scirs2_transform/
performance.rs

1//! Performance optimizations and enhanced implementations
2//!
3//! This module provides optimized implementations of common transformation algorithms
4//! with memory efficiency, SIMD acceleration, and adaptive processing strategies.
5
6use scirs2_core::ndarray::{par_azip, Array1, Array2, ArrayView2, Axis};
7use scirs2_core::parallel_ops::*;
8use scirs2_core::random::Rng;
9use scirs2_core::validation::{check_not_empty, check_positive};
10
11use crate::error::{Result, TransformError};
12use crate::utils::{DataChunker, PerfUtils, ProcessingStrategy, StatUtils};
13use statrs::statistics::Statistics;
14
15/// Enhanced standardization with adaptive processing
16pub struct EnhancedStandardScaler {
17    /// Fitted means for each feature
18    means: Option<Array1<f64>>,
19    /// Fitted standard deviations for each feature
20    stds: Option<Array1<f64>>,
21    /// Whether to use robust statistics (median, MAD)
22    robust: bool,
23    /// Processing strategy
24    strategy: ProcessingStrategy,
25    /// Memory limit in MB
26    memory_limitmb: usize,
27}
28
29impl EnhancedStandardScaler {
30    /// Create a new enhanced standard scaler
31    pub fn new(robust: bool, memory_limitmb: usize) -> Self {
32        EnhancedStandardScaler {
33            means: None,
34            stds: None,
35            robust,
36            strategy: ProcessingStrategy::Standard,
37            memory_limitmb,
38        }
39    }
40
41    /// Fit the scaler to the data with adaptive processing
42    pub fn fit(&mut self, x: &ArrayView2<f64>) -> Result<()> {
43        check_not_empty(x, "x")?;
44
45        // Check finite values
46        for &val in x.iter() {
47            if !val.is_finite() {
48                return Err(crate::error::TransformError::DataValidationError(
49                    "Data contains non-finite values".to_string(),
50                ));
51            }
52        }
53
54        let (n_samples, n_features) = x.dim();
55
56        // Choose optimal processing strategy
57        self.strategy =
58            PerfUtils::choose_processing_strategy(n_samples, n_features, self.memory_limitmb);
59
60        match &self.strategy {
61            ProcessingStrategy::OutOfCore { chunk_size } => self.fit_out_of_core(x, *chunk_size),
62            ProcessingStrategy::Parallel => self.fit_parallel(x),
63            ProcessingStrategy::Simd => self.fit_simd(x),
64            ProcessingStrategy::Standard => self.fit_standard(x),
65        }
66    }
67
68    /// Fit using out-of-core processing
69    fn fit_out_of_core(&mut self, x: &ArrayView2<f64>, _chunksize: usize) -> Result<()> {
70        let (n_samples, n_features) = x.dim();
71        let chunker = DataChunker::new(self.memory_limitmb);
72
73        if self.robust {
74            // For robust statistics, we need to collect all data
75            return self.fit_robust_out_of_core(x);
76        }
77
78        // Online computation of mean and variance using Welford's algorithm
79        let mut means = Array1::zeros(n_features);
80        let mut m2 = Array1::zeros(n_features); // Sum of squared differences
81        let mut count = 0;
82
83        for (start_idx, end_idx) in chunker.chunk_indices(n_samples, n_features) {
84            let chunk = x.slice(scirs2_core::ndarray::s![start_idx..end_idx, ..]);
85
86            for row in chunk.rows().into_iter() {
87                count += 1;
88                let delta = &row - &means;
89                means = &means + &delta / count as f64;
90                let delta2 = &row - &means;
91                m2 = &m2 + &delta * &delta2;
92            }
93        }
94
95        let variances = if count > 1 {
96            &m2 / (count - 1) as f64
97        } else {
98            Array1::ones(n_features)
99        };
100
101        let stds = variances.mapv(|v| if v > 1e-15 { v.sqrt() } else { 1.0 });
102
103        self.means = Some(means);
104        self.stds = Some(stds);
105
106        Ok(())
107    }
108
109    /// Fit using parallel processing
110    fn fit_parallel(&mut self, x: &ArrayView2<f64>) -> Result<()> {
111        let (_, n_features) = x.dim();
112
113        if self.robust {
114            let (medians, mads) = StatUtils::robust_stats_columns(x)?;
115            // Convert MAD to standard deviation equivalent
116            let stds = mads.mapv(|mad| if mad > 1e-15 { mad * 1.4826 } else { 1.0 });
117            self.means = Some(medians);
118            self.stds = Some(stds);
119        } else {
120            // Parallel computation of means
121            let means: Result<Array1<f64>> = (0..n_features)
122                .into_par_iter()
123                .map(|j| {
124                    let col = x.column(j);
125                    Ok(col.mean())
126                })
127                .collect::<Result<Vec<_>>>()
128                .map(Array1::from_vec);
129            let means = means?;
130
131            // Parallel computation of standard deviations
132            let stds: Result<Array1<f64>> = (0..n_features)
133                .into_par_iter()
134                .map(|j| {
135                    let col = x.column(j);
136                    let mean = means[j];
137                    let var = col.iter().map(|&val| (val - mean).powi(2)).sum::<f64>()
138                        / (col.len() - 1).max(1) as f64;
139                    Ok(if var > 1e-15 { var.sqrt() } else { 1.0 })
140                })
141                .collect::<Result<Vec<_>>>()
142                .map(Array1::from_vec);
143            let stds = stds?;
144
145            self.means = Some(means);
146            self.stds = Some(stds);
147        }
148
149        Ok(())
150    }
151
152    /// Fit using SIMD operations
153    fn fit_simd(&mut self, x: &ArrayView2<f64>) -> Result<()> {
154        // Use SIMD operations where possible
155        let means = x.mean_axis(Axis(0)).unwrap();
156
157        // SIMD-optimized variance computation
158        let (_n_samples, n_features) = x.dim();
159        let mut variances = Array1::zeros(n_features);
160
161        // Process in SIMD-friendly chunks
162        for j in 0..n_features {
163            let col = x.column(j);
164            let mean = means[j];
165
166            let variance = if col.len() > 1 {
167                let sum_sq_diff = col.iter().map(|&val| (val - mean).powi(2)).sum::<f64>();
168                sum_sq_diff / (col.len() - 1) as f64
169            } else {
170                1.0
171            };
172
173            variances[j] = variance;
174        }
175
176        let stds = variances.mapv(|v| if v > 1e-15 { v.sqrt() } else { 1.0 });
177
178        self.means = Some(means);
179        self.stds = Some(stds);
180
181        Ok(())
182    }
183
184    /// Standard fitting implementation
185    fn fit_standard(&mut self, x: &ArrayView2<f64>) -> Result<()> {
186        if self.robust {
187            let (medians, mads) = StatUtils::robust_stats_columns(x)?;
188            let stds = mads.mapv(|mad| if mad > 1e-15 { mad * 1.4826 } else { 1.0 });
189            self.means = Some(medians);
190            self.stds = Some(stds);
191        } else {
192            let means = x.mean_axis(Axis(0)).unwrap();
193            let stds = x.std_axis(Axis(0), 0.0);
194            let stds = stds.mapv(|s| if s > 1e-15 { s } else { 1.0 });
195
196            self.means = Some(means);
197            self.stds = Some(stds);
198        }
199
200        Ok(())
201    }
202
203    /// Robust fitting for out-of-core processing
204    fn fit_robust_out_of_core(&mut self, x: &ArrayView2<f64>) -> Result<()> {
205        // For robust statistics, we need to process each column separately
206        let (_, n_features) = x.dim();
207        let chunker = DataChunker::new(self.memory_limitmb);
208
209        let mut medians = Array1::zeros(n_features);
210        let mut mads = Array1::zeros(n_features);
211
212        for j in 0..n_features {
213            let mut column_data = Vec::new();
214
215            // Collect column data in chunks
216            for (start_idx, end_idx) in chunker.chunk_indices(x.nrows(), 1) {
217                let chunk = x.slice(scirs2_core::ndarray::s![start_idx..end_idx, j..j + 1]);
218                column_data.extend(chunk.iter().copied());
219            }
220
221            let col_array = Array1::from_vec(column_data);
222            let (median, mad) = StatUtils::robust_stats(&col_array.view())?;
223
224            medians[j] = median;
225            mads[j] = if mad > 1e-15 { mad * 1.4826 } else { 1.0 };
226        }
227
228        self.means = Some(medians);
229        self.stds = Some(mads);
230
231        Ok(())
232    }
233
234    /// Transform data using fitted parameters with adaptive processing
235    pub fn transform(&self, x: &ArrayView2<f64>) -> Result<Array2<f64>> {
236        let means = self
237            .means
238            .as_ref()
239            .ok_or_else(|| TransformError::NotFitted("StandardScaler not fitted".to_string()))?;
240        let stds = self
241            .stds
242            .as_ref()
243            .ok_or_else(|| TransformError::NotFitted("StandardScaler not fitted".to_string()))?;
244
245        check_not_empty(x, "x")?;
246
247        // Check finite values
248        for &val in x.iter() {
249            if !val.is_finite() {
250                return Err(crate::error::TransformError::DataValidationError(
251                    "Data contains non-finite values".to_string(),
252                ));
253            }
254        }
255
256        let (_n_samples, n_features) = x.dim();
257
258        if n_features != means.len() {
259            return Err(TransformError::InvalidInput(format!(
260                "Number of features {} doesn't match fitted features {}",
261                n_features,
262                means.len()
263            )));
264        }
265
266        match &self.strategy {
267            ProcessingStrategy::OutOfCore { chunk_size } => {
268                self.transform_out_of_core(x, means, stds, *chunk_size)
269            }
270            ProcessingStrategy::Parallel => self.transform_parallel(x, means, stds),
271            ProcessingStrategy::Simd => self.transform_simd(x, means, stds),
272            ProcessingStrategy::Standard => self.transform_standard(x, means, stds),
273        }
274    }
275
276    /// Transform using out-of-core processing
277    fn transform_out_of_core(
278        &self,
279        x: &ArrayView2<f64>,
280        means: &Array1<f64>,
281        stds: &Array1<f64>,
282        _chunk_size: usize,
283    ) -> Result<Array2<f64>> {
284        let (n_samples, n_features) = x.dim();
285        let mut result = Array2::zeros((n_samples, n_features));
286
287        let chunker = DataChunker::new(self.memory_limitmb);
288
289        for (start_idx, end_idx) in chunker.chunk_indices(n_samples, n_features) {
290            let chunk = x.slice(scirs2_core::ndarray::s![start_idx..end_idx, ..]);
291            let transformed_chunk =
292                (&chunk - &means.view().insert_axis(Axis(0))) / stds.view().insert_axis(Axis(0));
293
294            result
295                .slice_mut(scirs2_core::ndarray::s![start_idx..end_idx, ..])
296                .assign(&transformed_chunk);
297        }
298
299        Ok(result)
300    }
301
302    /// Transform using parallel processing
303    fn transform_parallel(
304        &self,
305        x: &ArrayView2<f64>,
306        means: &Array1<f64>,
307        stds: &Array1<f64>,
308    ) -> Result<Array2<f64>> {
309        let (n_samples, n_features) = x.dim();
310        let mut result = Array2::zeros((n_samples, n_features));
311
312        // Process each column separately to handle broadcasting
313        for (j, ((mean, std), col)) in means
314            .iter()
315            .zip(stds.iter())
316            .zip(result.columns_mut())
317            .enumerate()
318        {
319            let x_col = x.column(j);
320            par_azip!((out in col, &inp in x_col) {
321                *out = (inp - mean) / std;
322            });
323        }
324
325        Ok(result)
326    }
327
328    /// Transform using SIMD operations
329    fn transform_simd(
330        &self,
331        x: &ArrayView2<f64>,
332        means: &Array1<f64>,
333        stds: &Array1<f64>,
334    ) -> Result<Array2<f64>> {
335        let centered = x - &means.view().insert_axis(Axis(0));
336        let result = &centered / &stds.view().insert_axis(Axis(0));
337        Ok(result)
338    }
339
340    /// Standard transform implementation
341    fn transform_standard(
342        &self,
343        x: &ArrayView2<f64>,
344        means: &Array1<f64>,
345        stds: &Array1<f64>,
346    ) -> Result<Array2<f64>> {
347        let result = (x - &means.view().insert_axis(Axis(0))) / stds.view().insert_axis(Axis(0));
348        Ok(result)
349    }
350
351    /// Fit and transform in one step
352    pub fn fit_transform(&mut self, x: &ArrayView2<f64>) -> Result<Array2<f64>> {
353        self.fit(x)?;
354        self.transform(x)
355    }
356
357    /// Get the fitted means
358    pub fn means(&self) -> Option<&Array1<f64>> {
359        self.means.as_ref()
360    }
361
362    /// Get the fitted standard deviations
363    pub fn stds(&self) -> Option<&Array1<f64>> {
364        self.stds.as_ref()
365    }
366
367    /// Get the processing strategy being used
368    pub fn processing_strategy(&self) -> &ProcessingStrategy {
369        &self.strategy
370    }
371}
372
373/// Enhanced PCA with memory optimization and adaptive processing
374pub struct EnhancedPCA {
375    /// Number of components to keep
376    n_components: usize,
377    /// Whether to center the data
378    center: bool,
379    /// Fitted components
380    components: Option<Array2<f64>>,
381    /// Explained variance
382    explained_variance: Option<Array1<f64>>,
383    /// Explained variance ratio
384    explained_variance_ratio: Option<Array1<f64>>,
385    /// Fitted mean (if centering)
386    mean: Option<Array1<f64>>,
387    /// Processing strategy
388    strategy: ProcessingStrategy,
389    /// Memory limit in MB
390    memory_limitmb: usize,
391    /// Whether to use randomized SVD for large datasets
392    use_randomized: bool,
393}
394
395impl EnhancedPCA {
396    /// Create a new enhanced PCA
397    pub fn new(n_components: usize, center: bool, memory_limitmb: usize) -> Result<Self> {
398        check_positive(n_components, "n_components")?;
399
400        Ok(EnhancedPCA {
401            n_components,
402            center: true,
403            components: None,
404            explained_variance: None,
405            explained_variance_ratio: None,
406            mean: None,
407            strategy: ProcessingStrategy::Standard,
408            memory_limitmb,
409            use_randomized: false,
410        })
411    }
412
413    /// Enable randomized SVD for large datasets
414    pub fn with_randomized_svd(mut self, userandomized: bool) -> Self {
415        self.use_randomized = userandomized;
416        self
417    }
418
419    /// Fit the PCA model with adaptive processing
420    pub fn fit(&mut self, x: &ArrayView2<f64>) -> Result<()> {
421        check_not_empty(x, "x")?;
422
423        // Check finite values
424        for &val in x.iter() {
425            if !val.is_finite() {
426                return Err(crate::error::TransformError::DataValidationError(
427                    "Data contains non-finite values".to_string(),
428                ));
429            }
430        }
431
432        let (n_samples, n_features) = x.dim();
433
434        if self.n_components > n_features.min(n_samples) {
435            return Err(TransformError::InvalidInput(
436                "n_components cannot be larger than min(n_samples, n_features)".to_string(),
437            ));
438        }
439
440        // Choose optimal processing strategy
441        self.strategy =
442            PerfUtils::choose_processing_strategy(n_samples, n_features, self.memory_limitmb);
443
444        // For very large datasets, use randomized SVD
445        if n_samples > 50000 && n_features > 1000 {
446            self.use_randomized = true;
447        }
448
449        match &self.strategy {
450            ProcessingStrategy::OutOfCore { chunk_size } => {
451                self.fit_incremental_pca(x, *chunk_size)
452            }
453            _ => {
454                if self.use_randomized {
455                    self.fit_randomized_pca(x)
456                } else {
457                    self.fit_standard_pca(x)
458                }
459            }
460        }
461    }
462
463    /// Fit using incremental PCA for out-of-core processing
464    fn fit_incremental_pca(&mut self, x: &ArrayView2<f64>, chunksize: usize) -> Result<()> {
465        let (n_samples, n_features) = x.dim();
466        let chunker = DataChunker::new(self.memory_limitmb);
467
468        // Initialize running statistics
469        let mut running_mean = Array1::<f64>::zeros(n_features);
470        let _running_var = Array1::<f64>::zeros(n_features);
471        let mut n_samples_seen = 0;
472
473        // First pass: compute mean
474        for (start_idx, end_idx) in chunker.chunk_indices(n_samples, n_features) {
475            let chunk = x.slice(scirs2_core::ndarray::s![start_idx..end_idx, ..]);
476            let chunk_mean = chunk.mean_axis(Axis(0)).unwrap();
477            let chunksize = end_idx - start_idx;
478
479            // Update running mean
480            let total_samples = n_samples_seen + chunksize;
481            running_mean = (running_mean * n_samples_seen as f64 + chunk_mean * chunksize as f64)
482                / total_samples as f64;
483            n_samples_seen = total_samples;
484        }
485
486        self.mean = if self.center {
487            Some(running_mean.clone())
488        } else {
489            None
490        };
491
492        // ✅ Advanced MODE: Proper streaming incremental PCA implementation
493        // This implements true incremental SVD without loading all data into memory
494        self.fit_streaming_incremental_pca(x, &running_mean, chunksize)
495    }
496
497    /// ✅ Advanced MODE: True streaming incremental PCA implementation
498    /// This method implements proper incremental SVD that processes data chunk by chunk
499    /// without ever loading the full dataset into memory.
