1use crate::auto_feature_engineering::{
7 DatasetMetaFeatures, TransformationConfig, TransformationType,
8};
9use crate::error::{Result, TransformError};
10use scirs2_core::ndarray::{Array1, Array2};
11use scirs2_core::random::Rng;
12use scirs2_core::ndarray::ArrayStatCompat;
14use scirs2_core::simd_ops::SimdUnifiedOps;
15use scirs2_core::validation::{check_not_empty, check_positive};
16use statrs::statistics::Statistics;
17use std::collections::{HashMap, VecDeque};
18
19#[derive(Debug, Clone)]
21pub struct SpikingNeuron {
22 membrane_potential: f64,
24 threshold: f64,
26 reset_potential: f64,
28 tau_membrane: f64,
30 refractory_period: f64,
32 refractory_counter: f64,
34 spike_history: VecDeque<f64>,
36 synaptic_weights: Array1<f64>,
38 learning_rate: f64,
40 ltp_trace: f64,
42 ltd_trace: f64,
44}
45
46impl SpikingNeuron {
47 pub fn new(_ninputs: usize, threshold: f64) -> Self {
49 let mut rng = scirs2_core::random::rng();
50
51 SpikingNeuron {
52 membrane_potential: 0.0,
53 threshold,
54 reset_potential: 0.0,
55 tau_membrane: 10.0,
56 refractory_period: 2.0,
57 refractory_counter: 0.0,
58 spike_history: VecDeque::with_capacity(100),
59 synaptic_weights: Array1::from_iter((0.._ninputs).map(|_| rng.gen_range(-0.5..0.5))),
60 learning_rate: 0.01,
61 ltp_trace: 0.0,
62 ltd_trace: 0.0,
63 }
64 }
65
66 pub fn update(&mut self, inputs: &Array1<f64>, dt: f64) -> bool {
68 if self.refractory_counter > 0.0 {
70 self.refractory_counter -= dt;
71 return false;
72 }
73
74 let synaptic_input = inputs.dot(&self.synaptic_weights);
76
77 let decay = (-dt / self.tau_membrane).exp();
79 self.membrane_potential = self.membrane_potential * decay + synaptic_input * (1.0 - decay);
80
81 if self.membrane_potential >= self.threshold {
83 self.membrane_potential = self.reset_potential;
85 self.refractory_counter = self.refractory_period;
86
87 if self.spike_history.len() >= 100 {
89 self.spike_history.pop_front();
90 }
91 self.spike_history.push_back(1.0);
92
93 self.ltp_trace += 1.0;
95
96 true
97 } else {
98 if self.spike_history.len() >= 100 {
100 self.spike_history.pop_front();
101 }
102 self.spike_history.push_back(0.0);
103
104 self.ltp_trace *= 0.95;
106 self.ltd_trace *= 0.95;
107
108 false
109 }
110 }
111
112 pub fn apply_stdp(&mut self, pre_spike_times: &[f64], post_spiketime: Option<f64>) {
114 if let Some(post_time) = post_spiketime {
115 for (i, &pre_time) in pre_spike_times.iter().enumerate() {
116 if i < self.synaptic_weights.len() {
117 let delta_t = post_time - pre_time;
118
119 let weight_change = if delta_t > 0.0 {
121 self.learning_rate * (-delta_t / 20.0).exp()
123 } else {
124 -self.learning_rate * (delta_t / 20.0).exp()
126 };
127
128 self.synaptic_weights[i] += weight_change;
129
130 self.synaptic_weights[i] = self.synaptic_weights[i].clamp(-1.0, 1.0);
132 }
133 }
134 }
135 }
136
137 pub fn get_spike_rate(&self) -> f64 {
139 if self.spike_history.is_empty() {
140 0.0
141 } else {
142 self.spike_history.iter().sum::<f64>() / self.spike_history.len() as f64
143 }
144 }
145}
146
147pub struct NeuromorphicAdaptationNetwork {
149 input_neurons: Vec<SpikingNeuron>,
151 hidden_neurons: Vec<SpikingNeuron>,
153 output_neurons: Vec<SpikingNeuron>,
155 connectivity: Array2<f64>,
157 #[allow(dead_code)]
159 homeostatic_scaling: Array1<f64>,
160 time_step: f64,
162 adaptation_rate: f64,
164 transformation_history: VecDeque<(DatasetMetaFeatures, Vec<TransformationConfig>, f64)>,
166}
167
168impl NeuromorphicAdaptationNetwork {
169 pub fn new(input_size: usize, hidden_size: usize, outputsize: usize) -> Self {
171 let mut rng = scirs2_core::random::rng();
172
173 let input_neurons: Vec<SpikingNeuron> = (0..input_size)
175 .map(|_| SpikingNeuron::new(1, 1.0))
176 .collect();
177
178 let hidden_neurons: Vec<SpikingNeuron> = (0..hidden_size)
179 .map(|_| SpikingNeuron::new(input_size, 1.5))
180 .collect();
181
182 let output_neurons: Vec<SpikingNeuron> = (0..outputsize)
183 .map(|_| SpikingNeuron::new(hidden_size, 2.0))
184 .collect();
185
186 let total_neurons = input_size + hidden_size + outputsize;
188 let mut connectivity = Array2::zeros((total_neurons, total_neurons));
189
190 for i in 0..input_size {
192 for j in input_size..(input_size + hidden_size) {
193 connectivity[[i, j]] = rng.gen_range(-0.3..0.3);
194 }
195 }
196
197 for i in input_size..(input_size + hidden_size) {
199 for j in (input_size + hidden_size)..total_neurons {
200 connectivity[[i, j]] = rng.gen_range(-0.3..0.3);
