1use scirs2_text::error::Result;
17use scirs2_text::text_coordinator::{AdvancedTextConfig, AdvancedTextCoordinator};
18
19#[allow(dead_code)]
20fn main() -> Result<()> {
21 println!("š Advanced Mode Demo - Advanced Text Processing");
22 println!("================================================\n");
23
24 let config = AdvancedTextConfig {
26 enable_gpu_acceleration: true,
27 enable_simd_optimizations: true,
28 enable_neural_ensemble: true,
29 enable_real_time_adaptation: true,
30 enable_advanced_analytics: true,
31 enable_multimodal: true,
32 max_memory_usage_mb: 4096, optimization_level: 3, target_throughput: 2000.0, enable_predictive_processing: true,
36 };
37
38 println!("š Configuration:");
39 println!(" ⢠GPU Acceleration: {}", config.enable_gpu_acceleration);
40 println!(
41 " ⢠SIMD Optimizations: {}",
42 config.enable_simd_optimizations
43 );
44 println!(" ⢠Neural Ensemble: {}", config.enable_neural_ensemble);
45 println!(
46 " ⢠Real-time Adaptation: {}",
47 config.enable_real_time_adaptation
48 );
49 println!(
50 " ⢠Advanced Analytics: {}",
51 config.enable_advanced_analytics
52 );
53 println!(
54 " ⢠Target Throughput: {} docs/sec",
55 config.target_throughput
56 );
57 println!(" ⢠Memory Limit: {} MB\n", config.max_memory_usage_mb);
58
59 println!("š§ Initializing Advanced Text Coordinator...");
61 let coordinator = AdvancedTextCoordinator::new(config)?;
62 println!("ā
Coordinator initialized successfully!\n");
63
64 demo_advancedtext_processing(&coordinator)?;
66
67 demo_semantic_similarity(&coordinator)?;
69
70 demo_batch_classification(&coordinator)?;
72
73 demo_topic_modeling(&coordinator)?;
75
76 demo_performance_reporting(&coordinator)?;
78
79 println!("š Advanced Mode Demo completed successfully!");
80 println!("All advanced features demonstrated with optimal performance.");
81
82 Ok(())
83}
84
85#[allow(dead_code)]
87fn demo_advancedtext_processing(coordinator: &AdvancedTextCoordinator) -> Result<()> {
88 println!("š Demo 1: Advanced-Optimized Text Processing");
89 println!("==========================================");
90
91 let sampletexts = vec![
92 "Artificial intelligence is transforming the way we process and understand text data.".to_string(),
93 "Machine learning algorithms can extract meaningful patterns from large corpora of documents.".to_string(),
94 "Natural language processing combines computational linguistics with statistical analysis.".to_string(),
95 "Deep learning models like transformers have revolutionized text understanding tasks.".to_string(),
96 "The future of AI lies in developing more efficient and accurate language models.".to_string(),
97 ];
98
99 println!(
100 "Processing {} documents with Advanced optimization...",
101 sampletexts.len()
102 );
103
104 let start_time = std::time::Instant::now();
105 let result = coordinator.advanced_processtext(&sampletexts)?;
106 let processing_time = start_time.elapsed();
107
108 println!("\nš Results:");
109 println!(" ⢠Processing Time: {processing_time:?}");
110 println!(
111 " ⢠Throughput: {:.2} docs/sec",
112 result.performance_metrics.throughput
113 );
114 println!(
115 " ⢠Memory Efficiency: {:.1}%",
116 result.performance_metrics.memory_efficiency * 100.0
117 );
118 println!(
119 " ⢠Accuracy Estimate: {:.1}%",
120 result.performance_metrics.accuracy_estimate * 100.0
121 );
122
123 println!("\nš§ Optimizations Applied:");
124 for optimization in &result.optimizations_applied {
125 println!(" ⢠{optimization}");
126 }
127
128 println!("\nā±ļø Timing Breakdown:");
129 println!(
130 " ⢠Preprocessing: {:?}",
131 result.timing_breakdown.preprocessing_time
132 );
133 println!(
134 " ⢠Neural Processing: {:?}",
135 result.timing_breakdown.neural_processing_time
136 );
137 println!(
138 " ⢠Analytics: {:?}",
139 result.timing_breakdown.analytics_time
140 );
141 println!(
142 " ⢠Optimization: {:?}",
143 result.timing_breakdown.optimization_time
144 );
145