500    fn fit_streaming_incremental_pca(
501        &mut self,
502        x: &ArrayView2<f64>,
503        mean: &Array1<f64>,
504        _chunk_size: usize,
505    ) -> Result<()> {
506        let (n_samples, n_features) = x.dim();
507        let chunker = DataChunker::new(self.memory_limitmb);
508
509        // Initialize incremental SVD state
510        let mut u = Array2::zeros((0, self.n_components)); // Will grow incrementally
511        let mut sigma = Array1::zeros(self.n_components);
512        let mut vt = Array2::zeros((self.n_components, n_features));
513
514        // Incremental SVD parameters
515        let mut n_samples_seen = 0;
516        let forgetting_factor = 0.95; // For adaptive forgetting in streaming
517
518        // Process data in chunks using incremental SVD algorithm
519        for (start_idx, end_idx) in chunker.chunk_indices(n_samples, n_features) {
520            let chunk = x.slice(scirs2_core::ndarray::s![start_idx..end_idx, ..]);
521            let chunk_size_actual = end_idx - start_idx;
522
523            // Center the chunk
524            let chunk_centered = if self.center {
525                &chunk - &mean.view().insert_axis(Axis(0))
526            } else {
527                chunk.to_owned()
528            };
529
530            // Apply incremental SVD update
531            self.incremental_svd_update(
532                &chunk_centered,
533                &mut u,
534                &mut sigma,
535                &mut vt,
536                n_samples_seen,
537                forgetting_factor,
538            )?;
539
540            n_samples_seen += chunk_size_actual;
541
542            // Optional: Apply forgetting factor for streaming data (useful for non-stationary data)
543            if n_samples_seen > 10000 {
544                sigma.mapv_inplace(|x| x * forgetting_factor);
545            }
546        }
547
548        // Store the final components
549        // VT contains the principal components as rows, so we transpose
550        self.components = Some(
551            vt.t()
552                .to_owned()
553                .slice(scirs2_core::ndarray::s![.., ..self.n_components])
554                .to_owned(),
555        );
556
557        // Calculate explained variance ratios
558        let total_variance = sigma.iter().map(|&s| s * s).sum::<f64>();
559        if total_variance > 0.0 {
560            let variance_ratios = sigma.mapv(|s| (s * s) / total_variance);
561            self.explained_variance_ratio = Some(variance_ratios);
562        } else {
563            self.explained_variance_ratio =
564                Some(Array1::ones(self.n_components) / self.n_components as f64);
565        }
566
567        Ok(())
568    }
569
570    /// ✅ Advanced MODE: Incremental SVD update algorithm
571    /// This implements the proper mathematical algorithm for updating SVD incrementally
572    /// Based on "Incremental Singular Value Decomposition of Uncertain Data with Missing Values"
573    fn incremental_svd_update(
574        &self,
575        new_chunk: &Array2<f64>,
576        u: &mut Array2<f64>,
577        sigma: &mut Array1<f64>,
578        vt: &mut Array2<f64>,
579        n_samples_seen: usize,
580        forgetting_factor: f64,
581    ) -> Result<()> {
582        let (chunk_rows, n_features) = new_chunk.dim();
583
584        if n_samples_seen == 0 {
585            // Initialize with first _chunk using standard SVD
586            return self.initialize_svd_from_chunk(new_chunk, u, sigma, vt);
587        }
588
589        // ✅ Advanced OPTIMIZATION: Efficient incremental update
590        // Project new data onto existing subspace
591        let projected = new_chunk.dot(&vt.t());
592
593        // Compute residual (orthogonal component)
594        let reconstructed = projected.dot(vt);
595        let residual = new_chunk - &reconstructed;
596
597        // QR decomposition of residual for new orthogonal directions
598        let (q_residual, r_residual) = self.qr_decomposition_chunked(&residual)?;
599
600        // Update the SVD incrementally using matrix perturbation theory
601        // This is the core of the incremental SVD algorithm
602
603        // 1. Extend U with new orthogonal directions
604        let extended_u = if u.nrows() > 0 {
605            // Stack existing U with identity for new samples
606            let mut new_u = Array2::zeros((u.nrows() + chunk_rows, u.ncols() + q_residual.ncols()));
607            new_u
608                .slice_mut(scirs2_core::ndarray::s![..u.nrows(), ..u.ncols()])
609                .assign(u);
610            // Add new orthogonal directions
611            if q_residual.ncols() > 0 {
612                new_u
613                    .slice_mut(scirs2_core::ndarray::s![u.nrows().., u.ncols()..])
614                    .assign(&q_residual);
615            }
616            new_u
617        } else {
618            q_residual.clone()
619        };
620
621        // 2. Form the augmented matrix for SVD update
622        let mut augmented_sigma = Array2::zeros((
623            sigma.len() + r_residual.nrows(),
624            sigma.len() + r_residual.ncols(),
625        ));
626
627        // Fill the block matrix structure for incremental update
628        for (i, &s) in sigma.iter().enumerate() {
629            augmented_sigma[[i, i]] = s * forgetting_factor.sqrt(); // Apply forgetting _factor
630        }
631
632        // Add the R component from QR decomposition
633        if r_residual.nrows() > 0 && r_residual.ncols() > 0 {
634            let start_row = sigma.len();
635            let start_col = sigma.len();
636            let end_row = (start_row + r_residual.nrows()).min(augmented_sigma.nrows());
637            let end_col = (start_col + r_residual.ncols()).min(augmented_sigma.ncols());
638
639            if end_row > start_row && end_col > start_col {
640                augmented_sigma
641                    .slice_mut(scirs2_core::ndarray::s![
642                        start_row..end_row,
643                        start_col..end_col
644                    ])
645                    .assign(&r_residual.slice(scirs2_core::ndarray::s![
646                        ..(end_row - start_row),
647                        ..(end_col - start_col)
648                    ]));
649            }
650        }
651
652        // 3. Perform SVD on the small augmented matrix (this is the key efficiency gain)
653        let (u_aug, sigma_new, vt_aug) = self.svd_small_matrix(&augmented_sigma)?;
654
655        // 4. Update the original matrices
656        // Keep only the top n_components
657        let k = self.n_components.min(sigma_new.len());
658
659        *sigma = sigma_new.slice(scirs2_core::ndarray::s![..k]).to_owned();
660
661        // Update U = extended_U * U_aug[:, :k]
662        if extended_u.ncols() >= u_aug.nrows() && u_aug.ncols() >= k {
663            *u = extended_u
664                .slice(scirs2_core::ndarray::s![.., ..u_aug.nrows()])
665                .dot(&u_aug.slice(scirs2_core::ndarray::s![.., ..k]));
666        }
667
668        // Update VT
669        if vt_aug.nrows() >= k && vt.ncols() == vt_aug.ncols() {
670            *vt = vt_aug.slice(scirs2_core::ndarray::s![..k, ..]).to_owned();
671        }
672
673        Ok(())
674    }
675
676    /// ✅ Advanced MODE: Initialize SVD from first chunk
677    fn initialize_svd_from_chunk(
678        &self,
679        chunk: &Array2<f64>,
680        u: &mut Array2<f64>,
681        sigma: &mut Array1<f64>,
682        vt: &mut Array2<f64>,
683    ) -> Result<()> {
684        let (chunk_u, chunk_sigma, chunk_vt) = self.svd_small_matrix(chunk)?;
685
686        let k = self.n_components.min(chunk_sigma.len());
687
688        *u = chunk_u.slice(scirs2_core::ndarray::s![.., ..k]).to_owned();
689        *sigma = chunk_sigma.slice(scirs2_core::ndarray::s![..k]).to_owned();
690        *vt = chunk_vt.slice(scirs2_core::ndarray::s![..k, ..]).to_owned();
691
692        Ok(())
693    }
694
695    /// ✅ Advanced MODE: Efficient QR decomposition for chunked processing
696    fn qr_decomposition_chunked(&self, matrix: &Array2<f64>) -> Result<(Array2<f64>, Array2<f64>)> {
697        let (m, n) = matrix.dim();
698
699        if m == 0 || n == 0 {
700            return Ok((Array2::zeros((m, 0)), Array2::zeros((0, n))));
701        }
702
703        // Simplified QR using Gram-Schmidt for small matrices (this chunk-based approach)
704        // For production, you'd use LAPACK's QR, but this avoids the linalg dependency issues
705        let mut q = Array2::zeros((m, n.min(m)));
706        let mut r = Array2::zeros((n.min(m), n));
707
708        for j in 0..n.min(m) {
709            let mut col = matrix.column(j).to_owned();
710
711            // Orthogonalize against previous columns
712            for i in 0..j {
713                let q_col = q.column(i);
714                let proj = col.dot(&q_col);
715                col = &col - &(&q_col * proj);
716                r[[i, j]] = proj;
717            }
718
719            // Normalize
720            let norm = col.iter().map(|x| x * x).sum::<f64>().sqrt();
721            if norm > 1e-12 {
722                col /= norm;
723                r[[j, j]] = norm;
724            } else {
725                r[[j, j]] = 0.0;
726            }
727
728            q.column_mut(j).assign(&col);
729        }
730
731        Ok((q, r))
732    }
733
734    /// ✅ Advanced MODE: Efficient SVD for small matrices
735    fn svd_small_matrix(
736        &self,
737        matrix: &Array2<f64>,
738    ) -> Result<(Array2<f64>, Array1<f64>, Array2<f64>)> {
739        let (m, n) = matrix.dim();
740
741        if m == 0 || n == 0 {
742            return Ok((
743                Array2::zeros((m, 0)),
744                Array1::zeros(0),
745                Array2::zeros((0, n)),
746            ));
747        }
748
749        // For small matrices, use a simplified SVD implementation
750        // In production, this would use LAPACK, but we avoid dependency issues
751
752        // Use the fact that for small matrices, we can compute A^T * A eigendecomposition
753        let ata = matrix.t().dot(matrix);
754        let (eigenvals, eigenvecs) = self.symmetric_eigendecomposition(&ata)?;
755
756        // Singular values are sqrt of eigenvalues
757        let singular_values = eigenvals.mapv(|x| x.max(0.0).sqrt());
758
759        // V is the eigenvectors
760        let vt = eigenvecs.t().to_owned();
761
762        // Compute U = A * V * Sigma^(-1)
763        let mut u = Array2::zeros((m, eigenvals.len()));
764        for (i, &sigma) in singular_values.iter().enumerate() {
765            if sigma > 1e-12 {
766                let v_col = eigenvecs.column(i);
767                let u_col = matrix.dot(&v_col) / sigma;
768                u.column_mut(i).assign(&u_col);
769            }
770        }
771
772        Ok((u, singular_values, vt))
773    }
774
775    /// ✅ Advanced MODE: Symmetric eigendecomposition for small matrices
776    fn symmetric_eigendecomposition(
777        &self,
778        matrix: &Array2<f64>,
779    ) -> Result<(Array1<f64>, Array2<f64>)> {
780        let n = matrix.nrows();
781        if n != matrix.ncols() {
782            return Err(TransformError::ComputationError(
783                "Matrix must be square".to_string(),
784            ));
785        }
786
787        if n == 0 {
788            return Ok((Array1::zeros(0), Array2::zeros((0, 0))));
789        }
790
791        // For small matrices, use a simplified Jacobi-like method
792        // This is a basic implementation without external dependencies
793
794        let a = matrix.clone(); // Working copy
795        let mut eigenvals = Array1::zeros(n);
796        let mut eigenvecs = Array2::eye(n);
797
798        // For very small matrices, use a direct approach
799        if n == 1 {
800            eigenvals[0] = a[[0, 0]];
801            return Ok((eigenvals, eigenvecs));
802        }
803
804        if n == 2 {
805            // Analytical solution for 2x2 symmetric matrix
806            let trace = a[[0, 0]] + a[[1, 1]];
807            let det = a[[0, 0]] * a[[1, 1]] - a[[0, 1]] * a[[1, 0]];
808            let discriminant = (trace * trace - 4.0 * det).sqrt();
809
810            eigenvals[0] = (trace + discriminant) / 2.0;
811            eigenvals[1] = (trace - discriminant) / 2.0;
812
813            // Eigenvector for first eigenvalue
814            if a[[0, 1]].abs() > 1e-12 {
815                let norm0 = (a[[0, 1]] * a[[0, 1]] + (eigenvals[0] - a[[0, 0]]).powi(2)).sqrt();
816                eigenvecs[[0, 0]] = a[[0, 1]] / norm0;
817                eigenvecs[[1, 0]] = (eigenvals[0] - a[[0, 0]]) / norm0;
818
819                // Second eigenvector (orthogonal)
820                eigenvecs[[0, 1]] = -eigenvecs[[1, 0]];
821                eigenvecs[[1, 1]] = eigenvecs[[0, 0]];
822            }
823
824            // Sort eigenvalues in descending order
825            if eigenvals[1] > eigenvals[0] {
826                eigenvals.swap(0, 1);
827                // Swap corresponding eigenvectors
828                let temp0 = eigenvecs.column(0).to_owned();
829                let temp1 = eigenvecs.column(1).to_owned();
830                eigenvecs.column_mut(0).assign(&temp1);
831                eigenvecs.column_mut(1).assign(&temp0);
832            }
833
834            return Ok((eigenvals, eigenvecs));
835        }
836
837        // For n >= 3, use power iteration with deflation
838        let mut matrix_work = a.clone();
839
840        for i in 0..n.min(self.n_components) {
841            // Power iteration to find dominant eigenvalue/eigenvector
842            let mut v = Array1::<f64>::ones(n);
843            v /= v.dot(&v).sqrt();
844
845            let mut eigenval = 0.0;
846
847            for _iter in 0..1000 {
848                let new_v = matrix_work.dot(&v);
849                eigenval = v.dot(&new_v); // Rayleigh quotient
850                let norm = new_v.dot(&new_v).sqrt();
851
852                if norm < 1e-15 {
853                    break;
854                }
855
856                let new_v_normalized = &new_v / norm;
857
858                // Check convergence
859                let diff = (&new_v_normalized - &v)
860                    .dot(&(&new_v_normalized - &v))
861                    .sqrt();
862                v = new_v_normalized;
863
864                if diff < 1e-12 {
865                    break;
866                }
867            }
868
869            eigenvals[i] = eigenval;
870            eigenvecs.column_mut(i).assign(&v);
871
872            // Deflate matrix: A := A - λvv^T
873            let vv = v
874                .view()
875                .insert_axis(Axis(1))
876                .dot(&v.view().insert_axis(Axis(0)));
877            matrix_work = matrix_work - eigenval * vv;
878        }
879
880        Ok((eigenvals, eigenvecs))
881    }
882
883    /// ✅ Advanced MODE: Enhanced randomized PCA with proper random projections
884    /// This implements the randomized SVD algorithm for efficient PCA on large datasets
885    /// Based on "Finding structure with randomness" by Halko, Martinsson & Tropp (2011)
886    fn fit_randomized_pca(&mut self, x: &ArrayView2<f64>) -> Result<()> {
887        let _n_samples_n_features = x.dim();
888
889        // Center the data if requested
890        let mean = if self.center {
891            Some(x.mean_axis(Axis(0)).unwrap())
892        } else {
893            None
894        };
895
896        let x_centered = if let Some(ref m) = mean {
897            x - &m.view().insert_axis(Axis(0))
898        } else {
899            x.to_owned()
900        };
901
902        self.mean = mean;
903
904        // ✅ Advanced OPTIMIZATION: Proper randomized SVD implementation
905        // This is significantly faster than full SVD for large matrices
906        self.fit_randomized_svd(&x_centered.view())
907    }
908
909    /// ✅ Advanced MODE: Core randomized SVD algorithm
910    /// Implements the randomized SVD algorithm with proper random projections
911    fn fit_randomized_svd(&mut self, x: &ArrayView2<f64>) -> Result<()> {
912        let (n_samples, n_features) = x.dim();
913
914        // Adaptive oversampling for better accuracy
915        let oversampling = if n_features > 1000 { 10 } else { 5 };
916        let sketch_size = (self.n_components + oversampling).min(n_features.min(n_samples));
917
918        // Power iterations for better accuracy on matrices with slowly decaying singular values
919        let n_power_iterations = if n_features > 5000 { 2 } else { 1 };
920
921        // ✅ STAGE 1: Random projection
922        // Generate random Gaussian matrix Ω ∈ R^{n_features × sketch_size}
923        let random_matrix = self.generate_random_gaussian_matrix(n_features, sketch_size)?;
924
925        // Compute Y = X * Ω (project data onto random subspace)
926        let mut y = x.dot(&random_matrix);
927
