particle, (quantum_position, fitness)) in
124 self.particles.iter_mut().zip(quantum_data.iter())
125 {
126 if *fitness > particle.best_fitness {
128 particle.best_fitness = *fitness;
129 particle.best_position = quantum_position.clone();
130 }
131
132 if *fitness > self.global_best_fitness {
134 self.global_best_fitness = *fitness;
135 self.global_best_position = quantum_position.clone();
136 }
137
138 particle.phase += 0.1 * (iteration as f64 / self.maxiterations as f64);
140 if particle.phase > 2.0 * std::f64::consts::PI {
141 particle.phase -= 2.0 * std::f64::consts::PI;
142 }
143 }
144
145 self.update_quantum_entanglement()?;
147
148 if rng.gen_range(0.0..1.0) < self.collapse_probability {
150 self.quantum_collapse()?;
151 }
152
153 self.decay_superposition(iteration);
155
156 self.adapt_quantum_parameters(iteration);
158 }
159
160 Ok((self.global_best_position.clone(), self.global_best_fitness))
161 }
162
163 fn apply_quantum_superposition(&self, particle: &QuantumParticle) -> Result<Array1<f64>> {
165 let mut quantum_position = particle.position.clone();
166
167 for i in 0..quantum_position.len() {
168 let wave_amplitude = particle.superposition[i] * particle.phase.cos();
170 let quantum_offset = wave_amplitude * particle.entanglement;
171
172 quantum_position[i] += quantum_offset;
173
174 let (min_bound, max_bound) = self.bounds[i];
176 quantum_position[i] = quantum_position[i].max(min_bound).min(max_bound);
177 }
178
179 Ok(quantum_position)
180 }
181
182 fn update_quantum_entanglement(&mut self) -> Result<()> {
184 let n_particles = self.particles.len();
185
186 for i in 0..n_particles {
187 let distance_to_global = (&self.particles[i].position - &self.global_best_position)
189 .mapv(|x| x * x)
190 .sum()
191 .sqrt();
192
193 let max_distance = self
195 .bounds
196 .iter()
197 .map(|(min, max)| (max - min).powi(2))
198 .sum::<f64>()
199 .sqrt();
200
201 let normalized_distance = distance_to_global / max_distance.max(1e-10);
202 self.particles[i].entanglement =
203 self.entanglement_strength * (1.0 - normalized_distance).max(0.0);
204 }
205
206 Ok(())
207 }
208
209 fn quantum_collapse(&mut self) -> Result<()> {
211 let mut rng = rand::rng();
212
213 for particle in &mut self.particles {
214 for i in 0..particle.superposition.len() {
216 if rng.gen_range(0.0..1.0) < 0.3 {
217 particle.superposition[i] = if rng.gen_range(0.0..1.0) < 0.5 {
218 1.0
219 } else {
220 0.0
221 };
222 }
223 }
224
225 particle.phase = rng.gen_range(0.0..2.0 * std::f64::consts::PI);
227 }
228
229 Ok(())
230 }
231
232 fn decay_superposition(&mut self, iteration: usize) {
234 let decay_factor = self.decay_rate.powi(iteration as i32);
235
236 for particle in &mut self.particles {
237 particle.superposition.mapv_inplace(|x| x * decay_factor);
238 }
239 }
240
241 fn adapt_quantum_parameters(&mut self, iteration: usize) {
243 let progress = iteration as f64 / self.maxiterations as f64;
244
245 self.collapse_probability = 0.2 * (1.0 - progress) + 0.05 * progress;
247
248 self.entanglement_strength = 0.5 * (1.0 - progress) + 0.1 * progress;
250 }
251}
252
253pub struct QuantumTransformationOptimizer {
255 quantum_optimizer: QuantumInspiredOptimizer,
257 #[allow(dead_code)]
259 transformation_types: Vec<TransformationType>,
260 #[allow(dead_code)]
262 parameter_mappings: HashMap<TransformationType, Vec<String>>,
263}
264
265impl QuantumTransformationOptimizer {
266 pub fn new() -> Result<Self> {
268 let bounds = vec![
270 (0.0, 1.0), (0.1, 10.0), (1.0, 10.0), (0.0, 1.0), (0.0, 1.0), ];
276
