text_mode_demo/
text_mode_demo.rs

1//! # Advanced Mode Demonstration
2//!
3//! This example demonstrates the advanced capabilities of the Advanced Text Processing
4//! Coordinator, showcasing the integration of multiple AI/ML techniques for enhanced
5//! text processing performance.
6//!
7//! ## Features Demonstrated
8//!
9//! - Advanced-optimized text processing with neural ensembles
10//! - Advanced semantic similarity with SIMD optimizations  
11//! - Batch text classification with confidence estimation
12//! - Dynamic topic modeling with quality metrics
13//! - Comprehensive performance reporting
14//! - Real-time adaptation and optimization
15
16use scirs2_text::error::Result;
17use scirs2_text::text_coordinator::{AdvancedTextConfig, AdvancedTextCoordinator};
18
19#[allow(dead_code)]
20fn main() -> Result<()> {
21    println!("šŸš€ Advanced Mode Demo - Advanced Text Processing");
22    println!("================================================\n");
23
24    // Configure Advanced mode with all advanced features enabled
25    let config = AdvancedTextConfig {
26        enable_gpu_acceleration: true,
27        enable_simd_optimizations: true,
28        enable_neural_ensemble: true,
29        enable_real_time_adaptation: true,
30        enable_advanced_analytics: true,
31        enable_multimodal: true,
32        max_memory_usage_mb: 4096, // 4GB for this demo
33        optimization_level: 3,     // Maximum optimization
34        target_throughput: 2000.0, // 2000 docs/sec target
35        enable_predictive_processing: true,
36    };
37
38    println!("šŸ“‹ Configuration:");
39    println!("  • GPU Acceleration: {}", config.enable_gpu_acceleration);
40    println!(
41        "  • SIMD Optimizations: {}",
42        config.enable_simd_optimizations
43    );
44    println!("  • Neural Ensemble: {}", config.enable_neural_ensemble);
45    println!(
46        "  • Real-time Adaptation: {}",
47        config.enable_real_time_adaptation
48    );
49    println!(
50        "  • Advanced Analytics: {}",
51        config.enable_advanced_analytics
52    );
53    println!(
54        "  • Target Throughput: {} docs/sec",
55        config.target_throughput
56    );
57    println!("  • Memory Limit: {} MB\n", config.max_memory_usage_mb);
58
59    // Initialize the Advanced coordinator
60    println!("šŸ”§ Initializing Advanced Text Coordinator...");
61    let coordinator = AdvancedTextCoordinator::new(config)?;
62    println!("āœ… Coordinator initialized successfully!\n");
63
64    // Demo 1: Advanced-optimized text processing
65    demo_advancedtext_processing(&coordinator)?;
66
67    // Demo 2: Advanced semantic similarity
68    demo_semantic_similarity(&coordinator)?;
69
70    // Demo 3: Batch classification
71    demo_batch_classification(&coordinator)?;
72
73    // Demo 4: Dynamic topic modeling
74    demo_topic_modeling(&coordinator)?;
75
76    // Demo 5: Performance reporting
77    demo_performance_reporting(&coordinator)?;
78
79    println!("šŸŽ‰ Advanced Mode Demo completed successfully!");
80    println!("All advanced features demonstrated with optimal performance.");
81
82    Ok(())
83}
84
85/// Demonstrates advanced-optimized text processing with full feature coordination
86#[allow(dead_code)]
87fn demo_advancedtext_processing(coordinator: &AdvancedTextCoordinator) -> Result<()> {
88    println!("šŸ“Š Demo 1: Advanced-Optimized Text Processing");
89    println!("==========================================");
90
91    let sampletexts = vec![
92        "Artificial intelligence is transforming the way we process and understand text data.".to_string(),
93        "Machine learning algorithms can extract meaningful patterns from large corpora of documents.".to_string(),
94        "Natural language processing combines computational linguistics with statistical analysis.".to_string(),
95        "Deep learning models like transformers have revolutionized text understanding tasks.".to_string(),
96        "The future of AI lies in developing more efficient and accurate language models.".to_string(),