928        // ✅ STAGE 2: Power iterations (optional, for better accuracy)
929        // This helps when the singular values decay slowly
930        for _ in 0..n_power_iterations {
931            // Y = X * (X^T * Y)
932            let xty = x.t().dot(&y);
933            y = x.dot(&xty);
934        }
935
936        // ✅ STAGE 3: QR decomposition to orthogonalize the projected space
937        let (q, r) = self.qr_decomposition_chunked(&y)?;
938
939        // ✅ STAGE 4: Project original matrix onto orthogonal basis
940        // B = Q^T * X
941        let b = q.t().dot(x);
942
943        // ✅ STAGE 5: Compute SVD of the small matrix B
944        let (u_b, sigma, vt) = self.svd_small_matrix(&b)?;
945
946        // ✅ STAGE 6: Recover the original SVD components
947        // U = Q * U_B (left singular vectors)
948        let _u = q.dot(&u_b);
949
950        // The right singular vectors are V^T = V_T
951        // Extract top n_components
952        let k = self.n_components.min(sigma.len());
953
954        // Store components (V^T transposed to get V, then take first k columns)
955        let components = vt.slice(scirs2_core::ndarray::s![..k, ..]).t().to_owned();
956        self.components = Some(components.t().to_owned());
957
958        // Calculate explained variance ratios
959        let total_variance = sigma.iter().take(k).map(|&s| s * s).sum::<f64>();
960        if total_variance > 0.0 {
961            let explained_variance = sigma.slice(scirs2_core::ndarray::s![..k]).mapv(|s| s * s);
962            let variance_ratios = &explained_variance / total_variance;
963            self.explained_variance_ratio = Some(variance_ratios);
964            self.explained_variance = Some(explained_variance);
965        } else {
966            let uniform_variance = Array1::ones(k) / k as f64;
967            self.explained_variance_ratio = Some(uniform_variance.clone());
968            self.explained_variance = Some(uniform_variance);
969        }
970
971        Ok(())
972    }
973
974    /// ✅ Advanced MODE: Generate random Gaussian matrix for projections
975    fn generate_random_gaussian_matrix(&self, rows: usize, cols: usize) -> Result<Array2<f64>> {
976        let mut rng = scirs2_core::random::rng();
977        let mut random_matrix = Array2::zeros((rows, cols));
978
979        // Generate random numbers using Box-Muller transform for approximate Gaussian distribution
980        for i in 0..rows {
981            for j in 0..cols {
982                // Box-Muller transform to generate Gaussian from uniform
983                let u1 = rng.gen_range(0.0..1.0);
984                let u2 = rng.gen_range(0.0..1.0);
985
986                // Ensure u1 is not zero to avoid log(0)
987                let u1 = if u1 == 0.0 { f64::EPSILON } else { u1 };
988
989                let z = (-2.0 * u1.ln()).sqrt() * (2.0 * std::f64::consts::PI * u2).cos();
990                random_matrix[[i, j]] = z;
991            }
992        }
993
994        // Normalize columns for numerical stability
995        for j in 0..cols {
996            let mut col = random_matrix.column_mut(j);
997            let norm = col.dot(&col).sqrt();
998            if norm > f64::EPSILON {
999                col /= norm;
1000            }
1001        }
1002
1003        Ok(random_matrix)
1004    }
1005
1006    /// Fit using standard PCA algorithm
1007    fn fit_standard_pca(&mut self, x: &ArrayView2<f64>) -> Result<()> {
1008        // Center the data if requested
1009        let mean = if self.center {
1010            Some(x.mean_axis(Axis(0)).unwrap())
1011        } else {
1012            None
1013        };
1014
1015        let x_centered = if let Some(ref m) = mean {
1016            x - &m.view().insert_axis(Axis(0))
1017        } else {
1018            x.to_owned()
1019        };
1020
1021        self.mean = mean;
1022        self.fit_standard_pca_on_data(&x_centered.view())
1023    }
1024
1025    /// Internal method to fit PCA on already processed data
1026    fn fit_standard_pca_on_data(&mut self, x: &ArrayView2<f64>) -> Result<()> {
1027        let (n_samples, n_features) = x.dim();
1028
1029        // Compute covariance matrix
1030        let cov = if n_samples > n_features {
1031            // Use X^T X when n_features < n_samples
1032            let xt = x.t();
1033            xt.dot(x) / (n_samples - 1) as f64
1034        } else {
1035            // Use X X^T when n_samples < n_features
1036            x.dot(&x.t()) / (n_samples - 1) as f64
1037        };
1038
1039        // Compute eigendecomposition using power iteration method for enhanced performance
1040        // This provides a proper implementation that works with large matrices
1041
1042        let min_dim = n_features.min(n_samples);
1043        let n_components = self.n_components.min(min_dim);
1044
1045        // Perform eigendecomposition using power iteration for the top components
1046        let (eigenvals, eigenvecs) = self.compute_top_eigenpairs(&cov, n_components)?;
1047
1048        // Sort eigenvalues and eigenvectors in descending order
1049        let mut eigen_pairs: Vec<(f64, Array1<f64>)> = eigenvals
1050            .iter()
1051            .zip(eigenvecs.columns())
1052            .map(|(&val, vec)| (val, vec.to_owned()))
1053            .collect();
1054
1055        eigen_pairs.sort_by(|a, b| b.0.partial_cmp(&a.0).unwrap_or(std::cmp::Ordering::Equal));
1056
1057        // Extract sorted eigenvalues and eigenvectors
1058        let explained_variance = Array1::from_iter(eigen_pairs.iter().map(|(val_, _)| *val_));
1059        let mut components = Array2::zeros((n_components, cov.ncols()));
1060
1061        for (i, (_, eigenvec)) in eigen_pairs.iter().enumerate() {
1062            components.row_mut(i).assign(eigenvec);
1063        }
1064
1065        self.components = Some(components.t().to_owned());
1066        self.explained_variance = Some(explained_variance);
1067
1068        Ok(())
1069    }
1070
1071    /// Transform data using fitted PCA
1072    pub fn transform(&self, x: &ArrayView2<f64>) -> Result<Array2<f64>> {
1073        let components = self
1074            .components
1075            .as_ref()
1076            .ok_or_else(|| TransformError::NotFitted("PCA not fitted".to_string()))?;
1077
1078        check_not_empty(x, "x")?;
1079
1080        // Check finite values
1081        for &val in x.iter() {
1082            if !val.is_finite() {
1083                return Err(crate::error::TransformError::DataValidationError(
1084                    "Data contains non-finite values".to_string(),
1085                ));
1086            }
1087        }
1088
1089        // Center data if mean was fitted
1090        let x_processed = if let Some(ref mean) = self.mean {
1091            x - &mean.view().insert_axis(Axis(0))
1092        } else {
1093            x.to_owned()
1094        };
1095
1096        // Project onto principal components
1097        // Components may be stored in different formats depending on the fit method used
1098        let transformed = if components.shape()[1] == x_processed.shape()[1] {
1099            // Components are stored in correct format: (n_components, n_features)
1100            x_processed.dot(&components.t())
1101        } else if components.shape()[0] == x_processed.shape()[1] {
1102            // Components are stored transposed: (n_features, n_components)
1103            x_processed.dot(components)
1104        } else {
1105            return Err(crate::error::TransformError::InvalidInput(format!(
1106                "Component dimensions {:?} are incompatible with data dimensions {:?}",
1107                components.shape(),
1108                x_processed.shape()
1109            )));
1110        };
1111
1112        Ok(transformed)
1113    }
1114
1115    /// Fit and transform in one step
1116    pub fn fit_transform(&mut self, x: &ArrayView2<f64>) -> Result<Array2<f64>> {
1117        self.fit(x)?;
1118        self.transform(x)
1119    }
1120
1121    /// Get explained variance ratio
1122    pub fn explained_variance_ratio(&self) -> Option<Array1<f64>> {
1123        self.explained_variance.as_ref().map(|ev| {
1124            let total_var = ev.sum();
1125            ev / total_var
1126        })
1127    }
1128
1129    /// Get the components
1130    pub fn components(&self) -> Option<&Array2<f64>> {
1131        self.components.as_ref()
1132    }
1133
1134    /// Get the processing strategy
1135    pub fn processing_strategy(&self) -> &ProcessingStrategy {
1136        &self.strategy
1137    }
1138
1139    /// Compute top eigenpairs using power iteration method
1140    fn compute_top_eigenpairs(
1141        &self,
1142        matrix: &Array2<f64>,
1143        n_components: usize,
1144    ) -> Result<(Array1<f64>, Array2<f64>)> {
1145        let n = matrix.nrows();
1146        if n != matrix.ncols() {
1147            return Err(TransformError::ComputationError(
1148                "Matrix must be square for eigendecomposition".to_string(),
1149            ));
1150        }
1151
1152        let mut eigenvalues = Array1::zeros(n_components);
1153        let mut eigenvectors = Array2::zeros((n, n_components));
1154        let mut working_matrix = matrix.clone();
1155
1156        for k in 0..n_components {
1157            // Power iteration to find the largest eigenvalue and eigenvector
1158            let (eigenval, eigenvec) = self.power_iteration(&working_matrix)?;
1159
1160            eigenvalues[k] = eigenval;
1161            eigenvectors.column_mut(k).assign(&eigenvec);
1162
1163            // Deflate the matrix to find the next eigenvalue
1164            // A' = A - λ * v * v^T
1165            let outer_product = &eigenvec
1166                .view()
1167                .insert_axis(Axis(1))
1168                .dot(&eigenvec.view().insert_axis(Axis(0)));
1169            working_matrix = &working_matrix - &(eigenval * outer_product);
1170        }
1171
1172        Ok((eigenvalues, eigenvectors))
1173    }
1174
1175    /// Power iteration method to find the largest eigenvalue and eigenvector
1176    fn power_iteration(&self, matrix: &Array2<f64>) -> Result<(f64, Array1<f64>)> {
1177        let n = matrix.nrows();
1178        let max_iterations = 1000;
1179        let tolerance = 1e-10;
1180
1181        // Start with a random vector
1182        use scirs2_core::random::Rng;
1183        let mut rng = scirs2_core::random::rng();
1184        let mut vector: Array1<f64> = Array1::from_shape_fn(n, |_| rng.gen_range(0.0..1.0) - 0.5);
1185
1186        // Normalize the initial vector
1187        let norm = vector.dot(&vector).sqrt();
1188        if norm > f64::EPSILON {
1189            vector /= norm;
1190        } else {
1191            // If somehow we get a zero vector..use a standard basis vector
1192            vector = Array1::zeros(n);
1193            vector[0] = 1.0;
1194        }
1195
1196        let mut eigenvalue = 0.0;
1197        let mut prev_eigenvalue = 0.0;
1198
1199        for iteration in 0..max_iterations {
1200            // Apply the matrix to the vector
1201            let new_vector = matrix.dot(&vector);
1202
1203            // Calculate the Rayleigh quotient (eigenvalue estimate)
1204            let numerator = vector.dot(&new_vector);
1205            let denominator = vector.dot(&vector);
1206
1207            if denominator < f64::EPSILON {
1208                return Err(TransformError::ComputationError(
1209                    "Vector became zero during power iteration".to_string(),
1210                ));
1211            }
1212
1213            eigenvalue = numerator / denominator;
1214
1215            // Normalize the new vector
1216            let norm = new_vector.dot(&new_vector).sqrt();
1217            if norm > f64::EPSILON {
1218                vector = new_vector / norm;
1219            } else {
1220                // If the vector becomes zero, we may have converged or hit numerical issues
1221                break;
1222            }
1223
1224            // Check for convergence
1225            if iteration > 0 && (eigenvalue - prev_eigenvalue).abs() < tolerance {
1226                break;
1227            }
1228
1229            prev_eigenvalue = eigenvalue;
1230        }
1231
1232        // Final normalization
1233        let norm = vector.dot(&vector).sqrt();
1234        if norm > f64::EPSILON {
1235            vector /= norm;
1236        }
1237
1238        Ok((eigenvalue, vector))
1239    }
1240
1241    /// Alternative eigendecomposition using QR algorithm for smaller matrices
1242    #[allow(dead_code)]
1243    fn qr_eigendecomposition(
1244        &self,
1245        matrix: &Array2<f64>,
1246        n_components: usize,
1247    ) -> Result<(Array1<f64>, Array2<f64>)> {
1248        let n = matrix.nrows();
1249        if n != matrix.ncols() {
1250            return Err(TransformError::ComputationError(
1251                "Matrix must be square for QR eigendecomposition".to_string(),
1252            ));
1253        }
1254
1255        // For small matrices (< 100x100), use a simplified QR approach
1256        if n > 100 {
1257            return self.compute_top_eigenpairs(matrix, n_components);
1258        }
1259
1260        let max_iterations = 100;
1261        let tolerance = 1e-12;
1262        let mut a = matrix.clone();
1263        let mut q_total = Array2::eye(n);
1264
1265        // QR iteration
1266        for _iteration in 0..max_iterations {
1267            let (q, r) = self.qr_decomposition(&a)?;
1268            a = r.dot(&q);
1269            q_total = q_total.dot(&q);
1270
1271            // Check for convergence (off-diagonal elements should be small)
1272            let mut off_diagonal_norm = 0.0;
1273            for i in 0..n {
1274                for j in 0..n {
1275                    if i != j {
1276                        off_diagonal_norm += a[[i, j]] * a[[i, j]];
1277                    }
1278                }
1279            }
1280
1281            if off_diagonal_norm.sqrt() < tolerance {
1282                break;
1283            }
1284        }
1285
1286        // Extract eigenvalues from diagonal
1287        let eigenvals: Vec<f64> = (0..n).map(|i| a[[i, i]]).collect();
1288        let eigenvecs = q_total;
1289
1290        // Sort eigenvalues and corresponding eigenvectors in descending order
1291        let mut indices: Vec<usize> = (0..n).collect();
1292        indices.sort_by(|&i, &j| {
1293            eigenvals[j]
1294                .partial_cmp(&eigenvals[i])
1295                .unwrap_or(std::cmp::Ordering::Equal)
1296        });
1297
1298        // Take top n_components
1299        let top_eigenvals =
1300            Array1::from_iter(indices.iter().take(n_components).map(|&i| eigenvals[i]));
1301
1302        let mut top_eigenvecs = Array2::zeros((n, n_components));
1303        for (k, &i) in indices.iter().take(n_components).enumerate() {
1304            top_eigenvecs.column_mut(k).assign(&eigenvecs.column(i));
1305        }
1306
1307        Ok((top_eigenvals, top_eigenvecs))
1308    }
1309
1310    /// QR decomposition using Gram-Schmidt process
1311    #[allow(dead_code)]
1312    fn qr_decomposition(&self, matrix: &Array2<f64>) -> Result<(Array2<f64>, Array2<f64>)> {
1313        let (m, n) = matrix.dim();
1314        let mut q = Array2::zeros((m, n));
1315        let mut r = Array2::zeros((n, n));
1316
1317        for j in 0..n {
1318            let mut v = matrix.column(j).to_owned();
1319
1320            // Gram-Schmidt orthogonalization
1321            for i in 0..j {
1322                let q_i = q.column(i);
1323                let projection = q_i.dot(&v);
1324                r[[i, j]] = projection;
1325                v = v - projection * &q_i;
1326            }
1327
1328            // Normalize
1329            let norm = v.dot(&v).sqrt();
1330            if norm > f64::EPSILON {
1331                r[[j, j]] = norm;
1332                q.column_mut(j).assign(&(&v / norm));
1333            } else {
1334                r[[j, j]] = 0.0;
1335                // Handle linear dependence by setting to zero vector
1336                q.column_mut(j).fill(0.0);
1337            }
1338        }
1339
1340        Ok((q, r))
1341    }
1342
1343    /// Full QR decomposition (Q is square, R is rectangular)
1344    fn qr_decomposition_full(&self, matrix: &Array2<f64>) -> Result<(Array2<f64>, Array2<f64>)> {
1345        let (m, n) = matrix.dim();
1346        let mut q = Array2::zeros((m, m)); // Q is square (m x m)
1347        let mut r = Array2::zeros((m, n)); // R is rectangular (m x n)
1348
1349        // First, get the reduced QR decomposition
1350        let (q_reduced, r_reduced) = self.qr_decomposition(matrix)?;
1351
1352        // Copy the reduced Q into the left part of the full Q
1353        q.slice_mut(scirs2_core::ndarray::s![.., ..n])
1354            .assign(&q_reduced);
1355
1356        // Copy the reduced R into the top part of the full R
1357        r.slice_mut(scirs2_core::ndarray::s![..n, ..])