277 let quantum_optimizer = QuantumInspiredOptimizer::new(5, 50, bounds, 100)?;
278
279 let transformation_types = vec![
280 TransformationType::StandardScaler,
281 TransformationType::MinMaxScaler,
282 TransformationType::RobustScaler,
283 TransformationType::PowerTransformer,
284 TransformationType::PolynomialFeatures,
285 TransformationType::PCA,
286 ];
287
288 let mut parameter_mappings = HashMap::new();
289
290 parameter_mappings.insert(
292 TransformationType::PowerTransformer,
293 vec!["lambda".to_string(), "standardize".to_string()],
294 );
295 parameter_mappings.insert(
296 TransformationType::PolynomialFeatures,
297 vec!["degree".to_string(), "include_bias".to_string()],
298 );
299 parameter_mappings.insert(
300 TransformationType::PCA,
301 vec!["n_components".to_string(), "whiten".to_string()],
302 );
303
304 Ok(QuantumTransformationOptimizer {
305 quantum_optimizer,
306 transformation_types,
307 parameter_mappings,
308 })
309 }
310
311 pub fn optimize_pipeline(
313 &mut self,
314 data: &ArrayView2<f64>,
315 _target_metric: f64,
316 ) -> Result<Vec<TransformationConfig>> {
317 check_not_empty(data, "data")?;
318
319 for &val in data.iter() {
321 if !val.is_finite() {
322 return Err(crate::error::TransformError::DataValidationError(
323 "Data contains non-finite values".to_string(),
324 ));
325 }
326 }
327
328 let data_clone = data.to_owned();
330
331 let objective = move |params: &Array1<f64>| -> f64 {
333 let configs = Self::static_params_to_configs(params);
335
336 let performance_score =
338 Self::static_evaluate_pipeline_performance(&data_clone.view(), &configs);
339
340 let efficiency_score = Self::static_compute_efficiency_score(&configs);
342 let robustness_score = Self::static_compute_robustness_score(&configs);
343
344 0.6 * performance_score + 0.3 * efficiency_score + 0.1 * robustness_score
346 };
347
348 let (optimal_params_, best_fitness) = self.quantum_optimizer.optimize(objective)?;
350
351 Ok(Self::static_params_to_configs(&optimal_params_))
353 }
354
355 fn static_params_to_configs(params: &Array1<f64>) -> Vec<TransformationConfig> {
357 let mut configs = Vec::new();
358
359 if params[0] > 0.5 {
361 configs.push(TransformationConfig {
362 transformation_type: TransformationType::StandardScaler,
363 parameters: HashMap::new(),
364 expected_performance: params[0],
365 });
366 }
367
368 if params[1] > 0.3 {
370 let mut power_params = HashMap::new();
371 power_params.insert("lambda".to_string(), params[1]);
372 configs.push(TransformationConfig {
373 transformation_type: TransformationType::PowerTransformer,
374 parameters: power_params,
375 expected_performance: params[1],
376 });
377 }
378
379 if params[2] > 1.5 && params[2] < 5.0 {
381 let mut poly_params = HashMap::new();
382 poly_params.insert("degree".to_string(), params[2].floor());
383 configs.push(TransformationConfig {
384 transformation_type: TransformationType::PolynomialFeatures,
385 parameters: poly_params,
386 expected_performance: 1.0 / params[2], });
388 }
389
390 if params[3] > 0.7 {
392 let mut pca_params = HashMap::new();
393 pca_params.insert("n_components".to_string(), params[3]);
394 configs.push(TransformationConfig {
395 transformation_type: TransformationType::PCA,
396 parameters: pca_params,
397 expected_performance: params[3],
398 });
399 }
400
401 configs
402 }
403
404 #[allow(dead_code)]
406 fn params_to_configs(&self, params: &Array1<f64>) -> Vec<TransformationConfig> {
407 Self::static_params_to_configs(params)
408 }
409
410 fn static_evaluate_pipeline_performance(
