Crate scirs2_transform

Crate scirs2_transform 

Source
Expand description

Data transformation module for SciRS2

This module provides utilities for transforming data in ways that are useful for machine learning and data analysis. The main functionalities include:

  • Data normalization and standardization
  • Feature engineering
  • Dimensionality reduction

Re-exports§

pub use decomposition::DictionaryLearning;
pub use decomposition::NMF;
pub use encoding::BinaryEncoder;
pub use encoding::EncodedOutput;
pub use encoding::FrequencyEncoder;
pub use encoding::OneHotEncoder;
pub use encoding::OrdinalEncoder;
pub use encoding::SparseMatrix;
pub use encoding::TargetEncoder;
pub use encoding::WOEEncoder;
pub use error::Result;
pub use error::TransformError;
pub use features::binarize;
pub use features::discretize_equal_frequency;
pub use features::discretize_equal_width;
pub use features::log_transform;
pub use features::power_transform;
pub use features::PolynomialFeatures;
pub use features::PowerTransformer;
pub use impute::DistanceMetric;
pub use impute::ImputeStrategy;
pub use impute::IterativeImputer;
pub use impute::KNNImputer;
pub use impute::MissingIndicator;
pub use impute::SimpleImputer;
pub use impute::WeightingScheme;
pub use normalize::normalize_array;
pub use normalize::normalize_vector;
pub use normalize::NormalizationMethod;
pub use normalize::Normalizer;
pub use pipeline::make_column_transformer;
pub use pipeline::make_pipeline;
pub use pipeline::ColumnTransformer;
pub use pipeline::Pipeline;
pub use pipeline::RemainderOption;
pub use pipeline::Transformer;
pub use reduction::trustworthiness;
pub use reduction::AffinityMethod;
pub use reduction::Isomap;
pub use reduction::SpectralEmbedding;
pub use reduction::TruncatedSVD;
pub use reduction::LDA;
pub use reduction::LLE;
pub use reduction::PCA;
pub use reduction::TSNE;
pub use reduction::UMAP;
pub use scaling::MaxAbsScaler;
pub use scaling::QuantileTransformer;
pub use selection::MutualInfoSelector;
pub use selection::RecursiveFeatureElimination;
pub use selection::VarianceThreshold;
pub use time_series::FourierFeatures;
pub use time_series::LagFeatures;
pub use time_series::TimeSeriesFeatures;
pub use time_series::WaveletFeatures;
pub use graph::adjacency_to_edge_list;
pub use graph::edge_list_to_adjacency;
pub use graph::ActivationType;
pub use graph::DeepWalk;
pub use graph::GraphAutoencoder;
pub use graph::LaplacianType;
pub use graph::Node2Vec;
pub use image::resize_images;
pub use image::rgb_to_grayscale;
pub use image::BlockNorm;
pub use image::HOGDescriptor;
pub use image::ImageNormMethod;
pub use image::ImageNormalizer;
pub use image::PatchExtractor;
pub use optimization_config::AdaptiveParameterTuner;
pub use optimization_config::AdvancedConfigOptimizer;
pub use optimization_config::AutoTuner;
pub use optimization_config::ConfigurationPredictor;
pub use optimization_config::DataCharacteristics;
pub use optimization_config::OptimizationConfig;
pub use optimization_config::OptimizationReport;
pub use optimization_config::PerformanceMetric;
pub use optimization_config::SystemMonitor;
pub use optimization_config::SystemResources;
pub use optimization_config::TransformationRecommendation;
pub use out_of_core::csv_chunks;
pub use out_of_core::ChunkedArrayReader;
pub use out_of_core::ChunkedArrayWriter;
pub use out_of_core::OutOfCoreConfig;
pub use out_of_core::OutOfCoreNormalizer;
pub use out_of_core::OutOfCoreTransformer;
pub use performance::EnhancedPCA;
pub use performance::EnhancedStandardScaler;
pub use streaming::OutlierMethod;
pub use streaming::StreamingFeatureSelector;
pub use streaming::StreamingMinMaxScaler;
pub use streaming::StreamingOutlierDetector;
pub use streaming::StreamingPCA;
pub use streaming::StreamingQuantileTracker;
pub use streaming::StreamingStandardScaler;
pub use streaming::StreamingTransformer;
pub use streaming::WindowedStreamingTransformer;
pub use text::CountVectorizer;
pub use text::HashingVectorizer;
pub use text::StreamingCountVectorizer;
pub use text::TfidfVectorizer;
pub use utils::ArrayMemoryPool;
pub use utils::DataChunker;
pub use utils::PerfUtils;
pub use utils::ProcessingStrategy;
pub use utils::StatUtils;
pub use utils::TypeConverter;
pub use utils::ValidationUtils;
pub use auto_feature_engineering::AdvancedMetaLearningSystem;
pub use auto_feature_engineering::AutoFeatureEngineer;
pub use auto_feature_engineering::DatasetMetaFeatures;
pub use auto_feature_engineering::EnhancedMetaFeatures;
pub use auto_feature_engineering::MultiObjectiveRecommendation;
pub use auto_feature_engineering::TransformationConfig;
pub use auto_feature_engineering::TransformationType;
pub use quantum_optimization::AdvancedQuantumMetrics;
pub use quantum_optimization::AdvancedQuantumOptimizer;
pub use quantum_optimization::AdvancedQuantumParams;
pub use quantum_optimization::QuantumHyperparameterTuner;
pub use quantum_optimization::QuantumInspiredOptimizer;
pub use quantum_optimization::QuantumParticle;
pub use quantum_optimization::QuantumTransformationOptimizer;
pub use neuromorphic_adaptation::AdvancedNeuromorphicMetrics;
pub use neuromorphic_adaptation::AdvancedNeuromorphicProcessor;
pub use neuromorphic_adaptation::NeuromorphicAdaptationNetwork;
pub use neuromorphic_adaptation::NeuromorphicMemorySystem;
pub use neuromorphic_adaptation::NeuromorphicTransformationSystem;
pub use neuromorphic_adaptation::SpikingNeuron;
pub use neuromorphic_adaptation::SystemState;
pub use neuromorphic_adaptation::TransformationEpisode;