1358            .assign(&r_reduced);
1359
1360        // Complete the orthogonal basis for Q using Gram-Schmidt on remaining columns
1361        for j in n..m {
1362            let mut v = Array1::zeros(m);
1363            v[j] = 1.0; // Start with standard basis vector
1364
1365            // Orthogonalize against all previous columns
1366            for i in 0..j {
1367                let q_i = q.column(i);
1368                let projection = q_i.dot(&v);
1369                v = v - projection * &q_i;
1370            }
1371
1372            // Normalize
1373            let norm = v.dot(&v).sqrt();
1374            if norm > f64::EPSILON {
1375                q.column_mut(j).assign(&(&v / norm));
1376            }
1377        }
1378
1379        Ok((q, r))
1380    }
1381}
1382
1383#[cfg(test)]
1384mod tests {
1385    use super::*;
1386    use scirs2_core::ndarray::Array2;
1387
1388    #[test]
1389    fn test_enhanced_standard_scaler() {
1390        let data = Array2::from_shape_vec((100, 5), (0..500).map(|x| x as f64).collect()).unwrap();
1391
1392        let mut scaler = EnhancedStandardScaler::new(false, 100);
1393        let transformed = scaler.fit_transform(&data.view()).unwrap();
1394
1395        assert_eq!(transformed.shape(), data.shape());
1396
1397        // Check that transformed data has approximately zero mean and unit variance
1398        let transformed_mean = transformed.mean_axis(Axis(0)).unwrap();
1399        for &mean in transformed_mean.iter() {
1400            assert!((mean.abs()) < 1e-10);
1401        }
1402    }
1403
1404    #[test]
1405    fn test_enhanced_standard_scaler_robust() {
1406        let mut data =
1407            Array2::from_shape_vec((100, 3), (0..300).map(|x| x as f64).collect()).unwrap();
1408        // Add some outliers
1409        data[[0, 0]] = 1000.0;
1410        data[[1, 1]] = -1000.0;
1411
1412        let mut robust_scaler = EnhancedStandardScaler::new(true, 100);
1413        let transformed = robust_scaler.fit_transform(&data.view()).unwrap();
1414
1415        assert_eq!(transformed.shape(), data.shape());
1416
1417        // Robust scaler should be less affected by outliers
1418        let transformed_median = transformed.mean_axis(Axis(0)).unwrap(); // Approximation
1419        for &median in transformed_median.iter() {
1420            assert!(median.abs() < 5.0); // Should be reasonable even with outliers
1421        }
1422    }
1423
1424    #[test]
1425    fn test_enhanced_pca() {
1426        let data = Array2::from_shape_vec((50, 10), (0..500).map(|x| x as f64).collect()).unwrap();
1427
1428        let mut pca = EnhancedPCA::new(5, true, 100).unwrap();
1429        let transformed = pca.fit_transform(&data.view()).unwrap();
1430
1431        assert_eq!(transformed.shape(), &[50, 5]);
1432        assert!(pca.components().is_some());
1433        assert!(pca.explained_variance_ratio().is_some());
1434    }
1435
1436    #[test]
1437    fn test_enhanced_pca_no_centering() {
1438        let data = Array2::from_shape_vec((30, 8), (0..240).map(|x| x as f64).collect()).unwrap();
1439
1440        let mut pca = EnhancedPCA::new(3, false, 100).unwrap();
1441        let transformed = pca.fit_transform(&data.view()).unwrap();
1442
1443        assert_eq!(transformed.shape(), &[30, 3]);
1444    }
1445
1446    #[test]
1447    fn test_processing_strategy_selection() {
1448        // Test that processing strategy is selected appropriately
1449        let small_data = Array2::ones((10, 5));
1450        let mut scaler = EnhancedStandardScaler::new(false, 100);
1451        scaler.fit(&small_data.view()).unwrap();
1452
1453        // For small data, should use standard processing
1454        matches!(scaler.processing_strategy(), ProcessingStrategy::Standard);
1455    }
1456
1457    #[test]
1458    fn test_optimized_memory_pool() {
1459        let mut pool = AdvancedMemoryPool::new(100, 10, 2);
1460
1461        // Test buffer allocation and reuse
1462        let buffer1 = pool.get_array(50, 5);
1463        assert_eq!(buffer1.shape(), &[50, 5]);
1464
1465        pool.return_array(buffer1);
1466
1467        // Should reuse the returned buffer
1468        let buffer2 = pool.get_array(50, 5);
1469        assert_eq!(buffer2.shape(), &[50, 5]);
1470
1471        // Test temp array functionality
1472        let temp1 = pool.get_temp_array(20);
1473        assert_eq!(temp1.len(), 20);
1474
1475        pool.return_temp_array(temp1);
1476
1477        // Test performance stats
1478        pool.update_stats(1000000, 100); // 1ms, 100 samples
1479        let stats = pool.stats();
1480        assert_eq!(stats.transform_count, 1);
1481        assert!(stats.throughput_samples_per_sec > 0.0);
1482    }
1483
1484    #[test]
1485    fn test_optimized_pca_small_data() {
1486        let data = Array2::from_shape_vec(
1487            (20, 8),
1488            (0..160)
1489                .map(|x| x as f64 + scirs2_core::random::random::<f64>() * 0.1)
1490                .collect(),
1491        )
1492        .unwrap();
1493
1494        let mut pca = AdvancedPCA::new(3, 100, 50);
1495        let transformed = pca.fit_transform(&data.view()).unwrap();
1496
1497        assert_eq!(transformed.shape(), &[20, 3]);
1498        assert!(pca.components().is_some());
1499        assert!(pca.explained_variance_ratio().is_ok());
1500        assert!(pca.mean().is_some());
1501
1502        // Test that explained variance ratios sum to less than or equal to 1
1503        let var_ratios = pca.explained_variance_ratio().unwrap();
1504        let sum_ratios: f64 = var_ratios.iter().sum();
1505        assert!(sum_ratios <= 1.0 + 1e-10);
1506        assert!(sum_ratios > 0.0);
1507    }
1508
1509    #[test]
1510    #[ignore] // Large data test - takes too long in CI
1511    fn test_optimized_pca_large_data() {
1512        // Test with larger data to trigger block-wise algorithm
1513        let data = Array2::from_shape_vec(
1514            (15000, 600),
1515            (0..9000000)
1516                .map(|x| (x as f64).sin() * 0.01 + (x as f64 / 1000.0).cos())
1517                .collect(),
1518        )
1519        .unwrap();
1520
1521        let mut pca = AdvancedPCA::new(50, 20000, 1000);
1522        let result = pca.fit(&data.view());
1523        assert!(result.is_ok());
1524
1525        let transformed = pca.transform(&data.view());
1526        assert!(transformed.is_ok());
1527        assert_eq!(transformed.unwrap().shape(), &[15000, 50]);
1528
1529        // Verify performance statistics
1530        let stats = pca.performance_stats();
1531        assert!(stats.transform_count > 0);
1532    }
1533
1534    #[test]
1535    #[ignore] // Very large data test - 72M elements, times out in CI
1536    fn test_optimized_pca_very_large_data() {
1537        // Test with very large data to trigger randomized SVD
1538        let data = Array2::from_shape_vec(
1539            (60000, 1200),
1540            (0..72000000)
1541                .map(|x| {
1542                    let t = x as f64 / 1000000.0;
1543                    t.sin() + 0.1 * (10.0 * t).sin() + 0.01 * scirs2_core::random::random::<f64>()
1544                })
1545                .collect(),
1546        )
1547        .unwrap();
1548
1549        let mut pca = AdvancedPCA::new(20, 100000, 2000);
1550        let result = pca.fit(&data.view());
1551        assert!(result.is_ok());
1552
1553        // Test transform
1554        let small_test_data = data.slice(scirs2_core::ndarray::s![..100, ..]).to_owned();
1555        let transformed = pca.transform(&small_test_data.view());
1556        assert!(transformed.is_ok());
1557        assert_eq!(transformed.unwrap().shape(), &[100, 20]);
1558    }
1559
1560    #[test]
1561    fn test_qr_decomposition_optimized() {
1562        let pca = AdvancedPCA::new(5, 100, 50);
1563
1564        // Test QR decomposition on a simple matrix
1565        let matrix = Array2::from_shape_vec(
1566            (6, 4),
1567            vec![
1568                1.0, 2.0, 3.0, 4.0, 0.0, 1.0, 2.0, 3.0, 0.0, 0.0, 1.0, 2.0, 0.0, 0.0, 0.0, 1.0,
1569                1.0, 1.0, 1.0, 1.0, 2.0, 2.0, 2.0, 2.0,
1570            ],
1571        )
1572        .unwrap();
1573
1574        let result = pca.qr_decomposition_optimized(&matrix);
1575        assert!(result.is_ok());
1576
1577        let (q, r) = result.unwrap();
1578        assert_eq!(q.shape(), &[6, 6]);
1579        assert_eq!(r.shape(), &[6, 4]);
1580
1581        // Verify that Q is orthogonal (Q^T * Q should be close to identity)
1582        let qtq = q.t().dot(&q);
1583        for i in 0..6 {
1584            for j in 0..6 {
1585                if i == j {
1586                    assert!((qtq[[i, j]] - 1.0).abs() < 1e-10);
1587                } else {
1588                    assert!(qtq[[i, j]].abs() < 1e-10);
1589                }
1590            }
1591        }
1592    }
1593
1594    #[test]
1595    fn test_svd_small_matrix() {
1596        let pca = AdvancedPCA::new(3, 100, 50);
1597
1598        // Test SVD on a known matrix
1599        let matrix = Array2::from_shape_vec(
1600            (4, 3),
1601            vec![3.0, 2.0, 1.0, 2.0, 3.0, 2.0, 1.0, 2.0, 3.0, 0.0, 1.0, 2.0],
1602        )
1603        .unwrap();
1604
1605        let result = pca.svd_small_matrix(&matrix);
1606        assert!(result.is_ok());
1607
1608        let (u, s, vt) = result.unwrap();
1609        assert_eq!(u.shape(), &[4, 3]);
1610        assert_eq!(s.len(), 3);
1611        assert_eq!(vt.shape(), &[3, 3]);
1612
1613        // Verify that singular values are non-negative and sorted
1614        for i in 0..s.len() - 1 {
1615            assert!(s[i] >= 0.0);
1616            assert!(s[i] >= s[i + 1] - 1e-10); // Allow for small numerical errors
1617        }
1618
1619        // Verify reconstruction: A ≈ U * Σ * V^T
1620        let sigma_matrix = Array2::from_diag(&s);
1621        let reconstructed = u.dot(&sigma_matrix).dot(&vt);
1622
1623        for i in 0..4 {
1624            for j in 0..3 {
1625                // Relaxed tolerance for numerical stability
1626                assert!(
1627                    (matrix[[i, j]] - reconstructed[[i, j]]).abs() < 1e-6_f64,
1628                    "Matrix reconstruction error at [{}, {}]: expected {}, got {}, diff = {}",
1629                    i,
1630                    j,
1631                    matrix[[i, j]],
1632                    reconstructed[[i, j]],
1633                    (matrix[[i, j]] - reconstructed[[i, j]]).abs()
1634                );
1635            }
1636        }
1637    }
1638
1639    #[test]
1640    fn test_memory_pool_optimization() {
1641        let mut pool = AdvancedMemoryPool::new(1000, 100, 4);
1642
1643        // Simulate some usage patterns
1644        for i in 0..10 {
1645            pool.update_stats(1000000 + i * 100000, 100); // Varying performance
1646
1647            let buffer = pool.get_array(500, 50);
1648            pool.return_array(buffer);
1649        }
1650
1651        // Test optimization
1652        pool.optimize();
1653
1654        let stats = pool.stats();
1655        assert_eq!(stats.transform_count, 10);
1656        assert!(stats.cache_hit_rate >= 0.0 && stats.cache_hit_rate <= 1.0);
1657    }
1658
1659    #[test]
1660    fn test_performance_stats_accuracy() {
1661        let mut pool = AdvancedMemoryPool::new(100, 10, 2);
1662
1663        // Test with known timing
1664        let test_time_ns = 2_000_000_000; // 2 seconds
1665        let test_samples = 1000;
1666
1667        pool.update_stats(test_time_ns, test_samples);
1668
1669        let stats = pool.stats();
1670        assert_eq!(stats.transform_count, 1);
1671        assert_eq!(stats.total_transform_time_ns, test_time_ns);
1672
1673        // Throughput should be samples/second
1674        let expected_throughput = test_samples as f64 / 2.0; // 500 samples/second
1675        assert!((stats.throughput_samples_per_sec - expected_throughput).abs() < 1e-6);
1676    }
1677
1678    #[test]
1679    fn test_optimized_pca_numerical_stability() {
1680        // Test with data that could cause numerical issues
1681        let mut data = Array2::zeros((100, 10));
1682
1683        // Create data with very different scales
1684        for i in 0..100 {
1685            for j in 0..10 {
1686                if j < 5 {
1687                    data[[i, j]] = (i as f64) * 1e-6; // Very small values
1688                } else {
1689                    data[[i, j]] = (i as f64) * 1e6; // Very large values
1690                }
1691            }
1692        }
1693
1694        let mut pca = AdvancedPCA::new(5, 200, 20);
1695        let result = pca.fit_transform(&data.view());
1696
1697        assert!(result.is_ok());
1698        let transformed = result.unwrap();
1699        assert_eq!(transformed.shape(), &[100, 5]);
1700
1701        // Check that all values are finite
1702        for val in transformed.iter() {
1703            assert!(val.is_finite());
1704        }
1705    }
1706
1707    #[test]
1708    fn test_enhanced_standard_scaler_vs_optimized_pca() {
1709        // Compare enhanced scaler with optimized PCA preprocessing
1710        let data = Array2::from_shape_vec(
1711            (200, 15),
1712            (0..3000)
1713                .map(|x| x as f64 + scirs2_core::random::random::<f64>() * 10.0)
1714                .collect(),
1715        )
1716        .unwrap();
1717
1718        // Test enhanced scaler
1719        let mut scaler = EnhancedStandardScaler::new(false, 100);
1720        let scaled_data = scaler.fit_transform(&data.view()).unwrap();
1721
1722        // Apply PCA to scaled data
1723        let mut pca = AdvancedPCA::new(10, 300, 20);
1724        let pca_result = pca.fit_transform(&scaled_data.view()).unwrap();
1725
1726        assert_eq!(pca_result.shape(), &[200, 10]);
1727
1728        // Verify that the combination works correctly
1729        let explained_var = pca.explained_variance_ratio().unwrap();
1730        let total_explained: f64 = explained_var.iter().sum();
1731        assert!(total_explained > 0.5); // Should explain at least 50% of variance
1732        assert!(total_explained <= 1.0 + 1e-10);
1733    }
1734}
1735// REMOVED: Duplicate AdvancedMemoryPool - keeping the advanced version below
1736/*
1737/// High performance memory pool for repeated transformations
1738pub struct AdvancedMemoryPool {
1739    /// Pre-allocated transformation buffers
1740    transform_buffers: Vec<Array2<f64>>,
1741    /// Pre-allocated temporary arrays
1742    temp_arrays: Vec<Array1<f64>>,
1743    /// Current buffer index for round-robin allocation
1744    current_buffer_idx: std::cell::Cell<usize>,
1745    /// Maximum number of concurrent transformations
1746    max_concurrent: usize,
1747    /// Memory statistics
1748    memory_stats: PerformanceStats,
1749}
1750
1751/// Performance statistics for monitoring and optimization
1752#[derive(Debug, Clone)]
1753pub struct PerformanceStats {
1754    /// Total number of transformations performed
1755    pub transform_count: u64,
1756    /// Total time spent in transformations (nanoseconds)
1757    pub total_transform_time_ns: u64,
1758    /// Peak memory usage (bytes)
1759    pub peak_memory_bytes: usize,
1760    /// Cache hit rate for memory pool
1761    pub cache_hit_rate: f64,
1762    /// Average processing throughput (samples/second)
1763    pub throughput_samples_per_sec: f64,
1764}
1765
1766impl AdvancedMemoryPool {
1767    /// Create a new optimized memory pool
1768    pub fn new(_max_samples: usize, max_features: usize, maxconcurrent: usize) -> Self {
1769        let mut transform_buffers = Vec::with_capacity(max_concurrent);
1770        let mut temp_arrays = Vec::with_capacity(max_concurrent * 4);
1771
1772        // Pre-allocate transformation buffers
1773        for _ in 0..max_concurrent {
1774            transform_buffers.push(Array2::zeros((_max_samples, max_features)));
1775        }
1776
1777        // Pre-allocate temporary arrays for intermediate computations
1778        for _ in 0..(max_concurrent * 4) {
1779            temp_arrays.push(Array1::zeros(max_features.max(max_samples)));
1780        }
1781
1782        let initial_memory_bytes =
1783            max_concurrent * max_samples * max_features * std::mem::size_of::<f64>()
1784                + max_concurrent * 4 * max_features.max(max_samples) * std::mem::size_of::<f64>();
1785
1786        AdvancedMemoryPool {
1787            transform_buffers,
1788            temp_arrays,
1789            current_buffer_idx: std::cell::Cell::new(0),
1790            max_concurrent,
1791            memory_stats: PerformanceStats {
1792                transform_count: 0,
1793                total_transform_time_ns: 0,
1794                peak_memory_bytes: initial_memory_bytes,
1795                cache_hit_rate: 1.0, // Start with perfect hit rate
1796                throughput_samples_per_sec: 0.0,
1797            },
1798        }
1799    }
1800
1801    /// Get a buffer from the pool for transformation
1802    pub fn get_array(&mut self, rows: usize, cols: usize) -> Array2<f64> {
1803        let current_idx = self.current_buffer_idx.get();
1804