412 _data: &ArrayView2<f64>,
413 configs: &[TransformationConfig],
414 ) -> f64 {
415 if configs.is_empty() {
416 return 0.0;
417 }
418
419 let complexity_penalty = configs.len() as f64 * 0.1;
421 let base_score =
422 configs.iter().map(|c| c.expected_performance).sum::<f64>() / configs.len() as f64;
423
424 (base_score - complexity_penalty).clamp(0.0, 1.0)
425 }
426
427 #[allow(dead_code)]
429 fn evaluate_pipeline_performance(
430 &self,
431 data: &ArrayView2<f64>,
432 configs: &[TransformationConfig],
433 ) -> f64 {
434 Self::static_evaluate_pipeline_performance(data, configs)
435 }
436
437 fn static_compute_efficiency_score(configs: &[TransformationConfig]) -> f64 {
439 let complexity_weights = [
441 (TransformationType::StandardScaler, 1.0),
442 (TransformationType::MinMaxScaler, 1.0),
443 (TransformationType::RobustScaler, 0.9),
444 (TransformationType::PowerTransformer, 0.7),
445 (TransformationType::PolynomialFeatures, 0.5),
446 (TransformationType::PCA, 0.8),
447 ]
448 .iter()
449 .cloned()
450 .collect::<HashMap<TransformationType, f64>>();
451
452 let total_efficiency: f64 = configs
453 .iter()
454 .map(|c| {
455 complexity_weights
456 .get(&c.transformation_type)
457 .unwrap_or(&0.5)
458 })
459 .sum();
460
461 if configs.is_empty() {
462 1.0
463 } else {
464 (total_efficiency / configs.len() as f64).min(1.0)
465 }
466 }
467
468 #[allow(dead_code)]
470 fn compute_efficiency_score(&self, configs: &[TransformationConfig]) -> f64 {
471 Self::static_compute_efficiency_score(configs)
472 }
473
474 fn static_compute_robustness_score(configs: &[TransformationConfig]) -> f64 {
476 let robustness_weights = [
478 (TransformationType::StandardScaler, 0.8),
479 (TransformationType::MinMaxScaler, 0.6),
480 (TransformationType::RobustScaler, 1.0),
481 (TransformationType::PowerTransformer, 0.7),
482 (TransformationType::PolynomialFeatures, 0.4),
483 (TransformationType::PCA, 0.9),
484 ]
485 .iter()
486 .cloned()
487 .collect::<HashMap<TransformationType, f64>>();
488
489 let total_robustness: f64 = configs
490 .iter()
491 .map(|c| {
492 robustness_weights
493 .get(&c.transformation_type)
494 .unwrap_or(&0.5)
495 })
496 .sum();
497
498 if configs.is_empty() {
499 0.0
500 } else {
501 (total_robustness / configs.len() as f64).min(1.0)
502 }
503 }
504
505 #[allow(dead_code)]
507 fn compute_robustness_score(&self, configs: &[TransformationConfig]) -> f64 {
508 Self::static_compute_robustness_score(configs)
509 }
510}
511
512pub struct QuantumHyperparameterTuner {
514 transformationtype: TransformationType,
516 optimizer: QuantumInspiredOptimizer,
518 #[allow(dead_code)]
520 parameter_bounds: Vec<(f64, f64)>,
521}
522
523impl QuantumHyperparameterTuner {
524 pub fn new_for_transformation(transformationtype: TransformationType) -> Result<Self> {
526 let (parameter_bounds, dimension) = match transformationtype {
527 TransformationType::PowerTransformer => {
528 (vec![(0.1, 2.0), (0.0, 1.0)], 2) }
530 TransformationType::PolynomialFeatures => {
531 (vec![(1.0, 5.0), (0.0, 1.0)], 2) }
533 TransformationType::PCA => {
534 (vec![(0.1, 1.0), (0.0, 1.0)], 2) }
536 _ => {
537 (vec![(0.0, 1.0)], 1) }
539 };
540
541 let optimizer = QuantumInspiredOptimizer::new(dimension, 30, parameter_bounds.clone(), 50)?;
542
543 Ok(QuantumHyperparameterTuner {
544 transformationtype,
545 optimizer,
546 parameter_bounds,
547 })
548 }
549
550 pub fn tune_parameters(
552 &mut self,
553 data: &ArrayView2<f64>,
554 validation_data: &ArrayView2<f64>,
555 ) -> Result<HashMap<String, f64>> {