201 }
202 }
203
204 NeuromorphicAdaptationNetwork {
205 input_neurons,
206 hidden_neurons,
207 output_neurons,
208 connectivity,
209 homeostatic_scaling: Array1::ones(total_neurons),
210 time_step: 1.0,
211 adaptation_rate: 0.001,
212 transformation_history: VecDeque::with_capacity(1000),
213 }
214 }
215
216 pub fn process_input(
218 &mut self,
219 metafeatures: &DatasetMetaFeatures,
220 ) -> Result<Vec<TransformationConfig>> {
221 let inputpattern = self.meta_features_to_spikes(metafeatures)?;
223
224 let outputspikes = self.simulate_network_dynamics(&inputpattern)?;
226
227 self.spikes_to_transformations(&outputspikes)
229 }
230
231 fn meta_features_to_spikes(&self, metafeatures: &DatasetMetaFeatures) -> Result<Array1<f64>> {
233 let features = vec![
235 (metafeatures.n_samples as f64).ln().max(0.0) / 10.0,
236 (metafeatures.n_features as f64).ln().max(0.0) / 10.0,
237 metafeatures.sparsity,
238 metafeatures.mean_correlation.abs(),
239 metafeatures.std_correlation.min(1.0),
240 metafeatures.mean_skewness.abs().min(5.0) / 5.0,
241 metafeatures.mean_kurtosis.abs().min(5.0) / 5.0,
242 metafeatures.missing_ratio,
243 metafeatures.variance_ratio.min(1.0),
244 metafeatures.outlier_ratio,
245 ];
246
247 if features.len() != self.input_neurons.len() {
248 return Err(TransformError::InvalidInput(format!(
249 "Feature size mismatch: expected {}, got {}",
250 self.input_neurons.len(),
251 features.len()
252 )));
253 }
254
255 Ok(Array1::from_vec(features))
256 }
257
258 fn simulate_network_dynamics(&mut self, inputpattern: &Array1<f64>) -> Result<Array1<f64>> {
260 let simulation_steps = 100;
261 let mut output_accumulator = Array1::zeros(self.output_neurons.len());
262
263 for _step in 0..simulation_steps {
264 for (i, neuron) in self.input_neurons.iter_mut().enumerate() {
266 let input = Array1::from_elem(1, inputpattern[i]);
267 neuron.update(&input, self.time_step);
268 }
269
270 let input_spikes: Array1<f64> = self
272 .input_neurons
273 .iter()
274 .map(|n| if n.get_spike_rate() > 0.5 { 1.0 } else { 0.0 })
275 .collect();
276
277 for neuron in &mut self.hidden_neurons {
278 neuron.update(&input_spikes, self.time_step);
279 }
280
281 let hidden_spikes: Array1<f64> = self
283 .hidden_neurons
284 .iter()
285 .map(|n| if n.get_spike_rate() > 0.5 { 1.0 } else { 0.0 })
286 .collect();
287
288 for (i, neuron) in self.output_neurons.iter_mut().enumerate() {
289 let spike = neuron.update(&hidden_spikes, self.time_step);
290 if spike {
291 output_accumulator[i] += 1.0;
292 }
293 }
294
295 self.apply_homeostatic_scaling();
297 }
298
299 let max_spikes = simulation_steps as f64;
301 output_accumulator.mapv_inplace(|x| x / max_spikes);
302
303 Ok(output_accumulator)
304 }
305
306 fn spikes_to_transformations(
308 &self,
309 outputspikes: &Array1<f64>,
310 ) -> Result<Vec<TransformationConfig>> {
311 let mut transformations = Vec::new();
312 let threshold = 0.3; let transformation_types = [
315 TransformationType::StandardScaler,
316 TransformationType::MinMaxScaler,
317 TransformationType::RobustScaler,
318 TransformationType::PowerTransformer,
319 TransformationType::PolynomialFeatures,
320 TransformationType::PCA,
321 TransformationType::VarianceThreshold,
322 TransformationType::QuantileTransformer,
323 TransformationType::BinaryEncoder,
324 TransformationType::TargetEncoder,
325 ];
326
327 for (i, &spike_rate) in outputspikes.iter().enumerate() {
328 if spike_rate > threshold && i < transformation_types.len() {
329 let mut parameters = HashMap::new();
330
331 match &transformation_types[i] {
333 TransformationType::PCA => {
334 parameters.insert("n_components".to_string(), spike_rate);
335 }
336 TransformationType::PolynomialFeatures => {
337 let degree = (spike_rate * 4.0 + 1.0).round();
338 parameters.insert("degree".to_string(), degree);
339 }
340 TransformationType::VarianceThreshold => {
341 parameters.insert("threshold".to_string(), spike_rate * 0.1);
342 }
343 _ => {}
344 }
345
346 transformations.push(TransformationConfig {
347 transformation_type: transformation_types[i].clone(),
348 parameters,
349 expected_performance: spike_rate,
350 });
351 }
352 }
353
354 transformations.sort_by(|a, b| {
356 b.expected_performance
357 .partial_cmp(&a.expected_performance)
358 .unwrap_or(std::cmp::Ordering::Equal)
359 });
360
361 Ok(transformations)
362 }
363
364 fn apply_homeostatic_scaling(&mut self) {
366 let target_activity = 0.1; let scaling_rate = 0.001;
368
369 let input_activity = self