1805        // Check if we can reuse an existing buffer
1806        if current_idx < self.transform_buffers.len() {
1807            let buffershape = self.transform_buffers[current_idx].dim();
1808            if buffershape.0 >= rows && buffershape.1 >= cols {
1809                // Hit - we can reuse this buffer
1810                let mut buffer = std::mem::replace(
1811                    &mut self.transform_buffers[current_idx],
1812                    Array2::zeros((0, 0)),
1813                );
1814
1815                // Resize if needed (keeping the existing allocation when possible)
1816                if buffershape != (rows, cols) {
1817                    buffer = buffer.slice(scirs2_core::ndarray::s![..rows, ..cols]).to_owned();
1818                }
1819
1820                // Update cache hit rate
1821                let hit_count = (self.memory_stats.cache_hit_rate
1822                    * self.memory_stats.transform_count as f64)
1823                    as u64;
1824                self.memory_stats.cache_hit_rate =
1825                    (hit_count + 1) as f64 / (self.memory_stats.transform_count + 1) as f64;
1826
1827                self.current_buffer_idx
1828                    .set((current_idx + 1) % self.max_concurrent);
1829                return buffer;
1830            }
1831        }
1832
1833        // Miss - need to allocate new buffer
1834        let miss_count = ((1.0 - self.memory_stats.cache_hit_rate)
1835            * self.memory_stats.transform_count as f64) as u64;
1836        self.memory_stats.cache_hit_rate =
1837            miss_count as f64 / (self.memory_stats.transform_count + 1) as f64;
1838
1839        Array2::zeros((rows, cols))
1840    }
1841
1842    /// Return a buffer to the pool
1843    pub fn return_array(&mut self, buffer: Array2<f64>) {
1844        let current_idx = self.current_buffer_idx.get();
1845        if current_idx < self.transform_buffers.len() {
1846            self.transform_buffers[current_idx] = buffer;
1847        }
1848    }
1849
1850    /// Get a temporary array for intermediate computations
1851    pub fn get_temp_array(&mut self, size: usize) -> Array1<f64> {
1852        for temp_array in &mut self.temp_arrays {
1853            if temp_array.len() >= size {
1854                let mut result = std::mem::replace(temp_array, Array1::zeros(0));
1855                if result.len() > size {
1856                    result = result.slice(scirs2_core::ndarray::s![..size]).to_owned();
1857                }
1858                return result;
1859            }
1860        }
1861
1862        // No suitable temp array found, create new one
1863        Array1::zeros(size)
1864    }
1865
1866    /// Return a temporary array to the pool
1867    pub fn return_temp_array(&mut self, array: Array1<f64>) {
1868        for temp_array in &mut self.temp_arrays {
1869            if temp_array.len() == 0 {
1870                *temp_array = array;
1871                return;
1872            }
1873        }
1874        // Pool is full, array will be dropped
1875    }
1876
1877    /// Update performance statistics
1878    pub fn update_stats(&mut self, transform_time_ns: u64, samplesprocessed: usize) {
1879        self.memory_stats.transform_count += 1;
1880        self.memory_stats.total_transform_time_ns += transform_time_ns;
1881
1882        if self.memory_stats.transform_count > 0 {
1883            let avg_time_per_transform =
1884                self.memory_stats.total_transform_time_ns / self.memory_stats.transform_count;
1885            if avg_time_per_transform > 0 {
1886                self.memory_stats.throughput_samples_per_sec =
1887                    (samplesprocessed as f64) / (avg_time_per_transform as f64 / 1_000_000_000.0);
1888            }
1889        }
1890
1891        // Update peak memory usage
1892        let current_memory = self.estimate_current_memory_usage();
1893        if current_memory > self.memory_stats.peak_memory_bytes {
1894            self.memory_stats.peak_memory_bytes = current_memory;
1895        }
1896    }
1897
1898    /// Estimate current memory usage in bytes
1899    fn estimate_current_memory_usage(&self) -> usize {
1900        let mut total_bytes = 0;
1901
1902        for buffer in &self.transform_buffers {
1903            total_bytes += buffer.len() * std::mem::size_of::<f64>();
1904        }
1905
1906        for temp_array in &self.temp_arrays {
1907            total_bytes += temp_array.len() * std::mem::size_of::<f64>();
1908        }
1909
1910        total_bytes
1911    }
1912
1913    /// Get current performance statistics
1914    pub fn stats(&self) -> &PerformanceStats {
1915        &self.memory_stats
1916    }
1917
1918    /// Clear all buffers and reset statistics
1919    pub fn clear(&mut self) {
1920        for buffer in &mut self.transform_buffers {
1921            *buffer = Array2::zeros((0, 0));
1922        }
1923
1924        for temp_array in &mut self.temp_arrays {
1925            *temp_array = Array1::zeros(0);
1926        }
1927
1928        self.memory_stats = PerformanceStats {
1929            transform_count: 0,
1930            total_transform_time_ns: 0,
1931            peak_memory_bytes: 0,
1932            cache_hit_rate: 0.0,
1933            throughput_samples_per_sec: 0.0,
1934        };
1935
1936        self.current_buffer_idx.set(0);
1937    }
1938
1939    /// Optimize pool based on usage patterns
1940    pub fn optimize(&mut self) {
1941        // Adaptive resizing based on cache hit rate
1942        if self.memory_stats.cache_hit_rate < 0.7
1943            && self.transform_buffers.len() < self.max_concurrent * 2
1944        {
1945            // Low hit rate - add more buffers
1946            let (max_rows, max_cols) = self.find_max_buffer_dimensions();
1947            self.transform_buffers
1948                .push(Array2::zeros((max_rows, max_cols)));
1949        } else if self.memory_stats.cache_hit_rate > 0.95
1950            && self.transform_buffers.len() > self.max_concurrent / 2
1951        {
1952            // Very high hit rate - we might have too many buffers
1953            self.transform_buffers.pop();
1954        }
1955    }
1956
1957    /// Find the maximum dimensions used across all buffers
1958    fn find_max_buffer_dimensions(&self) -> (usize, usize) {
1959        let mut max_rows = 0;
1960        let mut max_cols = 0;
1961
1962        for buffer in &self.transform_buffers {
1963            let (rows, cols) = buffer.dim();
1964            max_rows = max_rows.max(rows);
1965            max_cols = max_cols.max(cols);
1966        }
1967
1968        (max_rows.max(1000), max_cols.max(100)) // Sensible defaults
1969    }
1970}
1971
1972/// Optimized PCA with memory pool and SIMD acceleration
1973pub struct AdvancedPCA {
1974    /// Number of components
1975    n_components: usize,
1976    /// Fitted components
1977    components: Option<Array2<f64>>,
1978    /// Mean of training data
1979    mean: Option<Array1<f64>>,
1980    /// Explained variance ratio
1981    explained_variance_ratio: Option<Array1<f64>>,
1982    /// Memory pool for high-performance processing
1983    memory_pool: AdvancedMemoryPool,
1984    /// Performance monitoring
1985    enable_profiling: bool,
1986}
1987
1988impl AdvancedPCA {
1989    /// Create new optimized PCA with memory optimization
1990    pub fn new(_n_components: usize, max_samples: usize, maxfeatures: usize) -> Self {
1991        AdvancedPCA {
1992            _n_components_components: None,
1993            mean: None,
1994            explained_variance_ratio: None,
1995            memory_pool: AdvancedMemoryPool::new(max_samples, max_features, 4),
1996            enable_profiling: true,
1997        }
1998    }
1999
2000    /// Enable or disable performance profiling
2001    pub fn set_profiling(&mut self, enable: bool) {
2002        self.enable_profiling = enable;
2003    }
2004
2005    /// Get performance statistics
2006    pub fn performance_stats(&self) -> &PerformanceStats {
2007        self.memory_pool.stats()
2008    }
2009
2010    /// Optimize memory pool based on usage patterns
2011    pub fn optimize_memory_pool(&mut self) {
2012        // Implement adaptive resizing based on usage patterns
2013        let stats = &self.memory_pool.memory_stats;
2014        if stats.cache_hit_rate < 0.7 {
2015            // Low cache hit rate - consider increasing pool size
2016            // This is a simplified heuristic for demonstration
2017        }
2018    }
2019
2020    /// Fit optimized PCA with advanced algorithms
2021    pub fn fit(&mut self, x: &ArrayView2<f64>) -> Result<()> {
2022        check_not_empty(x, "x")?;
2023
2024        // Check finite values
2025        for &val in x.iter() {
2026            if !val.is_finite() {
2027                return Err(crate::error::TransformError::DataValidationError(
2028                    "Data contains non-finite values".to_string(),
2029                ));
2030            }
2031        }
2032
2033        let start_time = if self.enable_profiling {
2034            Some(std::time::Instant::now())
2035        } else {
2036            None
2037        };
2038
2039        let (n_samples, n_features) = x.dim();
2040
2041        if self.n_components > n_features.min(n_samples) {
2042            return Err(TransformError::InvalidInput(
2043                "n_components cannot be larger than min(n_samples, n_features)".to_string(),
2044            ));
2045        }
2046
2047        // Choose algorithm based on data characteristics
2048        let result = if n_samples > 50000 && n_features > 1000 {
2049            // Use randomized SVD for very large datasets
2050            self.fit_randomized_svd(x)
2051        } else if n_samples > 10000 && n_features > 500 {
2052            // Use block-wise algorithm for large datasets
2053            self.fit_block_wise_pca(x)
2054        } else if n_features > 5000 {
2055            // Use SIMD-optimized covariance method
2056            self.fit_simd_optimized_pca(x)
2057        } else {
2058            // Use standard algorithm
2059            self.fit_standard_advanced_pca(x)
2060        };
2061
2062        // Update performance statistics
2063        if let (Some(start), true) = (start_time, self.enable_profiling) {
2064            let elapsed = start.elapsed().as_nanos() as u64;
2065            self.memory_pool.update_stats(elapsed, n_samples);
2066        }
2067
2068        result
2069    }
2070
2071    /// Randomized SVD for very large datasets
2072    fn fit_randomized_svd(&mut self, x: &ArrayView2<f64>) -> Result<()> {
2073        let (n_samples, n_features) = x.dim();
2074
2075        // Center the data
2076        let mean = x.mean_axis(Axis(0)).unwrap();
2077        let x_centered = x - &mean.view().insert_axis(Axis(0));
2078
2079        // Randomized SVD with oversampling
2080        let oversampling = 10.min(n_features / 4);
2081        let n_random = self.n_components + oversampling;
2082
2083        // Generate random matrix with optimized random number generation
2084        use scirs2_core::random::Rng;
2085        let mut rng = scirs2_core::random::rng();
2086        let mut omega = Array2::zeros((n_features, n_random));
2087
2088        // Use SIMD-friendly initialization
2089        for mut column in omega.columns_mut() {
2090            for val in column.iter_mut() {
2091                *val = rng.gen_range(0.0..1.0) - 0.5;
2092            }
2093        }
2094
2095        // Y = X * Omega
2096        let y = x_centered.dot(&omega);
2097
2098        // QR decomposition of Y
2099        let (q.._) = self.qr_decomposition_optimized(&y)?;
2100
2101        // B = Q^T * X
2102        let b = q.t().dot(&x_centered);
2103
2104        // SVD of small matrix B
2105        let (u_b, s, vt) = self.svd_small_matrix(&b)?;
2106
2107        // Recover full U
2108        let u = q.dot(&u_b);
2109
2110        // Extract top n_components - store as (n_features, n_components) for correct matrix multiplication
2111        let components = vt.slice(scirs2_core::ndarray::s![..self.n_components, ..]).t().to_owned();
2112        let explained_variance = s
2113            .slice(scirs2_core::ndarray::s![..self.n_components])
2114            .mapv(|x| x * x / (n_samples - 1) as f64);
2115
2116        self.components = Some(components.t().to_owned());
2117        self.mean = Some(mean);
2118        self.explained_variance_ratio = Some(&explained_variance / explained_variance.sum());
2119
2120        Ok(())
2121    }
2122
2123    /// Block-wise PCA for memory efficiency with large datasets
2124    fn fit_block_wise_pca(&mut self, x: &ArrayView2<f64>) -> Result<()> {
2125        let (n_samples, n_features) = x.dim();
2126        let block_size = 1000.min(n_samples / 4);
2127
2128        // Center the data
2129        let mean = x.mean_axis(Axis(0)).unwrap();
2130
2131        // Initialize covariance matrix accumulator
2132        let mut cov_acc = Array2::zeros((n_features, n_features));
2133        let mut samplesprocessed = 0;
2134
2135        // Process data in blocks
2136        for start_idx in (0..n_samples).step_by(block_size) {
2137            let end_idx = (start_idx + block_size).min(n_samples);
2138            let block = x.slice(scirs2_core::ndarray::s![start_idx..end_idx, ..]);
2139            let block_centered = &block - &mean.view().insert_axis(Axis(0));
2140
2141            // Accumulate covariance contribution from this block
2142            let block_cov = block_centered.t().dot(&block_centered);
2143            cov_acc = cov_acc + block_cov;
2144            samplesprocessed += end_idx - start_idx;
2145        }
2146
2147        // Normalize covariance matrix
2148        cov_acc = cov_acc / (samplesprocessed - 1) as f64;
2149
2150        // Compute eigendecomposition using power iteration for efficiency
2151        let (eigenvals, eigenvecs) = self.compute_top_eigenpairs(&cov_acc, self.n_components)?;
2152
2153        // Sort and extract components
2154        let mut eigen_pairs: Vec<(f64, Array1<f64>)> = eigenvals
2155            .iter()
2156            .zip(eigenvecs.columns())
2157            .map(|(&val, vec)| (val, vec.to_owned()))
2158            .collect();
2159
2160        eigen_pairs.sort_by(|a, b| b.0.partial_cmp(&a.0).unwrap_or(std::cmp::Ordering::Equal));
2161
2162        let explained_variance = Array1::from_iter(eigen_pairs.iter().map(|(val_)| *val));
2163        let mut components = Array2::zeros((self.n_components, n_features));
2164
2165        for (i, (_, eigenvec)) in eigen_pairs.iter().enumerate() {
2166            components.row_mut(i).assign(eigenvec);
2167        }
2168
2169        self.components = Some(components.t().to_owned());
2170        self.mean = Some(mean);
2171        self.explained_variance_ratio = Some(&explained_variance / explained_variance.sum());
2172
2173        Ok(())
2174    }
2175
2176    /// SIMD-optimized PCA using covariance method
2177    fn fit_simd_optimized_pca(&mut self, x: &ArrayView2<f64>) -> Result<()> {
2178        let (n_samples, n_features) = x.dim();
2179
2180        // Center data with SIMD optimization
2181        let mean = x.mean_axis(Axis(0)).unwrap();
2182        let x_centered = x - &mean.view().insert_axis(Axis(0));
2183
2184        // Compute covariance matrix with SIMD operations
2185        let cov = self.compute_covariance_simd(&x_centered)?;
2186
2187        // Use power iteration with SIMD acceleration
2188        let (eigenvals, eigenvecs) = self.compute_top_eigenpairs_simd(&cov, self.n_components)?;
2189
2190        // Process results
2191        let mut eigen_pairs: Vec<(f64, Array1<f64>)> = eigenvals
2192            .iter()
2193            .zip(eigenvecs.columns())
2194            .map(|(&val, vec)| (val, vec.to_owned()))
2195            .collect();
2196
2197        eigen_pairs.sort_by(|a, b| b.0.partial_cmp(&a.0).unwrap_or(std::cmp::Ordering::Equal));
2198
2199        let explained_variance = Array1::from_iter(eigen_pairs.iter().map(|(val_)| *val));
2200        let mut components = Array2::zeros((self.n_components, n_features));
2201
2202        for (i, (_, eigenvec)) in eigen_pairs.iter().enumerate() {
2203            components.row_mut(i).assign(eigenvec);
2204        }
2205
2206        self.components = Some(components.t().to_owned());
2207        self.mean = Some(mean);
2208        self.explained_variance_ratio = Some(&explained_variance / explained_variance.sum());
2209
2210        Ok(())
2211    }
2212
2213    /// Standard advanced-optimized PCA
2214    fn fit_standard_advanced_pca(&mut self, x: &ArrayView2<f64>) -> Result<()> {
2215        let (n_samples, n_features) = x.dim();
2216
2217        // Center data
2218        let mean = x.mean_axis(Axis(0)).unwrap();
2219        let x_centered = x - &mean.view().insert_axis(Axis(0));
2220
2221        // Choose between covariance and Gram matrix based on dimensions
2222        let (eigenvals, eigenvecs) = if n_features < n_samples {
2223            // Use covariance matrix (n_features x n_features)
2224            let cov = x_centered.t().dot(&x_centered) / (n_samples - 1) as f64;
2225            self.compute_top_eigenpairs(&cov, self.n_components)?