556 check_not_empty(data, "data")?;
557 check_not_empty(validation_data, "validation_data")?;
558
559 for &val in data.iter() {
561 if !val.is_finite() {
562 return Err(crate::error::TransformError::DataValidationError(
563 "Data contains non-finite values".to_string(),
564 ));
565 }
566 }
567
568 for &val in validation_data.iter() {
570 if !val.is_finite() {
571 return Err(crate::error::TransformError::DataValidationError(
572 "Validation _data contains non-finite values".to_string(),
573 ));
574 }
575 }
576
577 let data_clone = data.to_owned();
579 let validation_clone = validation_data.to_owned();
580 let ttype = self.transformationtype.clone();
581
582 let objective = move |params: &Array1<f64>| -> f64 {
583 let config = Self::params_to_config(&ttype, params);
585
586 let performance = Self::simulate_transformation_performance(
588 &data_clone.view(),
589 &validation_clone.view(),
590 &config,
591 );
592
593 performance
594 };
595
596 let (optimal_params_, _fitness) = self.optimizer.optimize(objective)?;
598
599 let optimal_config = Self::params_to_config(&self.transformationtype, &optimal_params_);
601
602 Ok(optimal_config.parameters)
603 }
604
605 fn params_to_config(ttype: &TransformationType, params: &Array1<f64>) -> TransformationConfig {
607 let mut parameters = HashMap::new();
608
609 match ttype {
610 TransformationType::PowerTransformer => {
611 parameters.insert("lambda".to_string(), params[0]);
612 parameters.insert("standardize".to_string(), params[1]);
613 }
614 TransformationType::PolynomialFeatures => {
615 parameters.insert("degree".to_string(), params[0].round());
616 parameters.insert("include_bias".to_string(), params[1]);
617 }
618 TransformationType::PCA => {
619 parameters.insert("n_components".to_string(), params[0]);
620 parameters.insert("whiten".to_string(), params[1]);
621 }
622 _ => {
623 parameters.insert("parameter".to_string(), params[0]);
624 }
625 }
626
627 TransformationConfig {
628 transformation_type: ttype.clone(),
629 parameters,
630 expected_performance: 0.0,
631 }
632 }
633
634 fn simulate_transformation_performance(
636 _train_data: &ArrayView2<f64>,
637 _validation_data: &ArrayView2<f64>,
638 config: &TransformationConfig,
639 ) -> f64 {
640 match config.transformation_type {
642 TransformationType::PowerTransformer => {
643 let lambda = config.parameters.get("lambda").unwrap_or(&1.0);
644 1.0 - ((lambda - 1.0).abs() / 2.0).min(1.0)
646 }
647 TransformationType::PolynomialFeatures => {
648 let degree = config.parameters.get("degree").unwrap_or(&2.0);
649 (5.0 - degree) / 4.0
651 }
652 TransformationType::PCA => {
653 let n_components = config.parameters.get("n_components").unwrap_or(&0.95);
654 *n_components
656 }
657 _ => 0.8,
658 }
659 }
660}
661
662pub struct AdvancedQuantumOptimizer {
668 particles: Vec<QuantumParticle>,
670 global_best_position: Array1<f64>,
672 global_best_fitness: f64,
674 bounds: Vec<(f64, f64)>,
676 position_buffer: Array2<f64>,
678 velocity_buffer: Array2<f64>,
679 parallel_chunks: usize,
681 adaptive_params: AdvancedQuantumParams,
683 performance_metrics: AdvancedQuantumMetrics,
685 #[allow(dead_code)]
687 memory_pool: Vec<Array1<f64>>,
688}
689
690#[derive(Debug, Clone)]
692pub struct AdvancedQuantumParams {
693 pub collapse_probability: f64,
695 pub entanglement_strength: f64,
697 pub decay_rate: f64,
699 pub phase_speed: f64,
701 #[allow(dead_code)]
703 pub coherence_time: f64,
704 pub tunneling_probability: f64,
706}
707
708#[derive(Debug, Clone)]
710pub struct AdvancedQuantumMetrics {
711 pub convergence_rate: f64,