371 .input_neurons
372 .iter()
373 .map(|n| n.get_spike_rate())
374 .sum::<f64>()
375 / self.input_neurons.len() as f64;
376
377 let hidden_activity = self
378 .hidden_neurons
379 .iter()
380 .map(|n| n.get_spike_rate())
381 .sum::<f64>()
382 / self.hidden_neurons.len() as f64;
383
384 let output_activity = self
385 .output_neurons
386 .iter()
387 .map(|n| n.get_spike_rate())
388 .sum::<f64>()
389 / self.output_neurons.len() as f64;
390
391 if input_activity > target_activity * 2.0 {
393 for neuron in &mut self.input_neurons {
394 neuron.threshold *= 1.0 + scaling_rate;
395 }
396 } else if input_activity < target_activity * 0.5 {
397 for neuron in &mut self.input_neurons {
398 neuron.threshold *= 1.0 - scaling_rate;
399 }
400 }
401
402 if hidden_activity > target_activity * 2.0 {
403 for neuron in &mut self.hidden_neurons {
404 neuron.threshold *= 1.0 + scaling_rate;
405 }
406 } else if hidden_activity < target_activity * 0.5 {
407 for neuron in &mut self.hidden_neurons {
408 neuron.threshold *= 1.0 - scaling_rate;
409 }
410 }
411
412 if output_activity > target_activity * 2.0 {
413 for neuron in &mut self.output_neurons {
414 neuron.threshold *= 1.0 + scaling_rate;
415 }
416 } else if output_activity < target_activity * 0.5 {
417 for neuron in &mut self.output_neurons {
418 neuron.threshold *= 1.0 - scaling_rate;
419 }
420 }
421 }
422
423 pub fn learn_from_feedback(
425 &mut self,
426 metafeatures: DatasetMetaFeatures,
427 transformations: Vec<TransformationConfig>,
428 performance: f64,
429 ) -> Result<()> {
430 self.transformation_history
432 .push_back((metafeatures, transformations, performance));
433
434 if self.transformation_history.len() > 1000 {
436 self.transformation_history.pop_front();
437 }
438
439 self.apply_reinforcement_learning(performance)?;
441
442 Ok(())
443 }
444
445 fn apply_reinforcement_learning(&mut self, performance: f64) -> Result<()> {
447 let reward = (performance - 0.5) * 2.0; let learning_factor = self.adaptation_rate * reward;
451
452 for i in 0..self.connectivity.nrows() {
454 for j in 0..self.connectivity.ncols() {
455 if self.connectivity[[i, j]] != 0.0 {
456 self.connectivity[[i, j]] +=
457 learning_factor * self.connectivity[[i, j]].signum();
458
459 self.connectivity[[i, j]] = self.connectivity[[i, j]].clamp(-1.0, 1.0);
461 }
462 }
463 }
464
465 Ok(())
466 }
467
468 pub fn adaptive_reconfiguration(&mut self) -> Result<()> {
470 if self.transformation_history.len() < 10 {
471 return Ok(()); }
473
474 let recent_performances: Vec<f64> = self
476 .transformation_history
477 .iter()
478 .rev()
479 .take(10)
480 .map(|(_, _, perf)| *perf)
481 .collect();
482
483 let avg_performance =
484 recent_performances.iter().sum::<f64>() / recent_performances.len() as f64;
485
486 if avg_performance > 0.8 {
488 self.adaptation_rate *= 0.95;
490 for neuron in &mut self.hidden_neurons {
491 neuron.learning_rate *= 0.95;
492 }
493 } else if avg_performance < 0.4 {
494 self.adaptation_rate *= 1.05;
496 for neuron in &mut self.hidden_neurons {
497 neuron.learning_rate *= 1.05;
498 }
499 }
500
501 self.adaptation_rate = self.adaptation_rate.clamp(0.0001, 0.01);
503
504 Ok(())
505 }
506}
507
508pub struct NeuromorphicMemorySystem {
510 episodic_memory: Vec<TransformationEpisode>,
512 semantic_memory: HashMap<String, SemanticConcept>,
514 #[allow(dead_code)]
516 working_memory: VecDeque<TransformationConfig>,
517 consolidation_threshold: f64,
519 forgetting_rate: f64,
521}
522
523#[derive(Debug, Clone)]
525pub struct TransformationEpisode {
526 context: DatasetMetaFeatures,
528 transformation_sequence: Vec<TransformationConfig>,
530 outcome: f64,
532 #[allow(dead_code)]
534 timestamp: u64,
535 memory_strength: f64,
537}
538
539#[derive(Debug, Clone)]
541pub struct SemanticConcept {
542 #[allow(dead_code)]
544 name: String,
545 transformation_types: Vec<TransformationType>,
547 activation: f64,
549 #[allow(dead_code)]
551 associations: HashMap<String, f64>,
552}
553
554impl Default for NeuromorphicMemorySystem {
555 fn default() -> Self {
556 Self::new()
557 }
558}
559
560impl NeuromorphicMemorySystem {
561 pub fn new() -> Self {
563 let mut semantic_memory = HashMap::new();
564
565 semantic_memory.insert(
567 "normalization".to_string(),
568 SemanticConcept {
569 name: "normalization".to_string(),
570 transformation_types: vec![
571 TransformationType::StandardScaler,
572 TransformationType::MinMaxScaler,
573 TransformationType::RobustScaler,
574 ],
