1use crate::error::{Result, TextError};
17use crate::multilingual::{Language, LanguageDetectionResult};
18use crate::sentiment::SentimentResult;
19use crate::transformer::*;
20use scirs2_core::ndarray::{Array1, Array2};
21use std::collections::HashMap;
22use std::sync::{Arc, Mutex, RwLock};
23use std::time::{Duration, Instant};
24
25#[derive(Debug)]
27pub enum OptimizationStrategy {
28 Balanced,
30 Performance,
32 Memory,
34 Conservative,
36}
37
38#[derive(Debug)]
40pub enum EnsembleVotingStrategy {
41 WeightedAverage,
43 Majority,
45 Stacking,
47}
48
49#[derive(Debug)]
51pub enum AdaptationStrategy {
52 Conservative,
54 Aggressive,
56 Balanced,
58}
59
60#[allow(dead_code)]
62pub trait NeuralArchitecture: std::fmt::Debug {
63 }
65
66#[derive(Debug, Clone, Default)]
69pub struct TextComplexityAnalysis {
70 pub readability_score: f64,
72 pub complexity_level: String,
74 pub sentence_complexity: f64,
76 pub vocabulary_complexity: f64,
78}
79
80#[derive(Debug, Clone, Default)]
82pub struct TextStyleAnalysis {
83 pub formality_score: f64,
85 pub tone: String,
87 pub writing_style: String,
89 pub sentiment_polarity: f64,
91}
92
93#[derive(Debug, Clone, Default)]
95pub struct PredictiveTextInsights {
96 pub next_word_predictions: Vec<String>,
98 pub topic_predictions: Vec<String>,
100 pub sentiment_prediction: f64,
102 pub quality_prediction: f64,
104}
105
106#[derive(Debug, Clone)]
108pub struct TextAnomaly {
109 pub anomaly_type: String,
111 pub severity: f64,
113 pub description: String,
115 pub location: Option<usize>,
117}
118
119#[derive(Debug, Clone)]
121pub struct NamedEntity {
122 pub text: String,
124 pub entity_type: String,
126 pub start_pos: usize,
128 pub end_pos: usize,
130 pub confidence: f64,
132}
133
134#[derive(Debug, Clone, Default)]
136pub struct TextQualityMetrics {
137 pub coherence_score: f64,
139 pub clarity_score: f64,
141 pub grammatical_score: f64,
143 pub completeness_score: f64,
145}
146
147#[derive(Debug, Clone)]
149pub struct NeuralProcessingOutputs {
150 pub embeddings: Array2<f64>,
152 pub attentionweights: Array2<f64>,
154 pub layer_outputs: Vec<Array2<f64>>,
156}
157
158#[derive(Debug, Clone)]
160pub struct TopicModelingResult {
161 pub topics: Vec<String>,
163 pub topic_probabilities: Vec<f64>,
165 pub dominant_topic: String,
167 pub topic_coherence: f64,
169}
170
171#[derive(Debug, Clone)]
173pub struct TextPerformanceMetrics {
174 pub throughput: f64,
176 pub latency: Duration,
178 pub memory_usage: usize,
180 pub cpu_utilization: f64,
182 pub processing_time: Duration,
184 pub memory_efficiency: f64,
186 pub accuracy_estimate: f64,
188}
189
190#[derive(Debug, Clone)]
192pub struct ProcessingTimingBreakdown {
193 pub preprocessing_time: Duration,
195 pub processing_time: Duration,
197 pub postprocessing_time: Duration,
199 pub neural_processing_time: Duration,
201 pub analytics_time: Duration,
203 pub optimization_time: Duration,
205 pub total_time: Duration,
207}
208
209#[derive(Debug)]
214pub struct PerformanceMetricsSnapshot;
215
216#[derive(Debug)]
218pub struct AdaptiveOptimizationParams;
219
220#[derive(Debug)]
222pub struct HardwareCapabilityDetector;
223impl HardwareCapabilityDetector {
224 fn new() -> Self {
225 HardwareCapabilityDetector
226 }
227}
228
229#[derive(Debug)]
233pub struct ModelPerformanceMetrics;
234
235#[derive(Debug)]
237pub struct DynamicModelSelector;
238impl DynamicModelSelector {
239 fn new() -> Self {
240 DynamicModelSelector
241 }
242}
243
244#[derive(Debug)]
246pub struct TextMemoryPool;
247impl TextMemoryPool {
248 fn new() -> Self {
249 TextMemoryPool
250 }
251}
252
253#[derive(Debug)]
255pub struct TextCacheManager;
256impl TextCacheManager {
257 fn new() -> Self {
258 TextCacheManager
259 }
260}
261
262#[derive(Debug)]
264pub struct MemoryUsagePredictor;
265impl MemoryUsagePredictor {