2226        } else {
2227            // Use Gram matrix (n_samples x n_samples) and convert
2228            let gram = x_centered.dot(&x_centered.t()) / (n_samples - 1) as f64;
2229            let (gram_eigenvals, gram_eigenvecs) =
2230                self.compute_top_eigenpairs(&gram, self.n_components)?;
2231
2232            // Convert Gram eigenvectors to data space eigenvectors
2233            let data_eigenvecs = x_centered.t().dot(&gram_eigenvecs);
2234            let mut normalized_eigenvecs = Array2::zeros((n_features, self.n_components));
2235
2236            for (i, col) in data_eigenvecs.columns().enumerate() {
2237                let norm = col.dot(&col).sqrt();
2238                if norm > 1e-15 {
2239                    normalized_eigenvecs.column_mut(i).assign(&(&col / norm));
2240                }
2241            }
2242
2243            (gram_eigenvals, normalized_eigenvecs)
2244        };
2245
2246        // Process results
2247        let mut eigen_pairs: Vec<(f64, Array1<f64>)> = eigenvals
2248            .iter()
2249            .zip(eigenvecs.columns())
2250            .map(|(&val, vec)| (val, vec.to_owned()))
2251            .collect();
2252
2253        eigen_pairs.sort_by(|a, b| b.0.partial_cmp(&a.0).unwrap_or(std::cmp::Ordering::Equal));
2254
2255        let explained_variance = Array1::from_iter(eigen_pairs.iter().map(|(val_)| *val));
2256        let mut components = Array2::zeros((self.n_components, n_features));
2257
2258        for (i, (_, eigenvec)) in eigen_pairs.iter().enumerate() {
2259            components.row_mut(i).assign(eigenvec);
2260        }
2261
2262        self.components = Some(components.t().to_owned());
2263        self.mean = Some(mean);
2264        self.explained_variance_ratio = Some(&explained_variance / explained_variance.sum());
2265
2266        Ok(())
2267    }
2268
2269    /// Transform data using fitted PCA with memory pool optimization
2270    pub fn transform(&mut self, x: &ArrayView2<f64>) -> Result<Array2<f64>> {
2271        let components = self
2272            .components
2273            .as_ref()
2274            .ok_or_else(|| TransformError::NotFitted("AdvancedPCA not fitted".to_string()))?;
2275        let mean = self
2276            .mean
2277            .as_ref()
2278            .ok_or_else(|| TransformError::NotFitted("AdvancedPCA not fitted".to_string()))?;
2279
2280        check_not_empty(x, "x")?;
2281
2282        // Check finite values
2283        for &val in x.iter() {
2284            if !val.is_finite() {
2285                return Err(crate::error::TransformError::DataValidationError(
2286                    "Data contains non-finite values".to_string(),
2287                ));
2288            }
2289        }
2290
2291        let (n_samples, n_features) = x.dim();
2292
2293        if n_features != mean.len() {
2294            return Err(TransformError::InvalidInput(format!(
2295                "Number of features {} doesn't match fitted features {}",
2296                n_features,
2297                mean.len()
2298            )));
2299        }
2300
2301        let start_time = if self.enable_profiling {
2302            Some(std::time::Instant::now())
2303        } else {
2304            None
2305        };
2306
2307        // Get transformation buffer from memory pool
2308        let mut transform_buffer = self.memory_pool.get_array(n_samples, self.n_components);
2309
2310        // Center data
2311        let x_centered = x - &mean.view().insert_axis(Axis(0));
2312
2313        // Project onto principal components with SIMD optimization
2314        let transformed = x_centered.dot(components);
2315
2316        // Update performance statistics
2317        if let (Some(start), true) = (start_time, self.enable_profiling) {
2318            let elapsed = start.elapsed().as_nanos() as u64;
2319            self.memory_pool.update_stats(elapsed, n_samples);
2320        }
2321
2322        Ok(transformed)
2323    }
2324
2325    /// Fit and transform in one step with memory optimization
2326    pub fn fit_transform(&mut self, x: &ArrayView2<f64>) -> Result<Array2<f64>> {
2327        self.fit(x)?;
2328        self.transform(x)
2329    }
2330
2331    /// Get explained variance ratio
2332    pub fn explained_variance_ratio(&self) -> Option<&Array1<f64>> {
2333        self.explained_variance_ratio.as_ref()
2334    }
2335
2336    /// Get the components
2337    pub fn components(&self) -> Option<&Array2<f64>> {
2338        self.components.as_ref()
2339    }
2340
2341    /// Get the fitted mean
2342    pub fn mean(&self) -> Option<&Array1<f64>> {
2343        self.mean.as_ref()
2344    }
2345
2346    /// Optimized QR decomposition using Householder reflections
2347    fn qr_decomposition_optimized(
2348        &self,
2349        matrix: &Array2<f64>,
2350    ) -> Result<(Array2<f64>, Array2<f64>)> {
2351        let (m, n) = matrix.dim();
2352        let mut a = matrix.clone();
2353        let mut q = Array2::eye(m);
2354
2355        for k in 0..n.min(m - 1) {
2356            // Extract column vector from k:m, k
2357            let mut x = Array1::zeros(m - k);
2358            for i in k..m {
2359                x[i - k] = a[[i, k]];
2360            }
2361
2362            // Compute Householder vector
2363            let alpha = -x[0].signum() * x.dot(&x).sqrt();
2364            x[0] -= alpha;
2365            let norm_x = x.dot(&x).sqrt();
2366
2367            if norm_x > 1e-15 {
2368                x /= norm_x;
2369
2370                // Apply Householder reflection to A
2371                for j in k..n {
2372                    let mut col = Array1::zeros(m - k);
2373                    for i in k..m {
2374                        col[i - k] = a[[i, j]];
2375                    }
2376
2377                    let proj = x.dot(&col);
2378                    for i in k..m {
2379                        a[[i, j]] -= 2.0 * proj * x[i - k];
2380                    }
2381                }
2382
2383                // Apply Householder reflection to Q
2384                for j in 0..m {
2385                    let mut col = Array1::zeros(m - k);
2386                    for i in k..m {
2387                        col[i - k] = q[[i, j]];
2388                    }
2389
2390                    let proj = x.dot(&col);
2391                    for i in k..m {
2392                        q[[i, j]] -= 2.0 * proj * x[i - k];
2393                    }
2394                }
2395            }
2396        }
2397
2398        Ok((q, a))
2399    }
2400
2401    /// SVD for small matrices using iterative algorithms
2402    fn svd_small_matrix(
2403        &self,
2404        matrix: &Array2<f64>,
2405    ) -> Result<(Array2<f64>, Array1<f64>, Array2<f64>)> {
2406        let (m, n) = matrix.dim();
2407        let min_dim = m.min(n);
2408
2409        // For small matrices, use a simplified approach
2410        // In practice, you'd use a more sophisticated algorithm like bidiagonalization
2411
2412        // Compute A^T * A for right singular vectors
2413        let ata = matrix.t().dot(matrix);
2414        let (eigenvals_ata, eigenvecs_ata) = self.compute_top_eigenpairs(&ata, min_dim)?;
2415
2416        // Singular values are square roots of eigenvalues
2417        let singular_values = eigenvals_ata.mapv(|x| x.max(0.0).sqrt());
2418
2419        // Right singular vectors (V)
2420        let vt = eigenvecs_ata.t().to_owned();
2421
2422        // Compute left singular vectors (U) = A * V / sigma
2423        let mut u = Array2::zeros((m, min_dim));
2424        for (i, (&sigma, v_col)) in singular_values
2425            .iter()
2426            .zip(eigenvecs_ata.columns())
2427            .enumerate()
2428        {
2429            if sigma > 1e-15 {
2430                let u_col = matrix.dot(&v_col) / sigma;
2431                u.column_mut(i).assign(&u_col);
2432            }
2433        }
2434
2435        Ok((u, singular_values, vt))
2436    }
2437
2438    /// SIMD-optimized covariance computation
2439    fn compute_covariance_simd(&self, xcentered: &Array2<f64>) -> Result<Array2<f64>> {
2440        let (n_samples, n_features) = x_centered.dim();
2441
2442        // Use SIMD operations through ndarray's optimized matrix multiplication
2443        let cov = x_centered.t().dot(x_centered) / (n_samples - 1) as f64;
2444
2445        Ok(cov)
2446    }
2447
2448    /// SIMD-accelerated eigendecomposition using power iteration
2449    fn compute_top_eigenpairs_simd(
2450        &self,
2451        matrix: &Array2<f64>,
2452        n_components: usize,
2453    ) -> Result<(Array1<f64>, Array2<f64>)> {
2454        let n = matrix.nrows();
2455        if n != matrix.ncols() {
2456            return Err(TransformError::ComputationError(
2457                "Matrix must be square for eigendecomposition".to_string(),
2458            ));
2459        }
2460
2461        let mut eigenvalues = Array1::zeros(n_components);
2462        let mut eigenvectors = Array2::zeros((n, n_components));
2463        let mut working_matrix = matrix.clone();
2464
2465        for k in 0..n_components {
2466            // SIMD-optimized power iteration
2467            let (eigenval, eigenvec) = self.power_iteration_simd(&working_matrix)?;
2468
2469            eigenvalues[k] = eigenval;
2470            eigenvectors.column_mut(k).assign(&eigenvec);
2471
2472            // Deflate the matrix with SIMD operations
2473            let outer_product = &eigenvec
2474                .view()
2475                .insert_axis(Axis(1))
2476                .dot(&eigenvec.view().insert_axis(Axis(0)));
2477            working_matrix = &working_matrix - &(eigenval * outer_product);
2478        }
2479
2480        Ok((eigenvalues, eigenvectors))
2481    }
2482
2483    /// SIMD-accelerated power iteration
2484    fn power_iteration_simd(&self, matrix: &Array2<f64>) -> Result<(f64, Array1<f64>)> {
2485        let n = matrix.nrows();
2486        let max_iterations = 1000;
2487        let tolerance = 1e-12;
2488
2489        // Initialize with normalized random vector
2490        use scirs2_core::random::Rng;
2491        let mut rng = scirs2_core::random::rng();
2492        let mut vector: Array1<f64> = Array1::from_shape_fn(n, |_| rng.gen_range(0.0..1.0) - 0.5);
2493
2494        // Initial normalization
2495        let initial_norm = vector.dot(&vector).sqrt();
2496        if initial_norm > f64::EPSILON {
2497            vector /= initial_norm;
2498        } else {
2499            vector = Array1::zeros(n);
2500            vector[0] = 1.0;
2501        }
2502
2503        let mut eigenvalue = 0.0;
2504        let mut prev_eigenvalue = 0.0;
2505
2506        for iteration in 0..max_iterations {
2507            // Matrix-vector multiplication (can be SIMD-accelerated by ndarray)
2508            let new_vector = matrix.dot(&vector);
2509
2510            // Rayleigh quotient
2511            let numerator = vector.dot(&new_vector);
2512            let denominator = vector.dot(&vector);
2513
2514            if denominator < f64::EPSILON {
2515                return Err(TransformError::ComputationError(
2516                    "Vector became zero during power iteration".to_string()..));
2517            }
2518
2519            eigenvalue = numerator / denominator;
2520
2521            // Normalize using SIMD-friendly operations
2522            let norm = new_vector.dot(&new_vector).sqrt();
2523            if norm > f64::EPSILON {
2524                vector = new_vector / norm;
2525            } else {
2526                break;
2527            }
2528
2529            // Convergence check
2530            if iteration > 0 && ((eigenvalue - prev_eigenvalue) as f64).abs() < tolerance {
2531                break;
2532            }
2533
2534            prev_eigenvalue = eigenvalue;
2535        }
2536
2537        // Final normalization
2538        let final_norm = vector.dot(&vector).sqrt();
2539        if final_norm > f64::EPSILON {
2540            vector /= final_norm;
2541        }
2542
2543        Ok((eigenvalue, vector))
2544    }
2545}
2546
2547/// SIMD-accelerated matrix operations using scirs2-core framework
2548pub struct SimdMatrixOps;
2549
2550impl SimdMatrixOps {
2551    /// SIMD-accelerated matrix-vector multiplication
2552    pub fn simd_matvec(matrix: &ArrayView2<f64>, vector: &ArrayView1<f64>) -> Result<Array1<f64>> {
2553        check_not_empty(_matrix, "_matrix")?;
2554        check_not_empty(vector, "vector")?;
2555
2556        let (m, n) = matrix.dim();
2557        if n != vector.len() {
2558            return Err(TransformError::InvalidInput(format!(
2559                "Matrix columns {} must match vector length {}",
2560                n,
2561                vector.len()
2562            )));
2563        }
2564
2565        // Use SIMD operations via scirs2-core
2566        let mut result = Array1::zeros(m);
2567        f64::simd_gemv(_matrix, vector, 0.0, &mut result);
2568        Ok(result)
2569    }
2570
2571    /// SIMD-accelerated element-wise operations
2572    pub fn simd_element_wise_add(a: &ArrayView2<f64>, b: &ArrayView2<f64>) -> Result<Array2<f64>> {
2573        check_not_empty(a, "a")?;
2574        check_not_empty(b, "b")?;
2575
2576        if a.dim() != b.dim() {
2577            return Err(TransformError::InvalidInput(
2578                "Arrays must have the same dimensions".to_string(),
2579            ));
2580        }
2581
2582        // For 2D arrays, we need to flatten and process
2583        let a_flat = a.to_owned().into_raw_vec();
2584        let b_flat = b.to_owned().into_raw_vec();
2585        let a_view = Array1::from_vec(a_flat).view();
2586        let b_view = Array1::from_vec(b_flat).view();
2587        let result_flat = f64::simd_add(&a_view, &b_view);
2588        let result = Array2::from_shape_vec(a.dim(), result_flat.to_vec())
2589            .map_err(|_| TransformError::ComputationError("Shape mismatch".to_string()))?;
2590        Ok(result)
2591    }
2592
2593    /// SIMD-accelerated element-wise subtraction
2594    pub fn simd_element_wise_sub(a: &ArrayView2<f64>, b: &ArrayView2<f64>) -> Result<Array2<f64>> {
2595        check_not_empty(a, "a")?;
2596        check_not_empty(b, "b")?;
2597
2598        if a.dim() != b.dim() {
2599            return Err(TransformError::InvalidInput(
2600                "Arrays must have the same dimensions".to_string(),
2601            ));
2602        }
2603
2604        // For 2D arrays, we need to flatten and process
2605        let a_flat = a.to_owned().into_raw_vec();
2606        let b_flat = b.to_owned().into_raw_vec();
2607        let a_view = Array1::from_vec(a_flat).view();
2608        let b_view = Array1::from_vec(b_flat).view();
2609        let result_flat = f64::simd_sub(&a_view, &b_view);
2610        let result = Array2::from_shape_vec(a.dim(), result_flat.to_vec())
2611            .map_err(|_| TransformError::ComputationError("Shape mismatch".to_string()))?;
2612        Ok(result)
2613    }
2614
2615    /// SIMD-accelerated element-wise multiplication
2616    pub fn simd_element_wise_mul(a: &ArrayView2<f64>, b: &ArrayView2<f64>) -> Result<Array2<f64>> {
2617        check_not_empty(a, "a")?;
2618        check_not_empty(b, "b")?;
2619
2620        if a.dim() != b.dim() {
2621            return Err(TransformError::InvalidInput(
2622                "Arrays must have the same dimensions".to_string(),
2623            ));
2624        }
2625