575 activation: 1.0,
576 associations: HashMap::new(),
577 },
578 );
579
580 semantic_memory.insert(
581 "dimensionality_reduction".to_string(),
582 SemanticConcept {
583 name: "dimensionality_reduction".to_string(),
584 transformation_types: vec![
585 TransformationType::PCA,
586 TransformationType::VarianceThreshold,
587 ],
588 activation: 1.0,
589 associations: HashMap::new(),
590 },
591 );
592
593 NeuromorphicMemorySystem {
594 episodic_memory: Vec::new(),
595 semantic_memory,
596 working_memory: VecDeque::with_capacity(10),
597 consolidation_threshold: 0.8,
598 forgetting_rate: 0.99,
599 }
600 }
601
602 pub fn store_episode(
604 &mut self,
605 context: DatasetMetaFeatures,
606 transformations: Vec<TransformationConfig>,
607 outcome: f64,
608 ) -> Result<()> {
609 let episode = TransformationEpisode {
610 context,
611 transformation_sequence: transformations,
612 outcome,
613 timestamp: std::time::SystemTime::now()
614 .duration_since(std::time::UNIX_EPOCH)
615 .unwrap()
616 .as_secs(),
617 memory_strength: if outcome > self.consolidation_threshold {
618 1.0
619 } else {
620 0.5
621 },
622 };
623
624 self.episodic_memory.push(episode);
625
626 self.apply_memory_decay();
628
629 self.consolidate_memories()?;
631
632 Ok(())
633 }
634
635 pub fn retrieve_similar_episodes(
637 &self,
638 query_context: &DatasetMetaFeatures,
639 k: usize,
640 ) -> Result<Vec<&TransformationEpisode>> {
641 let mut similarities: Vec<(usize, f64)> = self
642 .episodic_memory
643 .iter()
644 .enumerate()
645 .map(|(i, episode)| {
646 let similarity = self.compute_context_similarity(query_context, &episode.context);
647 (i, similarity * episode.memory_strength)
648 })
649 .collect();
650
651 similarities.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap_or(std::cmp::Ordering::Equal));
653
654 let retrieved_episodes: Vec<&TransformationEpisode> = similarities
655 .into_iter()
656 .take(k)
657 .map(|(i, _)| &self.episodic_memory[i])
658 .collect();
659
660 Ok(retrieved_episodes)
661 }
662
663 fn apply_memory_decay(&mut self) {
665 for episode in &mut self.episodic_memory {
666 episode.memory_strength *= self.forgetting_rate;
667 }
668
669 self.episodic_memory
671 .retain(|episode| episode.memory_strength > 0.1);
672 }
673
674 fn consolidate_memories(&mut self) -> Result<()> {
676 let successful_episodes: Vec<TransformationEpisode> = self
678 .episodic_memory
679 .iter()
680 .filter(|episode| episode.outcome > self.consolidation_threshold)
681 .cloned()
682 .collect();
683
684 for episode in successful_episodes {
686 self.extract_semantic_patterns(&episode)?;
687 }
688
689 Ok(())
690 }
691
692 fn extract_semantic_patterns(&mut self, episode: &TransformationEpisode) -> Result<()> {
694 let sequence_pattern =
696 self.analyze_transformation_sequence(&episode.transformation_sequence);
697
698 let pattern_matches: Vec<(String, f64)> = self
701 .semantic_memory
702 .iter()
703 .map(|(concept_name, concept)| {
704 let pattern_match =
705 self.compute_pattern_match(&sequence_pattern, &concept.transformation_types);
706 (concept_name.clone(), pattern_match)
707 })
708 .collect();
709
710 for (concept_name, pattern_match) in pattern_matches {
712 if pattern_match > 0.5 {
713 if let Some(concept) = self.semantic_memory.get_mut(&concept_name) {
714 concept.activation =
715 (concept.activation + episode.outcome * pattern_match) / 2.0;
716 }
717 }
718 }
719
720 Ok(())
721 }
722
723 fn analyze_transformation_sequence(
725 &self,
726 sequence: &[TransformationConfig],
727 ) -> Vec<TransformationType> {
728 sequence
729 .iter()
730 .map(|config| config.transformation_type.clone())
731 .collect()
732 }
733
734 fn compute_pattern_match(
736 &self,
737 sequence: &[TransformationType],
738 concept_types: &[TransformationType],
739 ) -> f64 {
740 let matches = sequence
741 .iter()
742 .filter(|&t| concept_types.contains(t))
743 .count();
744
745 if sequence.is_empty() {
746 0.0
747 } else {
748 matches as f64 / sequence.len() as f64
749 }
750 }
751
752 fn compute_context_similarity(
754 &self,
755 context1: &DatasetMetaFeatures,
756 context2: &DatasetMetaFeatures,
757 ) -> f64 {
758 let features1 = [
760 context1.sparsity,
761 context1.mean_correlation,
762 context1.mean_skewness,
763 context1.variance_ratio,
764 context1.outlier_ratio,
765 ];
766
767 let features2 = [
768 context2.sparsity,
769 context2.mean_correlation,
770 context2.mean_skewness,
771 context2.variance_ratio,
772 context2.outlier_ratio,
773 ];
774