713 pub quantum_efficiency: f64,
715 pub exploration_ratio: f64,
717 pub energy_consumption: f64,
719 pub quality_improvement_rate: f64,
721 pub parallel_speedup: f64,
723}
724
725impl AdvancedQuantumOptimizer {
726 pub fn new(
728 dimension: usize,
729 population_size: usize,
730 bounds: Vec<(f64, f64)>,
731 _max_iterations: usize,
732 ) -> Result<Self> {
733 if bounds.len() != dimension {
734 return Err(TransformError::InvalidInput(
735 "Bounds must match dimension".to_string(),
736 ));
737 }
738
739 let mut rng = rand::rng();
740 let mut particles = Vec::with_capacity(population_size);
741 let parallel_chunks = num_cpus::get().min(8);
742
743 for _ in 0..population_size {
745 let position: Array1<f64> = Array1::from_iter(bounds.iter().map(|(min, max)| {
746 let uniform = rng.gen_range(0.0..1.0);
748 min + uniform * (max - min)
749 }));
750
751 let velocity = Array1::zeros(dimension);
752 let superposition = Array1::from_iter((0..dimension).map(|_| rng.gen_range(0.0..1.0)));
753
754 particles.push(QuantumParticle {
755 position: position.clone(),
756 velocity,
757 best_position: position,
758 best_fitness: f64::NEG_INFINITY,
759 superposition,
760 phase: rng.gen_range(0.0..2.0 * std::f64::consts::PI),
761 entanglement: rng.gen_range(0.0..1.0),
762 });
763 }
764
765 Ok(AdvancedQuantumOptimizer {
766 particles,
767 global_best_position: Array1::zeros(dimension),
768 global_best_fitness: f64::NEG_INFINITY,
769 bounds,
770 position_buffer: Array2::zeros((population_size, dimension)),
771 velocity_buffer: Array2::zeros((population_size, dimension)),
772 parallel_chunks,
773 adaptive_params: AdvancedQuantumParams {
774 collapse_probability: 0.1,
775 entanglement_strength: 0.3,
776 decay_rate: 0.95,
777 phase_speed: 0.1,
778 coherence_time: 50.0,
779 tunneling_probability: 0.05,
780 },
781 performance_metrics: AdvancedQuantumMetrics {
782 convergence_rate: 0.0,
783 quantum_efficiency: 1.0,
784 exploration_ratio: 0.5,
785 energy_consumption: 0.0,
786 quality_improvement_rate: 0.0,
787 parallel_speedup: 1.0,
788 },
789 memory_pool: Vec::with_capacity(64),
790 })
791 }
792
793 pub fn optimize_advanced<F>(
795 &mut self,
796 objectivefunction: F,
797 maxiterations: usize,
798 ) -> Result<(Array1<f64>, f64)>
799 where
800 F: Fn(&Array1<f64>) -> f64 + Sync + Send,
801 F: Copy,
802 {
803 let start_time = std::time::Instant::now();
804 let mut best_fitness_history = Vec::with_capacity(maxiterations);
805
806 for iteration in 0..maxiterations {
807 let iteration_start = std::time::Instant::now();
808
809 let fitness_results = self.evaluate_population_parallel(&objectivefunction)?;
811
812 self.update_positions_simd(&fitness_results)?;
814
815 self.apply_quantum_operations_adaptive(iteration, maxiterations)?;
817
818 self.adapt_parameters_realtime(iteration, maxiterations);
820
821 let iteration_time = iteration_start.elapsed().as_secs_f64();
823 self.update_performance_metrics(iteration_time, &best_fitness_history);
824
825 best_fitness_history.push(self.global_best_fitness);
826
827 if self.check_convergence(&best_fitness_history, iteration) {
829 break;
830 }
831 }
832
833 let total_time = start_time.elapsed().as_secs_f64();
834 self.performance_metrics.convergence_rate = maxiterations as f64 / total_time;
835
836 Ok((self.global_best_position.clone(), self.global_best_fitness))
837 }
838
839 fn evaluate_population_parallel<F>(&mut self, objectivefunction: &F) -> Result<Vec<f64>>
841 where
842 F: Fn(&Array1<f64>) -> f64 + Sync + Send,
843 {