97    ];
98
99    println!(
100        "Processing {} documents with Advanced optimization...",
101        sampletexts.len()
102    );
103
104    let start_time = std::time::Instant::now();
105    let result = coordinator.advanced_processtext(&sampletexts)?;
106    let processing_time = start_time.elapsed();
107
108    println!("\nšŸ“ˆ Results:");
109    println!("  • Processing Time: {processing_time:?}");
110    println!(
111        "  • Throughput: {:.2} docs/sec",
112        result.performance_metrics.throughput
113    );
114    println!(
115        "  • Memory Efficiency: {:.1}%",
116        result.performance_metrics.memory_efficiency * 100.0
117    );
118    println!(
119        "  • Accuracy Estimate: {:.1}%",
120        result.performance_metrics.accuracy_estimate * 100.0
121    );
122
123    println!("\nšŸ”§ Optimizations Applied:");
124    for optimization in &result.optimizations_applied {
125        println!("  • {optimization}");
126    }
127
128    println!("\nā±ļø  Timing Breakdown:");
129    println!(
130        "  • Preprocessing: {:?}",
131        result.timing_breakdown.preprocessing_time
132    );
133    println!(
134        "  • Neural Processing: {:?}",
135        result.timing_breakdown.neural_processing_time
136    );
137    println!(
138        "  • Analytics: {:?}",
139        result.timing_breakdown.analytics_time
140    );
141    println!(
142        "  • Optimization: {:?}",
143        result.timing_breakdown.optimization_time
144    );
145
146    println!("\nšŸŽÆ Confidence Scores:");
147    for (metric, score) in &result.confidence_scores {
148        println!("  • {}: {:.1}%", metric, score * 100.0);
149    }
150
151    println!(
152        "\nšŸ“ Vector Embeddings Shape: {:?}",
153        result.primary_result.vectors.shape()
154    );
155    println!();
156
157    Ok(())
158}
159
160/// Demonstrates advanced semantic similarity with multiple metrics
161#[allow(dead_code)]
162fn demo_semantic_similarity(coordinator: &AdvancedTextCoordinator) -> Result<()> {
163    println!("šŸ” Demo 2: Advanced Semantic Similarity");
164    println!("=======================================");
165
166    let text_pairs = [
167        ("The cat sat on the mat", "A feline rested on the rug"),
168        (
169            "Machine learning is a subset of artificial intelligence",
170            "AI includes machine learning as one of its components",
171        ),
172        ("The weather is sunny today", "It's raining heavily outside"),
173    ];
174
175    for (i, (text1, text2)) in text_pairs.iter().enumerate() {
176        println!("\nšŸ“ Text Pair {}:", i + 1);
177        println!("  Text 1: \"{text1}\"");
178        println!("  Text 2: \"{text2}\"");
179
180        let result = coordinator.advanced_semantic_similarity(text1, text2)?;
181
182        println!("\nšŸ“Š Similarity Metrics:");
183        println!("  • Cosine Similarity: {:.3}", result.cosine_similarity);
184        println!("  • Semantic Similarity: {:.3}", result.semantic_similarity);
185        println!(
186            "  • Contextual Similarity: {:.3}",
187            result.contextual_similarity
188        );
189        println!("  • Confidence Score: {:.3}", result.confidence_score);
190        println!("  • Processing Time: {:?}", result.processing_time);
191    }
192
193    println!();
194    Ok(())
195}
196
197/// Demonstrates batch text classification with confidence estimation
198#[allow(dead_code)]
199fn demo_batch_classification(coordinator: &AdvancedTextCoordinator) -> Result<()> {
200    println!("šŸ·ļø  Demo 3: Batch Text Classification");
201    println!("===================================");
202
203    let texts = vec![
204        "This movie was absolutely fantastic! Great acting and storyline.".to_string(),
205        "The service at this restaurant was terrible and the food was cold.".to_string(),
206        "The new software update includes several bug fixes and performance improvements."