775 let dot_product: f64 = features1
777 .iter()
778 .zip(features2.iter())
779 .map(|(&a, &b)| a * b)
780 .sum();
781 let norm1: f64 = features1.iter().map(|&x| x * x).sum::<f64>().sqrt();
782 let norm2: f64 = features2.iter().map(|&x| x * x).sum::<f64>().sqrt();
783
784 if norm1 < f64::EPSILON || norm2 < f64::EPSILON {
785 0.0
786 } else {
787 (dot_product / (norm1 * norm2)).clamp(0.0, 1.0)
788 }
789 }
790}
791
792pub struct NeuromorphicTransformationSystem {
794 adaptation_network: NeuromorphicAdaptationNetwork,
796 memory_system: NeuromorphicMemorySystem,
798 system_state: SystemState,
800}
801
802#[derive(Debug, Clone)]
804pub struct SystemState {
805 performance_level: f64,
807 adaptation_rate: f64,
809 memory_utilization: f64,
811 energy_level: f64,
813}
814
815impl Default for NeuromorphicTransformationSystem {
816 fn default() -> Self {
817 Self::new()
818 }
819}
820
821impl NeuromorphicTransformationSystem {
822 pub fn new() -> Self {
824 NeuromorphicTransformationSystem {
825 adaptation_network: NeuromorphicAdaptationNetwork::new(10, 20, 10),
826 memory_system: NeuromorphicMemorySystem::new(),
827 system_state: SystemState {
828 performance_level: 0.5,
829 adaptation_rate: 0.01,
830 memory_utilization: 0.0,
831 energy_level: 1.0,
832 },
833 }
834 }
835
836 pub fn recommend_transformations(
838 &mut self,
839 metafeatures: &DatasetMetaFeatures,
840 ) -> Result<Vec<TransformationConfig>> {
841 let similar_episodes = self
843 .memory_system
844 .retrieve_similar_episodes(metafeatures, 5)?;
845
846 let mut network_recommendations = self.adaptation_network.process_input(metafeatures)?;
848
849 if !similar_episodes.is_empty() {
851 let memory_recommendations = self.extract_memory_recommendations(&similar_episodes);
852 network_recommendations =
853 self.integrate_recommendations(network_recommendations, memory_recommendations)?;
854 }
855
856 self.update_system_state();
858
859 Ok(network_recommendations)
860 }
861
862 pub fn learn_from_performance(
864 &mut self,
865 metafeatures: DatasetMetaFeatures,
866 transformations: Vec<TransformationConfig>,
867 performance: f64,
868 ) -> Result<()> {
869 self.memory_system.store_episode(
871 metafeatures.clone(),
872 transformations.clone(),
873 performance,
874 )?;
875
876 self.adaptation_network
878 .learn_from_feedback(metafeatures, transformations, performance)?;
879
880 if performance < 0.3 {
882 self.adaptation_network.adaptive_reconfiguration()?;
883 }
884
885 self.system_state.performance_level =
887 (self.system_state.performance_level * 0.9) + (performance * 0.1);
888
889 Ok(())
890 }
891
892 fn extract_memory_recommendations(
894 &self,
895 episodes: &[&TransformationEpisode],
896 ) -> Vec<TransformationConfig> {
897 let mut transformation_votes: HashMap<TransformationType, (f64, usize)> = HashMap::new();
898
899 for episode in episodes {
900 let weight = episode.memory_strength * episode.outcome;
901
902 for transformation in &episode.transformation_sequence {
903 let entry = transformation_votes
904 .entry(transformation.transformation_type.clone())
905 .or_insert((0.0, 0));
906 entry.0 += weight;
907 entry.1 += 1;
908 }
909 }
910
911 let mut recommendations: Vec<_> = transformation_votes
913 .into_iter()
914 .map(|(t_type, (total_weight, count))| TransformationConfig {
915 transformation_type: t_type,
916 parameters: HashMap::new(),
917 expected_performance: total_weight / count as f64,
918 })
919 .collect();
920
921 recommendations.sort_by(|a, b| {
922 b.expected_performance
923 .partial_cmp(&a.expected_performance)
924 .unwrap_or(std::cmp::Ordering::Equal)
925 });
926
927 recommendations
928 }
929
930 fn integrate_recommendations(
932 &self,
933 network_recs: Vec<TransformationConfig>,
934 memory_recs: Vec<TransformationConfig>,
935 ) -> Result<Vec<TransformationConfig>> {
936 let mut integrated = HashMap::new();
937 let network_weight = 0.6;
938 let memory_weight = 0.4;
939
940 for rec in network_recs {
942 integrated.insert(
943 rec.transformation_type.clone(),
944 TransformationConfig {
945 transformation_type: rec.transformation_type,
946 parameters: rec.parameters,
947 expected_performance: rec.expected_performance * network_weight,
948 },
949 );
950 }
951
952 for rec in memory_recs {
954 if let Some(existing) = integrated.get_mut(&rec.transformation_type) {
955 existing.expected_performance += rec.expected_performance * memory_weight;
956 } else {
957 integrated.insert(
958 rec.transformation_type.clone(),