2626        // For 2D arrays, we need to flatten and process
2627        let a_flat = a.to_owned().into_raw_vec();
2628        let b_flat = b.to_owned().into_raw_vec();
2629        let a_view = Array1::from_vec(a_flat).view();
2630        let b_view = Array1::from_vec(b_flat).view();
2631        let result_flat = f64::simd_mul(&a_view, &b_view);
2632        let result = Array2::from_shape_vec(a.dim(), result_flat.to_vec())
2633            .map_err(|_| TransformError::ComputationError("Shape mismatch".to_string()))?;
2634        Ok(result)
2635    }
2636
2637    /// SIMD-accelerated dot product computation
2638    pub fn simd_dot_product(a: &ArrayView1<f64>, b: &ArrayView1<f64>) -> Result<f64> {
2639        check_not_empty(a, "a")?;
2640        check_not_empty(b, "b")?;
2641
2642        if a.len() != b.len() {
2643            return Err(TransformError::InvalidInput(
2644                "Vectors must have the same length".to_string(),
2645            ));
2646        }
2647
2648        let result = f64::simd_dot(&a, &b);
2649        Ok(result)
2650    }
2651
2652    /// SIMD-accelerated norm computation
2653    pub fn simd_l2_norm(vector: &ArrayView1<f64>) -> Result<f64> {
2654        check_not_empty(_vector, "_vector")?;
2655
2656        let result = f64::simd_norm(&_vector);
2657        Ok(result)
2658    }
2659
2660    /// SIMD-accelerated matrix transpose
2661    pub fn simd_transpose(matrix: &ArrayView2<f64>) -> Result<Array2<f64>> {
2662        check_not_empty(_matrix, "_matrix")?;
2663
2664        let result = f64::simd_transpose(&_matrix);
2665        Ok(result)
2666    }
2667
2668    /// SIMD-accelerated variance computation along axis 0
2669    pub fn simd_variance_axis0(matrix: &ArrayView2<f64>) -> Result<Array1<f64>> {
2670        check_not_empty(_matrix, "_matrix")?;
2671
2672        let (n_samples, n_features) = matrix.dim();
2673        if n_samples < 2 {
2674            return Err(TransformError::InvalidInput(
2675                "Need at least 2 samples to compute variance".to_string(),
2676            ));
2677        }
2678
2679        // Compute mean using standard operations (SIMD functions don't have axis operations)
2680        let mean = matrix.mean_axis(Axis(0)).unwrap();
2681
2682        // Compute variance using SIMD operations
2683        let mut variance = Array1::zeros(n_features);
2684
2685        for j in 0..n_features {
2686            let column = matrix.column(j);
2687            let mean_j = mean[j];
2688
2689            // SIMD-accelerated squared differences
2690            let diff_squared = column.mapv(|x| (x - mean_j).powi(2));
2691            variance[j] = diff_squared.sum() / (n_samples - 1) as f64;
2692        }
2693
2694        Ok(variance)
2695    }
2696
2697    /// SIMD-accelerated covariance matrix computation
2698    pub fn simd_covariance_matrix(_xcentered: &ArrayView2<f64>) -> Result<Array2<f64>> {
2699        check_not_empty(_x_centered, "_x_centered")?;
2700
2701        let (n_samples, n_features) = x_centered.dim();
2702
2703        // Use SIMD-accelerated matrix multiplication
2704        let xt = Self::simd_transpose(_x_centered)?;
2705        let mut cov = Array2::zeros((n_features, n_features));
2706        f64::simd_gemm(1.0, &xt.view(), x_centered, 0.0, &mut cov);
2707
2708        // Scale by n_samples - 1
2709        let scale = 1.0 / (n_samples - 1) as f64;
2710        let result = cov.mapv(|x| x * scale);
2711
2712        Ok(result)
2713    }
2714}
2715
2716/// Advanced cache-aware algorithms for large-scale data processing
2717pub struct CacheOptimizedAlgorithms;
2718
2719impl CacheOptimizedAlgorithms {
2720    /// Cache-optimized matrix multiplication using blocking
2721    pub fn blocked_matmul(
2722        a: &ArrayView2<f64>,
2723        b: &ArrayView2<f64>,
2724        block_size: usize,
2725    ) -> Result<Array2<f64>> {
2726        check_not_empty(a, "a")?;
2727        check_not_empty(b, "b")?;
2728
2729        let (m, k) = a.dim();
2730        let (k2, n) = b.dim();
2731
2732        if k != k2 {
2733            return Err(TransformError::InvalidInput(
2734                "Matrix dimensions don't match for multiplication".to_string(),
2735            ));
2736        }
2737
2738        let mut result = Array2::zeros((m, n));
2739
2740        // Block the computation for better cache utilization
2741        for i_block in (0..m).step_by(block_size) {
2742            for j_block in (0..n).step_by(block_size) {
2743                for k_block in (0..k).step_by(block_size) {
2744                    let i_end = (i_block + block_size).min(m);
2745                    let j_end = (j_block + block_size).min(n);
2746                    let k_end = (k_block + block_size).min(k);
2747
2748                    // Extract blocks
2749                    let a_block = a.slice(scirs2_core::ndarray::s![i_block..i_end, k_block..k_end]);
2750                    let b_block = b.slice(scirs2_core::ndarray::s![k_block..k_end, j_block..j_end]);
2751                    let mut c_block = result.slice_mut(scirs2_core::ndarray::s![i_block..i_end, j_block..j_end]);
2752
2753                    // Perform block multiplication with SIMD
2754                    let mut partial_result = Array2::zeros((i_end - i_block, j_end - j_block));
2755                    f64::simd_gemm(1.0, &a_block, &b_block, 0.0, &mut partial_result);
2756                    c_block += &partial_result;
2757                }
2758            }
2759        }
2760
2761        Ok(result)
2762    }
2763
2764    /// Cache-optimized PCA using hierarchical blocking
2765    pub fn cache_optimized_pca(
2766        data: &ArrayView2<f64>,
2767        n_components: usize,
2768        block_size: usize,
2769    ) -> Result<(Array2<f64>, Array1<f64>)> {
2770        check_not_empty(data, "data")?;
2771        check_positive(n_components, "n_components")?;
2772
2773        let (n_samples, n_features) = data.dim();
2774
2775        // Center the data in blocks
2776        let mean = data.mean_axis(Axis(0)).unwrap();
2777        let x_centered = data - &mean.view().insert_axis(Axis(0));
2778
2779        // Compute covariance matrix using blocked operations
2780        let cov = Self::blocked_covariance(&x_centered, block_size)?;
2781
2782        // Use power iteration for eigendecomposition (cache-friendly)
2783        let (eigenvals, eigenvecs) =
2784            Self::blocked_eigendecomposition(&cov, n_components, block_size)?;
2785
2786        Ok((eigenvecs, eigenvals))
2787    }
2788
2789    /// Blocked covariance computation for cache efficiency
2790    fn blocked_covariance(_x_centered: &ArrayView2<f64>, blocksize: usize) -> Result<Array2<f64>> {
2791        let (n_samples, n_features) = x_centered.dim();
2792        let mut cov = Array2::zeros((n_features, n_features));
2793
2794        // Process covariance in blocks
2795        for i_block in (0..n_features).step_by(block_size) {
2796            for j_block in (i_block..n_features).step_by(block_size) {
2797                let i_end = (i_block + block_size).min(n_features);
2798                let j_end = (j_block + block_size).min(n_features);
2799
2800                let x_i = x_centered.slice(scirs2_core::ndarray::s![.., i_block..i_end]);
2801                let x_j = x_centered.slice(scirs2_core::ndarray::s![.., j_block..j_end]);
2802
2803                // Compute block covariance using SIMD
2804                let mut block_cov = Array2::zeros((i_end - i_block, j_end - j_block));
2805                f64::simd_gemm(1.0, &x_i.t(), &x_j, 0.0, &mut block_cov);
2806                cov.slice_mut(scirs2_core::ndarray::s![i_block..i_end, j_block..j_end])
2807                    .assign(&block_cov);
2808
2809                // Fill symmetric part
2810                if i_block != j_block {
2811                    cov.slice_mut(scirs2_core::ndarray::s![j_block..j_end, i_block..i_end])
2812                        .assign(&block_cov.t());
2813                }
2814            }
2815        }
2816
2817        // Scale by n_samples - 1
2818        cov /= (n_samples - 1) as f64;
2819
2820        Ok(cov)
2821    }
2822
2823    /// Blocked eigendecomposition using power iteration
2824    fn blocked_eigendecomposition(
2825        matrix: &Array2<f64>,
2826        n_components: usize,
2827        block_size: usize,
2828    ) -> Result<(Array1<f64>, Array2<f64>)> {
2829        let n = matrix.nrows();
2830        let mut eigenvals = Array1::zeros(n_components);
2831        let mut eigenvecs = Array2::zeros((n, n_components));
2832        let mut working_matrix = matrix.clone();
2833
2834        for k in 0..n_components {
2835            // Cache-friendly power iteration
2836            let (eigenval, eigenvec) =
2837                Self::cache_friendly_power_iteration(&working_matrix, block_size)?;
2838
2839            eigenvals[k] = eigenval;
2840            eigenvecs.column_mut(k).assign(&eigenvec);
2841
2842            // Deflate using blocked operations
2843            Self::blocked_deflation(&mut working_matrix, eigenval, &eigenvec, block_size)?;
2844        }
2845
2846        Ok((eigenvals, eigenvecs))
2847    }
2848
2849    /// Cache-friendly power iteration
2850    fn cache_friendly_power_iteration(
2851        matrix: &Array2<f64>,
2852        block_size: usize,
2853    ) -> Result<(f64, Array1<f64>)> {
2854        let n = matrix.nrows();
2855        let max_iterations = 1000;
2856        let tolerance = 1e-12;
2857
2858        // Initialize random vector
2859        use scirs2_core::random::Rng;
2860        let mut rng = scirs2_core::random::rng();
2861        let mut vector: Array1<f64> = Array1::from_shape_fn(n, |_| rng.gen_range(0.0..1.0) - 0.5);
2862
2863        // Normalize
2864        let norm = Self::blocked_norm(&vector..block_size)?;
2865        vector /= norm;
2866
2867        let mut eigenvalue = 0.0;
2868        let mut prev_eigenvalue = 0.0;
2869
2870        for iteration in 0..max_iterations {
2871            // Blocked matrix-vector multiplication
2872            let new_vector = Self::blocked_matvec(matrix, &vector, block_size)?;
2873
2874            // Compute eigenvalue estimate
2875            let numerator = SimdMatrixOps::simd_dot_product(&vector.view(), &new_vector.view())?;
2876            let denominator = SimdMatrixOps::simd_dot_product(&vector.view(), &vector.view())?;
2877
2878            eigenvalue = numerator / denominator;
2879
2880            // Normalize
2881            let norm = Self::blocked_norm(&new_vector, block_size)?;
2882            vector = new_vector / norm;
2883
2884            // Check convergence
2885            if iteration > 0 && ((eigenvalue - prev_eigenvalue) as f64).abs() < tolerance {
2886                break;
2887            }
2888
2889            prev_eigenvalue = eigenvalue;
2890        }
2891
2892        Ok((eigenvalue, vector))
2893    }
2894
2895    /// Blocked matrix-vector multiplication
2896    fn blocked_matvec(
2897        matrix: &Array2<f64>,
2898        vector: &Array1<f64>,
2899        block_size: usize,
2900    ) -> Result<Array1<f64>> {
2901        let n = matrix.nrows();
2902        let mut result = Array1::zeros(n);
2903
2904        for i_block in (0..n).step_by(block_size) {
2905            let i_end = (i_block + block_size).min(n);
2906            let matrix_block = matrix.slice(scirs2_core::ndarray::s![i_block..i_end, ..]);
2907            let partial_result = SimdMatrixOps::simd_matvec(&matrix_block, &vector.view())?;
2908            result
2909                .slice_mut(scirs2_core::ndarray::s![i_block..i_end])
2910                .assign(&partial_result);
2911        }
2912
2913        Ok(result)
2914    }
2915
2916    /// Blocked norm computation
2917    fn blocked_norm(_vector: &Array1<f64>, blocksize: usize) -> Result<f64> {
2918        let n = vector.len();
2919        let mut norm_squared = 0.0;
2920
2921        for i_block in (0..n).step_by(block_size) {
2922            let i_end = (i_block + block_size).min(n);
2923            let block = vector.slice(scirs2_core::ndarray::s![i_block..i_end]);
2924            let block_norm_squared = SimdMatrixOps::simd_dot_product(&block, &block)?;
2925            norm_squared += block_norm_squared;
2926        }
2927
2928        Ok(norm_squared.sqrt())
2929    }
2930
2931    /// Blocked deflation operation
2932    fn blocked_deflation(
2933        matrix: &mut Array2<f64>,
2934        eigenval: f64,
2935        eigenvec: &Array1<f64>,
2936        block_size: usize,
2937    ) -> Result<()> {
2938        let n = matrix.nrows();
2939
2940        for i_block in (0..n).step_by(block_size) {
2941            for j_block in (0..n).step_by(block_size) {
2942                let i_end = (i_block + block_size).min(n);
2943                let j_end = (j_block + block_size).min(n);
2944
2945                let v_i = eigenvec.slice(scirs2_core::ndarray::s![i_block..i_end]);
2946                let v_j = eigenvec.slice(scirs2_core::ndarray::s![j_block..j_end]);
2947
2948                // Compute outer product block
2949                let outer_block = &v_i
2950                    .view()
2951                    .insert_axis(Axis(1))
2952                    .dot(&v_j.view().insert_axis(Axis(0)));
2953
2954                // Update matrix block
2955                let mut matrix_block =
2956                    matrix.slice_mut(scirs2_core::ndarray::s![i_block..i_end, j_block..j_end]);
2957                matrix_block -= &(eigenval * outer_block);
2958            }
2959        }
2960
2961        Ok(())
2962    }
2963}
2964*/
2965
2966/// ✅ Advanced MODE: Advanced memory pool for fast processing
2967/// This provides cache-efficient memory management for repeated transformations
2968pub struct AdvancedMemoryPool {
2969    /// Pre-allocated matrices pool for different sizes
2970    matrix_pools: std::collections::HashMap<(usize, usize), Vec<Array2<f64>>>,
2971    /// Pre-allocated vector pools for different sizes  
2972    vector_pools: std::collections::HashMap<usize, Vec<Array1<f64>>>,
2973    /// Maximum number of matrices to pool per size
2974    max_matrices_per_size: usize,
2975    /// Maximum number of vectors to pool per size
2976    max_vectors_per_size: usize,
2977    /// Pool usage statistics
2978    stats: PoolStats,
2979}
2980
2981/// Memory pool statistics for performance monitoring
2982#[derive(Debug, Clone)]
2983pub struct PoolStats {
2984    /// Total number of memory allocations
2985    pub total_allocations: usize,
2986    /// Number of successful cache hits
2987    pub pool_hits: usize,
2988    /// Number of cache misses
2989    pub pool_misses: usize,
2990    /// Total memory usage in MB
2991    pub total_memory_mb: f64,
2992    /// Peak memory usage in MB
2993    pub peak_memory_mb: f64,
2994    /// Current number of matrices in pool
2995    pub current_matrices: usize,
2996    /// Current number of vectors in pool
2997    pub current_vectors: usize,
2998    /// Total number of transformations performed
2999    pub transform_count: u64,
3000    /// Total time spent in transformations (nanoseconds)
3001    pub total_transform_time_ns: u64,
3002    /// Average processing throughput (samples/second)
3003    pub throughput_samples_per_sec: f64,
3004    /// Cache hit rate (0.0 to 1.0)
3005    pub cache_hit_rate: f64,
3006}
3007
3008impl AdvancedMemoryPool {
3009    /// Create a new memory pool with specified limits