Modules§

auto_feature_engineering
Automated feature engineering with meta-learning Automated feature engineering with meta-learning
decomposition
Matrix decomposition techniques Matrix decomposition techniques
encoding
Categorical data encoding utilities Categorical data encoding utilities
error
Error handling for the transformation module Error types for the data transformation module
features
Feature engineering techniques Feature engineering utilities
graph
Graph embedding transformers Graph embedding transformers for graph-based feature extraction
image
Image processing transformers Image processing transformers for feature extraction
impute
Missing value imputation utilities Missing value imputation utilities
neuromorphic_adaptation
Neuromorphic computing integration for real-time adaptation Neuromorphic computing integration for real-time transformation adaptation
normalize
Basic normalization methods for data Data normalization and standardization utilities
optimization_config
Optimization configuration and auto-tuning system Optimization configuration and auto-tuning system
out_of_core
Out-of-core processing for large datasets Out-of-core processing for large datasets
performance
Performance optimizations and enhanced implementations Performance optimizations and enhanced implementations
pipeline
Pipeline API for chaining transformations Pipeline API for chaining transformations
quantum_optimization
Quantum-inspired optimization for data transformations Quantum-inspired optimization for data transformations
reduction
Dimensionality reduction algorithms Dimensionality reduction techniques
scaling
Advanced scaling and transformation methods Advanced scaling and transformation methods
selection
Feature selection utilities Feature selection utilities
streaming
Streaming transformations for continuous data Streaming transformations for continuous data processing
text
Text processing transformers Text processing transformers for feature extraction
time_series
Time series feature extraction Time series feature extraction
utils
Utility functions and helpers for data transformation Utility functions and helpers for data transformation