959 TransformationConfig {
960 transformation_type: rec.transformation_type,
961 parameters: rec.parameters,
962 expected_performance: rec.expected_performance * memory_weight,
963 },
964 );
965 }
966 }
967
968 let mut result: Vec<_> = integrated.into_values().collect();
969 result.sort_by(|a, b| {
970 b.expected_performance
971 .partial_cmp(&a.expected_performance)
972 .unwrap_or(std::cmp::Ordering::Equal)
973 });
974
975 Ok(result)
976 }
977
978 fn update_system_state(&mut self) {
980 self.system_state.memory_utilization =
982 self.memory_system.episodic_memory.len() as f64 / 1000.0;
983
984 self.system_state.energy_level *= 0.999; if self.system_state.energy_level < 0.5 {
987 self.system_state.energy_level = 1.0; }
989
990 if self.system_state.performance_level > 0.8 {
992 self.system_state.adaptation_rate *= 0.95; } else if self.system_state.performance_level < 0.3 {
994 self.system_state.adaptation_rate *= 1.05; }
996
997 self.system_state.adaptation_rate = self.system_state.adaptation_rate.clamp(0.001, 0.1);
998 }
999
1000 pub const fn get_system_state(&self) -> &SystemState {
1002 &self.system_state
1003 }
1004}
1005
1006pub struct AdvancedNeuromorphicProcessor {
1012 network: NeuromorphicAdaptationNetwork,
1014 spike_buffer: Array2<f64>,
1016 batch_size: usize,
1018 processing_chunks: usize,
1020 performance_metrics: AdvancedNeuromorphicMetrics,
1022 adaptive_thresholds: Array1<f64>,
1024 memory_pool: Vec<Array1<f64>>,
1026}
1027
1028#[derive(Debug, Clone)]
1030pub struct AdvancedNeuromorphicMetrics {
1031 pub throughput: f64,
1033 pub memory_efficiency: f64,
1035 pub network_utilization: f64,
1037 pub adaptation_success_rate: f64,
1039 pub energy_efficiency: f64,
1041 pub real_time_satisfaction: f64,
1043}
1044
1045impl AdvancedNeuromorphicProcessor {
1046 pub fn new(_input_size: usize, hidden_size: usize, outputsize: usize) -> Self {
1048 let network = NeuromorphicAdaptationNetwork::new(_input_size, hidden_size, outputsize);
1049 let batch_size = 64; let processing_chunks = num_cpus::get().min(8); AdvancedNeuromorphicProcessor {
1053 network,
1054 spike_buffer: Array2::zeros((batch_size, _input_size + hidden_size + outputsize)),
1055 batch_size,
1056 processing_chunks,
1057 performance_metrics: AdvancedNeuromorphicMetrics {
1058 throughput: 0.0,
1059 memory_efficiency: 1.0,
1060 network_utilization: 0.0,
1061 adaptation_success_rate: 0.0,
1062 energy_efficiency: 1.0,
1063 real_time_satisfaction: 1.0,
1064 },
1065 adaptive_thresholds: Array1::ones(outputsize),
1066 memory_pool: Vec::with_capacity(32),
1067 }
1068 }
1069
1070 pub fn process_batch(
1072 &mut self,
1073 meta_features_batch: &[DatasetMetaFeatures],
1074 ) -> Result<Vec<Vec<TransformationConfig>>> {
1075 check_not_empty(
1076 &Array1::from_iter(meta_features_batch.iter().map(|_| 1.0)),
1077 "_batch",
1078 )?;
1079
1080 let start_time = std::time::Instant::now();
1081 let mut results = Vec::with_capacity(meta_features_batch.len());
1082
1083 for metafeatures in meta_features_batch {
1085 let configs = self.process_single_advanced(metafeatures)?;
1086 results.push(configs);
1087 }
1088
1089 let processing_time = start_time.elapsed().as_secs_f64();
1093 self.performance_metrics.throughput = meta_features_batch.len() as f64 / processing_time;
1094 self.update_advanced_metrics();
1095
1096 Ok(results)
1097 }
1098
1099 fn process_single_advanced(
1101 &mut self,
1102 metafeatures: &DatasetMetaFeatures,
1103 ) -> Result<Vec<TransformationConfig>> {
1104 let inputpattern = self.advanced_feature_encoding(metafeatures)?;
1106
1107 let outputspikes = self.advanced_network_simulation(&inputpattern)?;
1109
1110 self.adapt_thresholds_realtime(&outputspikes);
1112
1113 self.advanced_transformation_generation(&outputspikes)
1115 }
1116
1117 fn advanced_feature_encoding(&self, metafeatures: &DatasetMetaFeatures) -> Result<Array1<f64>> {
1119 let raw_features = vec![
1121 (metafeatures.n_samples as f64).ln().max(0.0),
1122 (metafeatures.n_features as f64).ln().max(0.0),
1123 metafeatures.sparsity * 10.0,
1124 metafeatures.mean_correlation.abs() * 10.0,
1125 metafeatures.std_correlation * 10.0,
1126 metafeatures.mean_skewness.abs(),
1127 metafeatures.mean_kurtosis.abs(),
1128 metafeatures.missing_ratio * 10.0,
1129 metafeatures.variance_ratio * 10.0,
1130 metafeatures.outlier_ratio * 10.0,
1131 ];
1132
1133 let features = Array1::from_vec(raw_features);
1135 let norm = f64::simd_norm(&features.view());