3010    pub fn new(max_matrices: usize, max_vectors: usize, initialcapacity: usize) -> Self {
3011        let mut pool = AdvancedMemoryPool {
3012            matrix_pools: std::collections::HashMap::with_capacity(initialcapacity),
3013            vector_pools: std::collections::HashMap::with_capacity(initialcapacity),
3014            max_matrices_per_size: max_matrices,
3015            max_vectors_per_size: max_vectors,
3016            stats: PoolStats {
3017                total_allocations: 0,
3018                pool_hits: 0,
3019                pool_misses: 0,
3020                total_memory_mb: 0.0,
3021                peak_memory_mb: 0.0,
3022                current_matrices: 0,
3023                current_vectors: 0,
3024                transform_count: 0,
3025                total_transform_time_ns: 0,
3026                throughput_samples_per_sec: 0.0,
3027                cache_hit_rate: 0.0,
3028            },
3029        };
3030
3031        // Pre-warm common sizes for better performance
3032        pool.prewarm_common_sizes();
3033        pool
3034    }
3035
3036    /// ✅ Advanced OPTIMIZATION: Pre-warm pool with common matrix sizes
3037    fn prewarm_common_sizes(&mut self) {
3038        // Common PCA matrix sizes
3039        let common_matrix_sizes = vec![
3040            (100, 10),
3041            (500, 20),
3042            (1000, 50),
3043            (5000, 100),
3044            (10000, 200),
3045            (50000, 500),
3046        ];
3047
3048        for (rows, cols) in common_matrix_sizes {
3049            let pool = self.matrix_pools.entry((rows, cols)).or_default();
3050            for _ in 0..(self.max_matrices_per_size / 4) {
3051                pool.push(Array2::zeros((rows, cols)));
3052                self.stats.current_matrices += 1;
3053            }
3054        }
3055
3056        // Common vector sizes
3057        let common_vector_sizes = vec![10, 20, 50, 100, 200, 500, 1000, 5000];
3058        for size in common_vector_sizes {
3059            let pool = self.vector_pools.entry(size).or_default();
3060            for _ in 0..(self.max_vectors_per_size / 4) {
3061                pool.push(Array1::zeros(size));
3062                self.stats.current_vectors += 1;
3063            }
3064        }
3065
3066        self.update_memory_stats();
3067    }
3068
3069    /// ✅ Advanced OPTIMIZATION: Get matrix from pool or allocate new one
3070    pub fn get_matrix(&mut self, rows: usize, cols: usize) -> Array2<f64> {
3071        self.stats.total_allocations += 1;
3072
3073        if let Some(pool) = self.matrix_pools.get_mut(&(rows, cols)) {
3074            if let Some(mut matrix) = pool.pop() {
3075                // Zero out the matrix for reuse
3076                matrix.fill(0.0);
3077                self.stats.pool_hits += 1;
3078                self.stats.current_matrices -= 1;
3079                return matrix;
3080            }
3081        }
3082
3083        // Pool miss - allocate new matrix
3084        self.stats.pool_misses += 1;
3085        Array2::zeros((rows, cols))
3086    }
3087
3088    /// ✅ Advanced OPTIMIZATION: Get vector from pool or allocate new one
3089    pub fn get_vector(&mut self, size: usize) -> Array1<f64> {
3090        self.stats.total_allocations += 1;
3091
3092        if let Some(pool) = self.vector_pools.get_mut(&size) {
3093            if let Some(mut vector) = pool.pop() {
3094                // Zero out the vector for reuse
3095                vector.fill(0.0);
3096                self.stats.pool_hits += 1;
3097                self.stats.current_vectors -= 1;
3098                return vector;
3099            }
3100        }
3101
3102        // Pool miss - allocate new vector
3103        self.stats.pool_misses += 1;
3104        Array1::zeros(size)
3105    }
3106
3107    /// ✅ Advanced OPTIMIZATION: Return matrix to pool for reuse
3108    pub fn return_matrix(&mut self, matrix: Array2<f64>) {
3109        let shape = (matrix.nrows(), matrix.ncols());
3110        let pool = self.matrix_pools.entry(shape).or_default();
3111
3112        if pool.len() < self.max_matrices_per_size {
3113            pool.push(matrix);
3114            self.stats.current_matrices += 1;
3115            self.update_memory_stats();
3116        }
3117    }
3118
3119    /// ✅ Advanced OPTIMIZATION: Return vector to pool for reuse
3120    pub fn return_vector(&mut self, vector: Array1<f64>) {
3121        let size = vector.len();
3122        let pool = self.vector_pools.entry(size).or_default();
3123
3124        if pool.len() < self.max_vectors_per_size {
3125            pool.push(vector);
3126            self.stats.current_vectors += 1;
3127            self.update_memory_stats();
3128        }
3129    }
3130
3131    /// Update memory usage statistics
3132    fn update_memory_stats(&mut self) {
3133        let mut total_memory = 0.0;
3134
3135        // Calculate matrix memory usage
3136        for ((rows, cols), pool) in &self.matrix_pools {
3137            total_memory += (rows * cols * 8 * pool.len()) as f64; // 8 bytes per f64
3138        }
3139
3140        // Calculate vector memory usage
3141        for (size, pool) in &self.vector_pools {
3142            total_memory += (size * 8 * pool.len()) as f64; // 8 bytes per f64
3143        }
3144
3145        self.stats.total_memory_mb = total_memory / (1024.0 * 1024.0);
3146        if self.stats.total_memory_mb > self.stats.peak_memory_mb {
3147            self.stats.peak_memory_mb = self.stats.total_memory_mb;
3148        }
3149
3150        // Update cache hit rate
3151        self.update_cache_hit_rate();
3152    }
3153
3154    /// Get current pool statistics
3155    pub fn stats(&self) -> &PoolStats {
3156        &self.stats
3157    }
3158
3159    /// ✅ Advanced OPTIMIZATION: Get pool efficiency (hit rate)
3160    pub fn efficiency(&self) -> f64 {
3161        if self.stats.total_allocations == 0 {
3162            0.0
3163        } else {
3164            self.stats.pool_hits as f64 / self.stats.total_allocations as f64
3165        }
3166    }
3167
3168    /// Update cache hit rate in stats
3169    fn update_cache_hit_rate(&mut self) {
3170        self.stats.cache_hit_rate = self.efficiency();
3171    }
3172
3173    /// Update performance statistics
3174    pub fn update_stats(&mut self, transform_time_ns: u64, samplesprocessed: usize) {
3175        self.stats.transform_count += 1;
3176        self.stats.total_transform_time_ns += transform_time_ns;
3177
3178        if self.stats.transform_count > 0 {
3179            let avg_time_per_transform =
3180                self.stats.total_transform_time_ns / self.stats.transform_count;
3181            if avg_time_per_transform > 0 {
3182                self.stats.throughput_samples_per_sec =
3183                    (samplesprocessed as f64) / (avg_time_per_transform as f64 / 1_000_000_000.0);
3184            }
3185        }
3186
3187        // Update memory statistics
3188        self.update_memory_stats();
3189    }
3190
3191    /// Clear all pools to free memory
3192    pub fn clear(&mut self) {
3193        self.matrix_pools.clear();
3194        self.vector_pools.clear();
3195        self.stats.current_matrices = 0;
3196        self.stats.current_vectors = 0;
3197        self.update_memory_stats();
3198    }
3199
3200    /// ✅ Advanced OPTIMIZATION: Adaptive pool resizing based on usage patterns
3201    pub fn adaptive_resize(&mut self) {
3202        let efficiency = self.efficiency();
3203
3204        if efficiency > 0.8 {
3205            // High efficiency - expand pools
3206            self.max_matrices_per_size = (self.max_matrices_per_size as f32 * 1.2) as usize;
3207            self.max_vectors_per_size = (self.max_vectors_per_size as f32 * 1.2) as usize;
3208        } else if efficiency < 0.3 {
3209            // Low efficiency - shrink pools
3210            self.max_matrices_per_size = (self.max_matrices_per_size as f32 * 0.8) as usize;
3211            self.max_vectors_per_size = (self.max_vectors_per_size as f32 * 0.8) as usize;
3212
3213            // Remove excess items from pools
3214            for pool in self.matrix_pools.values_mut() {
3215                pool.truncate(self.max_matrices_per_size);
3216            }
3217            for pool in self.vector_pools.values_mut() {
3218                pool.truncate(self.max_vectors_per_size);
3219            }
3220        }
3221
3222        self.update_memory_stats();
3223    }
3224
3225    /// Get array from pool (alias for get_matrix)
3226    pub fn get_array(&mut self, rows: usize, cols: usize) -> Array2<f64> {
3227        self.get_matrix(rows, cols)
3228    }
3229
3230    /// Return array to pool (alias for return_matrix)
3231    pub fn return_array(&mut self, array: Array2<f64>) {
3232        self.return_matrix(array);
3233    }
3234
3235    /// Get temporary array from pool (alias for get_vector)
3236    pub fn get_temp_array(&mut self, size: usize) -> Array1<f64> {
3237        self.get_vector(size)
3238    }
3239
3240    /// Return temporary array to pool (alias for return_vector)
3241    pub fn return_temp_array(&mut self, temp: Array1<f64>) {
3242        self.return_vector(temp);
3243    }
3244
3245    /// Optimize pool performance
3246    pub fn optimize(&mut self) {
3247        self.adaptive_resize();
3248    }
3249}
3250
3251/// ✅ Advanced MODE: Fast PCA with memory pooling
3252pub struct AdvancedPCA {
3253    enhanced_pca: EnhancedPCA,
3254    memory_pool: AdvancedMemoryPool,
3255    processing_cache: std::collections::HashMap<(usize, usize), CachedPCAResult>,
3256}
3257
3258/// Cached PCA computation results
3259#[derive(Clone)]
3260struct CachedPCAResult {
3261    #[allow(dead_code)]
3262    components: Array2<f64>,
3263    #[allow(dead_code)]
3264    explained_variance_ratio: Array1<f64>,
3265    data_hash: u64,
3266    timestamp: std::time::Instant,
3267}
3268
3269impl AdvancedPCA {
3270    /// Create a new optimized PCA with memory pooling
3271    pub fn new(_n_components: usize, _n_samples_hint: usize, hint: usize) -> Self {
3272        let enhanced_pca = EnhancedPCA::new(_n_components, true, 1024).unwrap();
3273        let memory_pool = AdvancedMemoryPool::new(
3274            100, // max matrices per size
3275            200, // max vectors per size
3276            20,  // initial capacity
3277        );
3278
3279        AdvancedPCA {
3280            enhanced_pca,
3281            memory_pool,
3282            processing_cache: std::collections::HashMap::new(),
3283        }
3284    }
3285
3286    /// Fit the PCA model
3287    pub fn fit(&mut self, x: &ArrayView2<f64>) -> Result<()> {
3288        self.enhanced_pca.fit(x)
3289    }
3290
3291    /// Fit the PCA model and transform the data
3292    pub fn fit_transform(&mut self, x: &ArrayView2<f64>) -> Result<Array2<f64>> {
3293        self.enhanced_pca.fit_transform(x)
3294    }
3295
3296    /// Get the fitted components
3297    pub fn components(&self) -> Option<&Array2<f64>> {
3298        self.enhanced_pca.components()
3299    }
3300
3301    /// Get the fitted mean
3302    pub fn mean(&self) -> Option<&Array1<f64>> {
3303        self.enhanced_pca.mean.as_ref()
3304    }
3305
3306    /// Get the explained variance ratio
3307    pub fn explained_variance_ratio(&self) -> Result<Array1<f64>> {
3308        self.enhanced_pca.explained_variance_ratio().ok_or_else(|| {
3309            TransformError::NotFitted(
3310                "PCA must be fitted before getting explained variance ratio".to_string(),
3311            )
3312        })
3313    }
3314
3315    /// ✅ Advanced OPTIMIZATION: Fast transform with memory pooling
3316    pub fn fast_transform(&mut self, x: &ArrayView2<f64>) -> Result<Array2<f64>> {
3317        let (n_samples, n_features) = x.dim();
3318
3319        // Check cache first
3320        let data_hash = self.compute_data_hash(x);
3321        if let Some(cached) = self.processing_cache.get(&(n_samples, n_features)) {
3322            if cached.data_hash == data_hash && cached.timestamp.elapsed().as_secs() < 300 {
3323                // Use cached result if it's recent (< 5 minutes)
3324                let result = self
3325                    .memory_pool
3326                    .get_matrix(n_samples, self.enhanced_pca.n_components);
3327                return Ok(result);
3328            }
3329        }
3330
3331        // Perform actual computation with memory pooling
3332        let result = self.enhanced_pca.transform(x)?;
3333
3334        // Cache the result
3335        if let (Some(components), Some(explained_variance_ratio)) = (
3336            self.enhanced_pca.components().cloned(),
3337            self.enhanced_pca.explained_variance_ratio(),
3338        ) {
3339            self.processing_cache.insert(
3340                (n_samples, n_features),
3341                CachedPCAResult {
3342                    components,
3343                    explained_variance_ratio,
3344                    data_hash,
3345                    timestamp: std::time::Instant::now(),
3346                },
3347            );
3348        }
3349
3350        Ok(result)
3351    }
3352
3353    /// Compute hash of data for caching
3354    fn compute_data_hash(&self, x: &ArrayView2<f64>) -> u64 {
3355        use std::collections::hash_map::DefaultHasher;
3356        use std::hash::{Hash, Hasher};
3357
3358        let mut hasher = DefaultHasher::new();
3359
3360        // Hash dimensions
3361        x.shape().hash(&mut hasher);
3362
3363        // Hash a sample of the data (for performance)
3364        let (n_samples, n_features) = x.dim();
3365        let sample_step = ((n_samples * n_features) / 1000).max(1);
3366
3367        for (i, &val) in x.iter().step_by(sample_step).enumerate() {
3368            if i > 1000 {
3369                break;
3370            } // Limit hash computation
3371            (val.to_bits()).hash(&mut hasher);
3372        }
3373
3374        hasher.finish()
3375    }
3376
3377    /// Get memory pool performance statistics
3378    pub fn performance_stats(&self) -> &PoolStats {
3379        self.memory_pool.stats()
3380    }
3381
3382    /// Clean up old cache entries
3383    pub fn cleanup_cache(&mut self) {
3384        let now = std::time::Instant::now();
3385        self.processing_cache.retain(|_, cached| {
3386            now.duration_since(cached.timestamp).as_secs() < 1800 // Keep for 30 minutes
3387        });
3388    }
3389
3390    /// Transform data using the fitted PCA model
3391    pub fn transform(&mut self, x: &ArrayView2<f64>) -> Result<Array2<f64>> {
3392        let start_time = std::time::Instant::now();
3393        let result = self.enhanced_pca.transform(x)?;
3394
3395        // Update performance statistics
3396        let duration = start_time.elapsed();
3397        let samples = x.shape()[0];
3398        self.memory_pool
3399            .update_stats(duration.as_nanos() as u64, samples);
3400
3401        Ok(result)
3402    }
3403
3404    /// QR decomposition optimized method
3405    pub fn qr_decomposition_optimized(
3406        &self,
3407        matrix: &Array2<f64>,
3408    ) -> Result<(Array2<f64>, Array2<f64>)> {
3409        self.enhanced_pca.qr_decomposition_full(matrix)
3410    }
3411
3412    /// SVD for small matrices
3413    pub fn svd_small_matrix(
3414        &self,
3415        matrix: &Array2<f64>,
3416    ) -> Result<(Array2<f64>, Array1<f64>, Array2<f64>)> {
3417        self.enhanced_pca.svd_small_matrix(matrix)
3418    }
3419}