146 println!("\nšÆ Confidence Scores:");
147 for (metric, score) in &result.confidence_scores {
148 println!(" ⢠{}: {:.1}%", metric, score * 100.0);
149 }
150
151 println!(
152 "\nš Vector Embeddings Shape: {:?}",
153 result.primary_result.vectors.shape()
154 );
155 println!();
156
157 Ok(())
158}
159
160#[allow(dead_code)]
162fn demo_semantic_similarity(coordinator: &AdvancedTextCoordinator) -> Result<()> {
163 println!("š Demo 2: Advanced Semantic Similarity");
164 println!("=======================================");
165
166 let text_pairs = [
167 ("The cat sat on the mat", "A feline rested on the rug"),
168 (
169 "Machine learning is a subset of artificial intelligence",
170 "AI includes machine learning as one of its components",
171 ),
172 ("The weather is sunny today", "It's raining heavily outside"),
173 ];
174
175 for (i, (text1, text2)) in text_pairs.iter().enumerate() {
176 println!("\nš Text Pair {}:", i + 1);
177 println!(" Text 1: \"{text1}\"");
178 println!(" Text 2: \"{text2}\"");
179
180 let result = coordinator.advanced_semantic_similarity(text1, text2)?;
181
182 println!("\nš Similarity Metrics:");
183 println!(" ⢠Cosine Similarity: {:.3}", result.cosine_similarity);
184 println!(" ⢠Semantic Similarity: {:.3}", result.semantic_similarity);
185 println!(
186 " ⢠Contextual Similarity: {:.3}",
187 result.contextual_similarity
188 );
189 println!(" ⢠Confidence Score: {:.3}", result.confidence_score);
190 println!(" ⢠Processing Time: {:?}", result.processing_time);
191 }
192
193 println!();
194 Ok(())
195}
196
197#[allow(dead_code)]
199fn demo_batch_classification(coordinator: &AdvancedTextCoordinator) -> Result<()> {
200 println!("š·ļø Demo 3: Batch Text Classification");
201 println!("===================================");
202
203 let texts = vec![
204 "This movie was absolutely fantastic! Great acting and storyline.".to_string(),
205 "The service at this restaurant was terrible and the food was cold.".to_string(),
206 "The new software update includes several bug fixes and performance improvements."
207 .to_string(),
208 "Breaking news: Major earthquake hits the coastal region.".to_string(),
209 ];
210
211 let categories = vec![
212 "positive_review".to_string(),
213 "negative_review".to_string(),
214 "technology".to_string(),
215 "news".to_string(),
216 ];
217
218 println!(
219 "Classifying {} texts into {} categories...",
220 texts.len(),
221 categories.len()
222 );
223 println!("\nš Categories: {categories:?}");
224
225 let result = coordinator.advanced_classify_batch(&texts, &categories)?;
226
227 println!("\nš Classification Results:");
228 println!(
229 " ⢠Total Classifications: {}",
230 result.classifications.len()
231 );
232 println!(
233 " ⢠Average Confidence: {:.1}%",
234 result.confidence_estimates.iter().sum::<f64>() / result.confidence_estimates.len() as f64
235 * 100.0
236 );
237 println!(" ⢠Processing Time: {:?}", result.processing_time);
238 println!(
239 " ⢠Throughput: {:.2} docs/sec",
240 result.performance_metrics.throughput
241 );
242
243 for (i, confidence) in result.confidence_estimates.iter().enumerate() {
244 println!(" ⢠Text {}: {:.1}% confidence", i + 1, confidence * 100.0);
245 }
246
247 println!();
248 Ok(())
249}
250
251#[allow(dead_code)]
253fn demo_topic_modeling(coordinator: &AdvancedTextCoordinator) -> Result<()> {
254 println!("š Demo 4: Dynamic Topic Modeling");
255 println!("================================");
256
257 let documents = vec![
258 "Machine learning algorithms are used to build predictive models from data.".to_string(),
259 "Deep neural networks can learn complex patterns in high-dimensional data.".to_string(),
260 "Natural language processing helps computers understand human language.".to_string(),
261 "Computer vision enables machines to interpret and analyze visual information.".to_string(),
262 "Reinforcement learning trains agents to make decisions through trial and error."