1136 let normalized = if norm > 1e-8 {
1137 f64::simd_scalar_mul(&features.view(), 1.0 / norm)
1138 } else {
1139 features.clone()
1140 };
1141
1142 Ok(normalized)
1143 }
1144
1145 fn advanced_network_simulation(&mut self, inputpattern: &Array1<f64>) -> Result<Array1<f64>> {
1147 let simulation_steps = 50; let mut output_accumulator = self.get_pooled_array(self.network.output_neurons.len());
1149
1150 for _step in 0..simulation_steps {
1152 let input_spikes =
1154 self.compute_layer_spikes_simd(&self.network.input_neurons, inputpattern)?;
1155 let hidden_spikes =
1156 self.compute_layer_spikes_simd(&self.network.hidden_neurons, &input_spikes)?;
1157 let outputspikes =
1158 self.compute_layer_spikes_simd(&self.network.output_neurons, &hidden_spikes)?;
1159
1160 output_accumulator = f64::simd_add(&output_accumulator.view(), &outputspikes.view());
1162 }
1163
1164 let max_spikes = simulation_steps as f64;
1166 output_accumulator = f64::simd_scalar_mul(&output_accumulator.view(), 1.0 / max_spikes);
1167
1168 Ok(output_accumulator)
1169 }
1170
1171 fn compute_layer_spikes_simd(
1173 &self,
1174 neurons: &[SpikingNeuron],
1175 inputs: &Array1<f64>,
1176 ) -> Result<Array1<f64>> {
1177 let mut spikes = Array1::zeros(neurons.len());
1178
1179 for (i, neuron) in neurons.iter().enumerate() {
1181 let membrane_potential = inputs.dot(&neuron.synaptic_weights);
1183 spikes[i] = if membrane_potential > neuron.threshold {
1184 1.0
1185 } else {
1186 0.0
1187 };
1188 }
1189
1190 Ok(spikes)
1191 }
1192
1193 fn adapt_thresholds_realtime(&mut self, outputspikes: &Array1<f64>) {
1195 let target_activity = 0.3; let adaptation_rate = 0.01;
1198
1199 for i in 0..self.adaptive_thresholds.len().min(outputspikes.len()) {
1200 let activity_error = outputspikes[i] - target_activity;
1201 self.adaptive_thresholds[i] += adaptation_rate * activity_error;
1202 self.adaptive_thresholds[i] = self.adaptive_thresholds[i].clamp(0.1, 2.0);
1203 }
1204
1205 let average_activity = outputspikes.mean_or(0.0);
1207 self.performance_metrics.network_utilization =
1208 (average_activity / target_activity).min(1.0);
1209 }
1210
1211 fn advanced_transformation_generation(
1213 &self,
1214 outputspikes: &Array1<f64>,
1215 ) -> Result<Vec<TransformationConfig>> {
1216 let mut transformations = Vec::with_capacity(outputspikes.len());
1217
1218 let transformation_types = [
1219 TransformationType::StandardScaler,
1220 TransformationType::MinMaxScaler,
1221 TransformationType::RobustScaler,
1222 TransformationType::PowerTransformer,
1223 TransformationType::PolynomialFeatures,
1224 TransformationType::PCA,
1225 TransformationType::VarianceThreshold,
1226 TransformationType::QuantileTransformer,
1227 TransformationType::BinaryEncoder,
1228 TransformationType::TargetEncoder,
1229 ];
1230
1231 for (i, &spike_rate) in outputspikes.iter().enumerate() {
1233 let adjusted_threshold = self.adaptive_thresholds.get(i).copied().unwrap_or(0.3);
1234
1235 if spike_rate > adjusted_threshold && i < transformation_types.len() {
1236 let mut parameters = HashMap::new();
1237
1238 match &transformation_types[i] {
1240 TransformationType::PCA => {
1241 let n_components = (spike_rate * 0.95).max(0.1);
1242 parameters.insert("n_components".to_string(), n_components);
1243 parameters.insert(
1244 "whiten".to_string(),
1245 if spike_rate > 0.7 { 1.0 } else { 0.0 },
1246 );
1247 }
1248 TransformationType::PolynomialFeatures => {
1249 let degree = (spike_rate * 3.0 + 1.0).round().min(4.0);
1250 parameters.insert("degree".to_string(), degree);
1251 parameters.insert(
1252 "include_bias".to_string(),
1253 if spike_rate > 0.6 { 1.0 } else { 0.0 },
1254 );
1255 }
1256 TransformationType::PowerTransformer => {
1257 let lambda = spike_rate * 2.0 - 1.0; parameters.insert("lambda".to_string(), lambda);
1259 parameters.insert("standardize".to_string(), 1.0);
1260 }
1261 TransformationType::VarianceThreshold => {
1262 let threshold = spike_rate * 0.1;
1263 parameters.insert("threshold".to_string(), threshold);
1264 }
1265 _ => {}
1266 }
1267
1268 transformations.push(TransformationConfig {
1269 transformation_type: transformation_types[i].clone(),
1270 parameters,
1271 expected_performance: spike_rate
1272 * self.performance_metrics.adaptation_success_rate,
1273 });
1274 }
1275 }
1276
1277 transformations.sort_by(|a, b| {
1279 b.expected_performance
1280 .partial_cmp(&a.expected_performance)
1281 .unwrap_or(std::cmp::Ordering::Equal)
1282 });
1283
1284 Ok(transformations)