844 let chunk_size = (self.particles.len() / self.parallel_chunks).max(1);
845 let start_time = std::time::Instant::now();
846
847 let bounds = self.bounds.clone();
850 let phase_speed = self.adaptive_params.phase_speed;
851
852 let fitness_results: Vec<f64> = self
853 .particles
854 .par_chunks_mut(chunk_size)
855 .flat_map(|chunk| {
856 chunk
857 .par_iter_mut()
858 .map(|particle| {
859 let mut quantum_position = particle.position.clone();
861 for i in 0..quantum_position.len() {
862 let wave_amplitude = particle.superposition[i]
863 * (particle.phase + phase_speed * i as f64).cos();
864 let quantum_offset = wave_amplitude * particle.entanglement * 0.1;
865
866 quantum_position[i] += quantum_offset;
867
868 let (min_bound, max_bound) = bounds[i];
870 if quantum_position[i] < min_bound {
871 quantum_position[i] = min_bound + (min_bound - quantum_position[i]);
872 } else if quantum_position[i] > max_bound {
873 quantum_position[i] = max_bound - (quantum_position[i] - max_bound);
874 }
875 }
876
877 let fitness = objectivefunction(&quantum_position);
878
879 if fitness > particle.best_fitness {
881 particle.best_fitness = fitness;
882 particle.best_position = quantum_position.clone();
883 }
884
885 fitness
886 })
887 .collect::<Vec<_>>()
888 })
889 .collect();
890
891 for (i, &fitness) in fitness_results.iter().enumerate() {
893 if fitness > self.global_best_fitness {
894 self.global_best_fitness = fitness;
895 self.global_best_position = self.particles[i].best_position.clone();
896 }
897 }
898
899 let evaluation_time = start_time.elapsed().as_secs_f64();
900 let sequential_time = self.particles.len() as f64 * 0.001; self.performance_metrics.parallel_speedup = sequential_time / evaluation_time;
902
903 Ok(fitness_results)
904 }
905
906 fn update_positions_simd(&mut self, _fitnessresults: &[f64]) -> Result<()> {
908 let dimension = self.global_best_position.len();
909
910 let num_particles = self.particles.len();
912 for (i, particle) in self.particles.iter_mut().enumerate() {
913 for j in 0..dimension {
915 self.position_buffer[[i, j]] = particle.position[j];
916 self.velocity_buffer[[i, j]] = particle.velocity[j];
917 }
918
919 let cognitive_component = &particle.best_position - &particle.position;
921 let social_component = &self.global_best_position - &particle.position;
922
923 let mut rng = rand::rng();
925 let c1 = 2.0 * particle.entanglement; let c2 = 2.0 * (1.0 - particle.entanglement); let w = 0.9 - 0.5 * (i as f64 / num_particles as f64); for j in 0..dimension {
930 let r1: f64 = rng.random();
931 let r2: f64 = rng.random();
932
933 let quantum_factor = (particle.phase.cos() * particle.superposition[j]).abs();
935
936 particle.velocity[j] = w * particle.velocity[j]
937 + c1 * r1 * cognitive_component[j] * quantum_factor
938 + c2 * r2 * social_component[j];
939
940 if rng.gen_range(0.0..1.0) < self.adaptive_params.tunneling_probability {
942 particle.velocity[j] *= 2.0; }
944 }
945
946 let new_position = f64::simd_add(&particle.position.view(), &particle.velocity.view());
948 particle.position = new_position;
949
950 for j in 0..dimension {
952 let (min_bound, max_bound) = self.bounds[j];
953 particle.position[j] = particle.position[j].max(min_bound).min(max_bound);
954 }
955 }
956
957 Ok(())
958 }
959
960 fn apply_quantum_operations_adaptive(
962 &mut self,
963 iteration: usize,
964 maxiterations: usize,
965 ) -> Result<()> {
966 let progress = iteration as f64 / maxiterations as f64;
967
968 if rand::rng().random_range(0.0..1.0) < self.adaptive_params.collapse_probability {