263 .to_string(),
264 "Data science combines statistics, programming, and domain expertise.".to_string(),
265 "Artificial intelligence aims to create systems that can perform human-like tasks."
266 .to_string(),
267 ];
268
269 println!(
270 "Analyzing {} documents for topic extraction...",
271 documents.len()
272 );
273
274 let result = coordinator.advanced_topic_modeling(&documents, 3)?; println!("\nš Topic Modeling Results:");
277 println!(" ⢠Processing Time: {:?}", result.processing_time);
278
279 println!("\nš Quality Metrics:");
280 println!(
281 " ⢠Coherence Score: {:.3}",
282 result.quality_metrics.coherence_score
283 );
284 println!(
285 " ⢠Diversity Score: {:.3}",
286 result.quality_metrics.diversity_score
287 );
288 println!(
289 " ⢠Stability Score: {:.3}",
290 result.quality_metrics.stability_score
291 );
292 println!(
293 " ⢠Interpretability Score: {:.3}",
294 result.quality_metrics.interpretability_score
295 );
296
297 println!();
298 Ok(())
299}
300
301#[allow(dead_code)]
303fn demo_performance_reporting(coordinator: &AdvancedTextCoordinator) -> Result<()> {
304 println!("š Demo 5: Performance Reporting");
305 println!("===============================");
306
307 let report = coordinator.get_performance_report()?;
308
309 println!("\nš§ Current Performance Metrics:");
310 println!(
311 " ⢠Processing Time: {:?}",
312 report.current_metrics.processing_time
313 );
314 println!(
315 " ⢠Throughput: {:.2} docs/sec",
316 report.current_metrics.throughput
317 );
318 println!(
319 " ⢠Memory Efficiency: {:.1}%",
320 report.current_metrics.memory_efficiency * 100.0
321 );
322 println!(
323 " ⢠Accuracy Estimate: {:.1}%",
324 report.current_metrics.accuracy_estimate * 100.0
325 );
326
327 println!("\nš„ļø System Utilization:");
328 println!(" ⢠CPU: {:.1}%", report.system_utilization.cpu_utilization);
329 println!(
330 " ⢠Memory: {:.1}%",
331 report.system_utilization.memory_utilization
332 );
333 println!(" ⢠GPU: {:.1}%", report.system_utilization.gpu_utilization);
334 println!(
335 " ⢠Cache Hit Rate: {:.1}%",
336 report.system_utilization.cache_hit_rate * 100.0
337 );
338
339 println!("\nš” Optimization Recommendations:");
340 for recommendation in &report.optimization_recommendations {
341 println!(
342 " ⢠[{}] {} (Impact: {:.0}%)",
343 recommendation.category,
344 recommendation.recommendation,
345 recommendation.impact_estimate * 100.0
346 );
347 }
348
349 println!("\nā ļø Performance Bottlenecks:");
350 for bottleneck in &report.bottleneck_analysis {
351 println!(
352 " ⢠{} ({:.0}% impact): {}",
353 bottleneck.component,
354 bottleneck.impact * 100.0,
355 bottleneck.description
356 );
357 println!(" Suggestion: {}", bottleneck.suggested_fix);
358 }
359
360 println!();
361 Ok(())
362}