1285 }
1286
1287 fn get_pooled_array(&mut self, size: usize) -> Array1<f64> {
1289 for (i, arr) in self.memory_pool.iter().enumerate() {
1291 if arr.len() == size {
1292 let mut reused = self.memory_pool.swap_remove(i);
1293 reused.fill(0.0);
1294 return reused;
1295 }
1296 }
1297
1298 Array1::zeros(size)
1300 }
1301
1302 #[allow(dead_code)]
1304 fn return_to_pool(&mut self, array: Array1<f64>) {
1305 if self.memory_pool.len() < 32 {
1306 self.memory_pool.push(array);
1308 }
1309 }
1310
1311 fn update_advanced_metrics(&mut self) {
1313 let pool_hit_rate = self.memory_pool.len() as f64 / 32.0;
1315 self.performance_metrics.memory_efficiency = pool_hit_rate;
1316
1317 let computational_intensity =
1319 self.performance_metrics.throughput * self.performance_metrics.network_utilization;
1320 self.performance_metrics.energy_efficiency =
1321 (1.0 / (computational_intensity + 1.0)).max(0.1);
1322
1323 let target_throughput = 1000.0; self.performance_metrics.real_time_satisfaction =
1326 (self.performance_metrics.throughput / target_throughput).min(1.0);
1327
1328 let quality_score = self.performance_metrics.network_utilization
1330 * self.performance_metrics.memory_efficiency;
1331 self.performance_metrics.adaptation_success_rate = quality_score;
1332 }
1333
1334 pub const fn get_advanced_diagnostics(&self) -> &AdvancedNeuromorphicMetrics {
1336 &self.performance_metrics
1337 }
1338
1339 pub fn tune_for_workload(&mut self, expected_load: f64, latencyrequirements: f64) {
1341 if latencyrequirements < 0.01 {
1343 self.batch_size = 1;
1345 self.processing_chunks = num_cpus::get();
1346 } else if expected_load > 1000.0 {
1347 self.batch_size = 128;
1349 self.processing_chunks = (num_cpus::get() / 2).max(1);
1350 } else {
1351 self.batch_size = 64;
1353 self.processing_chunks = num_cpus::get().min(8);
1354 }
1355
1356 let total_neurons = self.network.input_neurons.len()
1358 + self.network.hidden_neurons.len()
1359 + self.network.output_neurons.len();
1360 self.spike_buffer = Array2::zeros((self.batch_size, total_neurons));
1361 }
1362
1363 pub fn learn_from_feedback(
1365 &mut self,
1366 metafeatures: &DatasetMetaFeatures,
1367 applied_configs: &[TransformationConfig],
1368 performance_score: f64,
1369 ) -> Result<()> {
1370 check_positive(performance_score, "performance_score")?;
1371
1372 if performance_score > 0.8 {
1374 self.reinforce_successful_pattern(metafeatures, applied_configs)?;
1375 } else if performance_score < 0.3 {
1376 self.suppress_unsuccessful_pattern(metafeatures, applied_configs)?;
1377 }
1378
1379 let feedback_strength = (performance_score - 0.5).abs() * 2.0; self.network.adaptation_rate *= 1.0 + feedback_strength * 0.1;
1382 self.network.adaptation_rate = self.network.adaptation_rate.clamp(0.001, 0.1);
1383
1384 Ok(())
1385 }
1386
1387 fn reinforce_successful_pattern(
1389 &mut self,
1390 metafeatures: &DatasetMetaFeatures,
1391 #[allow(unused_variables)] _configs: &[TransformationConfig],
1392 ) -> Result<()> {
1393 let inputpattern = self.advanced_feature_encoding(metafeatures)?;
1394
1395 for (i, &activation) in inputpattern.iter().enumerate() {
1397 if i < self.network.input_neurons.len() && activation > 0.5 {
1398 for neuron in &mut self.network.hidden_neurons {
1400 if i < neuron.synaptic_weights.len() {
1401 neuron.synaptic_weights[i] *= 1.02;
1402 neuron.synaptic_weights[i] = neuron.synaptic_weights[i].min(1.0);
1403 }
1404 }
1405 }
1406 }
1407
1408 Ok(())
1409 }
1410
1411 fn suppress_unsuccessful_pattern(
1413 &mut self,
1414 metafeatures: &DatasetMetaFeatures,
1415 #[allow(unused_variables)] _configs: &[TransformationConfig],
1416 ) -> Result<()> {
1417 let inputpattern = self.advanced_feature_encoding(metafeatures)?;
1418
1419 for (i, &activation) in inputpattern.iter().enumerate() {
1421 if i < self.network.input_neurons.len() && activation > 0.5 {
1422 for neuron in &mut self.network.hidden_neurons {
1424 if i < neuron.synaptic_weights.len() {
1425 neuron.synaptic_weights[i] *= 0.98;
1426 neuron.synaptic_weights[i] = neuron.synaptic_weights[i].max(-1.0);
1427 }
1428 }
1429 }
1430 }
1431
1432 Ok(())
1433 }
1434}
1435
1436#[allow(dead_code)]
1437impl Default for AdvancedNeuromorphicMetrics {
1438 fn default() -> Self {
1439 AdvancedNeuromorphicMetrics {
1440 throughput: 0.0,
1441 memory_efficiency: 1.0,
1442 network_utilization: 0.0,
1443 adaptation_success_rate: 0.0,
1444 energy_efficiency: 1.0,
1445 real_time_satisfaction: 1.0,
1446 }
1447 }
1448}