970 self.quantum_collapse_advanced()?;
971 }
972
973 self.update_quantum_entanglement_advanced()?;
975
976 self.apply_coherence_decay(progress);
978
979 self.evolve_quantum_phases(iteration);
981
982 Ok(())
983 }
984
985 #[allow(dead_code)]
987 fn apply_quantum_superposition_advanced(
988 &self,
989 particle: &QuantumParticle,
990 ) -> Result<Array1<f64>> {
991 let mut quantum_position = particle.position.clone();
992
993 for i in 0..quantum_position.len() {
995 let wave_amplitude = particle.superposition[i]
996 * (particle.phase + self.adaptive_params.phase_speed * i as f64).cos();
997 let quantum_offset = wave_amplitude * particle.entanglement * 0.1;
998
999 quantum_position[i] += quantum_offset;
1000
1001 let (min_bound, max_bound) = self.bounds[i];
1003 if quantum_position[i] < min_bound {
1004 quantum_position[i] = min_bound + (min_bound - quantum_position[i]);
1005 } else if quantum_position[i] > max_bound {
1006 quantum_position[i] = max_bound - (quantum_position[i] - max_bound);
1007 }
1008 }
1009
1010 Ok(quantum_position)
1011 }
1012
1013 fn quantum_collapse_advanced(&mut self) -> Result<()> {
1015 let mut rng = rand::rng();
1016
1017 for particle in &mut self.particles {
1018 let collapse_strength = if particle.best_fitness > self.global_best_fitness * 0.8 {
1020 0.1 } else {
1022 0.5 };
1024
1025 for i in 0..particle.superposition.len() {
1026 if rng.gen_range(0.0..1.0) < collapse_strength {
1027 particle.superposition[i] = if rng.gen_range(0.0..1.0) < 0.5 {
1028 1.0
1029 } else {
1030 0.0
1031 };
1032 }
1033 }
1034
1035 let phase_reset_prob = collapse_strength * 0.5;
1037 if rng.gen_range(0.0..1.0) < phase_reset_prob {
1038 particle.phase = rng.gen_range(0.0..2.0 * std::f64::consts::PI);
1039 }
1040 }
1041
1042 Ok(())
1043 }
1044
1045 fn update_quantum_entanglement_advanced(&mut self) -> Result<()> {
1047 let n_particles = self.particles.len();
1048
1049 for i in 0..n_particles {
1051 let mut total_entanglement = 0.0;
1052 let mut entanglement_count = 0;
1053
1054 for j in 0..n_particles {
1056 if i != j {
1057 let distance = (&self.particles[i].position - &self.particles[j].position)
1058 .mapv(|x| x * x)
1059 .sum()
1060 .sqrt();
1061
1062 let fitness_similarity = 1.0
1063 - (self.particles[i].best_fitness - self.particles[j].best_fitness).abs()
1064 / (self.global_best_fitness.abs() + 1e-10);
1065
1066 let quantum_correlation = fitness_similarity * (-distance / 10.0).exp();
1067 total_entanglement += quantum_correlation;
1068 entanglement_count += 1;
1069 }
1070 }
1071
1072 if entanglement_count > 0 {
1074 self.particles[i].entanglement =
1075 (total_entanglement / entanglement_count as f64).clamp(0.0, 1.0);
1076 }
1077 }
1078
1079 Ok(())
1080 }
1081
1082 fn apply_coherence_decay(&mut self, progress: f64) {
1084 let base_decay = self.adaptive_params.decay_rate;
1085 let adaptive_decay = base_decay - 0.1 * progress; for particle in &mut self.particles {
1088 particle.superposition.mapv_inplace(|x| x * adaptive_decay);
1089 }
1090 }
1091
1092 fn evolve_quantum_phases(&mut self, iteration: usize) {
1094 let global_phase_offset = (iteration as f64 * self.adaptive_params.phase_speed).sin() * 0.1;
1095
1096 for particle in &mut self.particles {
1097 particle.phase += self.adaptive_params.phase_speed + global_phase_offset;
1098 if particle.phase > 2.0 * std::f64::consts::PI {
1099 particle.phase -= 2.0 * std::f64::consts::PI;
1100 }
1101 }
1102 }
1103
1104 fn adapt_parameters_realtime(&mut self, iteration: usize, maxiterations: usize) {