207            .to_string(),
208        "Breaking news: Major earthquake hits the coastal region.".to_string(),
209    ];
210
211    let categories = vec![
212        "positive_review".to_string(),
213        "negative_review".to_string(),
214        "technology".to_string(),
215        "news".to_string(),
216    ];
217
218    println!(
219        "Classifying {} texts into {} categories...",
220        texts.len(),
221        categories.len()
222    );
223    println!("\nšŸ“Š Categories: {categories:?}");
224
225    let result = coordinator.advanced_classify_batch(&texts, &categories)?;
226
227    println!("\nšŸ“ˆ Classification Results:");
228    println!(
229        "  • Total Classifications: {}",
230        result.classifications.len()
231    );
232    println!(
233        "  • Average Confidence: {:.1}%",
234        result.confidence_estimates.iter().sum::<f64>() / result.confidence_estimates.len() as f64
235            * 100.0
236    );
237    println!("  • Processing Time: {:?}", result.processing_time);
238    println!(
239        "  • Throughput: {:.2} docs/sec",
240        result.performance_metrics.throughput
241    );
242
243    for (i, confidence) in result.confidence_estimates.iter().enumerate() {
244        println!("  • Text {}: {:.1}% confidence", i + 1, confidence * 100.0);
245    }
246
247    println!();
248    Ok(())
249}
250
251/// Demonstrates dynamic topic modeling with quality metrics
252#[allow(dead_code)]
253fn demo_topic_modeling(coordinator: &AdvancedTextCoordinator) -> Result<()> {
254    println!("šŸ“š Demo 4: Dynamic Topic Modeling");
255    println!("================================");
256
257    let documents = vec![
258        "Machine learning algorithms are used to build predictive models from data.".to_string(),
259        "Deep neural networks can learn complex patterns in high-dimensional data.".to_string(),
260        "Natural language processing helps computers understand human language.".to_string(),
261        "Computer vision enables machines to interpret and analyze visual information.".to_string(),
262        "Reinforcement learning trains agents to make decisions through trial and error."
263            .to_string(),
264        "Data science combines statistics, programming, and domain expertise.".to_string(),
265        "Artificial intelligence aims to create systems that can perform human-like tasks."
266            .to_string(),
267    ];
268
269    println!(
270        "Analyzing {} documents for topic extraction...",
271        documents.len()
272    );
273
274    let result = coordinator.advanced_topic_modeling(&documents, 3)?; // Extract 3 topics
275
276    println!("\nšŸ“Š Topic Modeling Results:");
277    println!("  • Processing Time: {:?}", result.processing_time);
278
279    println!("\nšŸ“ˆ Quality Metrics:");
280    println!(
281        "  • Coherence Score: {:.3}",
282        result.quality_metrics.coherence_score
283    );
284    println!(
285        "  • Diversity Score: {:.3}",
286        result.quality_metrics.diversity_score
287    );
288    println!(
289        "  • Stability Score: {:.3}",
290        result.quality_metrics.stability_score
291    );
292    println!(
293        "  • Interpretability Score: {:.3}",
294        result.quality_metrics.interpretability_score
295    );
296
297    println!();
298    Ok(())
299}
300
301/// Demonstrates comprehensive performance reporting
302#[allow(dead_code)]
303fn demo_performance_reporting(coordinator: &AdvancedTextCoordinator) -> Result<()> {
304    println!("šŸ“Š Demo 5: Performance Reporting");
305    println!("===============================");
306
307    let report = coordinator.get_performance_report()?;
308
309    println!("\nšŸ”§ Current Performance Metrics:");
310    println!(
311        "  • Processing Time: {:?}",
312        report.current_metrics.processing_time
313    );
314    println!(
315        "  • Throughput: {:.2} docs/sec",
316        report.current_metrics.throughput
317    );
318    println!(
319        "  • Memory Efficiency: {:.1}%",
320        report.current_metrics.memory_efficiency * 100.0
321    );
322    println!(
323        "  • Accuracy Estimate: {:.1}%",
324        report.current_metrics.accuracy_estimate * 100.0
325    );
326
327    println!("\nšŸ–„ļø  System Utilization:");
328    println!("  • CPU: {:.1}%", report.system_utilization.cpu_utilization);
329    println!(
330        "  • Memory: {:.1}%",
331        report.system_utilization.memory_utilization
332    );
333    println!("  • GPU: {:.1}%", report.system_utilization.gpu_utilization);
334    println!(
335        "  • Cache Hit Rate: {:.1}%",
336        report.system_utilization.cache_hit_rate * 100.0
337    );
338
339    println!("\nšŸ’” Optimization Recommendations:");
340    for recommendation in &report.optimization_recommendations {
341        println!(
342            "  • [{}] {} (Impact: {:.0}%)",
343            recommendation.category,
344            recommendation.recommendation,
345            recommendation.impact_estimate * 100.0
346        );
347    }
348
349    println!("\nāš ļø  Performance Bottlenecks:");
350    for bottleneck in &report.bottleneck_analysis {
351        println!(
352            "  • {} ({:.0}% impact): {}",
353            bottleneck.component,
354            bottleneck.impact * 100.0,
355            bottleneck.description
356        );
357        println!("    Suggestion: {}", bottleneck.suggested_fix);
358    }
359
360    println!();
361    Ok(())
362}