1106 let progress = iteration as f64 / maxiterations as f64;
1107
1108 self.adaptive_params.collapse_probability = 0.2 * (1.0 - progress) + 0.05 * progress;
1110
1111 self.adaptive_params.entanglement_strength = 0.5 * (1.0 - progress) + 0.1 * progress;
1113
1114 self.adaptive_params.phase_speed = 0.1 + 0.05 * progress.sin();
1116
1117 self.adaptive_params.tunneling_probability = 0.1 * (1.0 - progress);
1119
1120 let diversity = self.calculate_population_diversity();
1122 self.performance_metrics.exploration_ratio = diversity;
1123 }
1124
1125 fn calculate_population_diversity(&self) -> f64 {
1127 if self.particles.len() < 2 {
1128 return 0.0;
1129 }
1130
1131 let mut total_distance = 0.0;
1132 let mut count = 0;
1133
1134 for i in 0..self.particles.len() {
1135 for j in (i + 1)..self.particles.len() {
1136 let distance = (&self.particles[i].position - &self.particles[j].position)
1137 .mapv(|x| x * x)
1138 .sum()
1139 .sqrt();
1140 total_distance += distance;
1141 count += 1;
1142 }
1143 }
1144
1145 if count > 0 {
1146 total_distance / count as f64
1147 } else {
1148 0.0
1149 }
1150 }
1151
1152 fn check_convergence(&self, fitnesshistory: &[f64], iteration: usize) -> bool {
1154 if fitnesshistory.len() < 10 {
1155 return false;
1156 }
1157
1158 let recent_improvement =
1160 fitnesshistory[fitnesshistory.len() - 1] - fitnesshistory[fitnesshistory.len() - 10];
1161
1162 let diversity = self.calculate_population_diversity();
1163 let convergence_threshold = 1e-6;
1164 let diversity_threshold = 1e-3;
1165
1166 recent_improvement.abs() < convergence_threshold
1167 && diversity < diversity_threshold
1168 && iteration > 50 }
1170
1171 fn update_performance_metrics(&mut self, iteration_time: f64, fitnesshistory: &[f64]) {
1173 self.performance_metrics.energy_consumption += iteration_time;
1174
1175 if fitnesshistory.len() >= 2 {
1176 let improvement =
1177 fitnesshistory[fitnesshistory.len() - 1] - fitnesshistory[fitnesshistory.len() - 2];
1178 self.performance_metrics.quality_improvement_rate = improvement / iteration_time;
1179 }
1180
1181 let theoretical_max_improvement = 1.0; let actual_improvement = if fitnesshistory.len() >= 10 {
1184 fitnesshistory[fitnesshistory.len() - 1] - fitnesshistory[fitnesshistory.len() - 10]
1185 } else {
1186 0.0
1187 };
1188
1189 self.performance_metrics.quantum_efficiency = (actual_improvement
1190 / theoretical_max_improvement)
1191 .abs()
1192 .min(1.0);
1193 }
1194
1195 pub const fn get_advanced_diagnostics(&self) -> &AdvancedQuantumMetrics {
1197 &self.performance_metrics
1198 }
1199
1200 pub fn optimize<F>(&mut self, objectivefunction: F) -> Result<(Array1<f64>, f64)>
1202 where
1203 F: Fn(&Array1<f64>) -> f64 + Sync + Send + Copy,
1204 {
1205 self.optimize_advanced(objectivefunction, 100)
1206 }
1207
1208 pub const fn get_adaptive_params(&self) -> &AdvancedQuantumParams {
1210 &self.adaptive_params
1211 }
1212}
1213
1214#[allow(dead_code)]
1215impl Default for AdvancedQuantumParams {
1216 fn default() -> Self {
1217 AdvancedQuantumParams {
1218 collapse_probability: 0.1,
1219 entanglement_strength: 0.3,
1220 decay_rate: 0.95,
1221 phase_speed: 0.1,
1222 coherence_time: 50.0,
1223 tunneling_probability: 0.05,
1224 }
1225 }
1226}
1227
1228#[allow(dead_code)]
1229impl Default for AdvancedQuantumMetrics {
1230 fn default() -> Self {
1231 AdvancedQuantumMetrics {
1232 convergence_rate: 0.0,
1233 quantum_efficiency: 1.0,
1234 exploration_ratio: 0.5,
1235 energy_consumption: 0.0,
1236 quality_improvement_rate: 0.0,
1237 parallel_speedup: 1.0,
1238 }
1239 }
1240}