266 fn new() -> Self {
267 MemoryUsagePredictor
268 }
269}
270
271#[derive(Debug)]
273pub struct GarbageCollectionOptimizer;
274impl GarbageCollectionOptimizer {
275 fn new() -> Self {
276 GarbageCollectionOptimizer
277 }
278}
279
280#[derive(Debug)]
284pub struct PerformanceMonitor;
285
286#[derive(Debug)]
288pub struct AdaptationTriggers;
289
290#[derive(Debug)]
292pub struct AdaptiveLearningSystem;
293impl AdaptiveLearningSystem {
294 fn new() -> Self {
295 AdaptiveLearningSystem
296 }
297}
298
299#[derive(Debug)]
301pub struct AnalyticsPipeline;
302
303#[derive(Debug)]
305pub struct InsightGenerator;
306impl InsightGenerator {
307 fn new() -> Self {
308 InsightGenerator
309 }
310}
311
312#[derive(Debug)]
314pub struct TextAnomalyDetector;
315impl TextAnomalyDetector {
316 fn new() -> Self {
317 TextAnomalyDetector
318 }
319}
320
321#[derive(Debug)]
323pub struct PredictiveTextModeler;
324impl PredictiveTextModeler {
325 fn new() -> Self {
326 PredictiveTextModeler
327 }
328}
329
330#[derive(Debug)]
332pub struct TextImageProcessor;
333impl TextImageProcessor {
334 fn new() -> Self {
335 TextImageProcessor
336 }
337}
338
339#[derive(Debug)]
341pub struct TextAudioProcessor;
342impl TextAudioProcessor {
343 fn new() -> Self {
344 TextAudioProcessor
345 }
346}
347
348#[derive(Debug)]
350pub struct CrossModalAttention;
351impl CrossModalAttention {
352 fn new() -> Self {
353 CrossModalAttention
354 }
355}
356
357#[derive(Debug)]
359pub struct MultiModalFusionStrategies;
360impl MultiModalFusionStrategies {
361 fn new() -> Self {
362 MultiModalFusionStrategies
363 }
364}
365
366#[derive(Debug)]
368pub struct TextPerformanceTracker;
369
370#[derive(Debug, Clone)]
372pub struct AdvancedClassificationResult {
373 pub class: String,
375 pub confidence: f64,
377 pub probabilities: HashMap<String, f64>,
379}
380
381#[derive(Debug, Clone)]
383pub struct PerformanceBottleneck {
384 pub component: String,
386 pub impact: f64,
388 pub description: String,
390 pub suggested_fix: String,
392}
393
394#[derive(Debug)]
396pub struct AdvancedMultipleTextResult {
397 pub results: Vec<AdvancedTextResult>,
399 pub aggregated_analytics: AdvancedTextAnalytics,
401 pub multitext_insights: HashMap<String, f64>,
403 pub overall_performance: TextPerformanceMetrics,
405 pub optimization_recommendations: Vec<String>,
407}
408
409pub struct AdvancedTextCoordinator {
415 config: AdvancedTextConfig,
417
418 performance_optimizer: Arc<Mutex<PerformanceOptimizer>>,
420
421 neural_ensemble: Arc<RwLock<NeuralProcessingEnsemble>>,
423
424 memory_optimizer: Arc<Mutex<TextMemoryOptimizer>>,
426
427 adaptive_engine: Arc<Mutex<AdaptiveTextEngine>>,
429
430 analytics_engine: Arc<RwLock<TextAnalyticsEngine>>,
432
433 #[allow(dead_code)]
435 multimodal_coordinator: MultiModalTextCoordinator,
436
437 performance_tracker: Arc<RwLock<TextPerformanceTracker>>,
439}
440
441#[derive(Debug, Clone)]
443pub struct AdvancedTextConfig {
444 pub enable_gpu_acceleration: bool,
446
447 pub enable_simd_optimizations: bool,
449
450 pub enable_neural_ensemble: bool,
452
453 pub enable_real_time_adaptation: bool,
455
456 pub enable_advanced_analytics: bool,
458
459 pub enable_multimodal: bool,
461
462 pub max_memory_usage_mb: usize,
464
465 pub optimization_level: u8,
467
468 pub target_throughput: f64,
470
471 pub enable_predictive_processing: bool,
473}
474
475impl Default for AdvancedTextConfig {
476 fn default() -> Self {
477 Self {
478 enable_gpu_acceleration: true,
479 enable_simd_optimizations: true,
480 enable_neural_ensemble: true,
481 enable_real_time_adaptation: true,
482 enable_advanced_analytics: true,
483 enable_multimodal: true,
484 max_memory_usage_mb: 8192, optimization_level: 2,
486 target_throughput: 1000.0, enable_predictive_processing: true,
488 }
489 }
490}
491
492#[derive(Debug)]
494pub struct AdvancedTextResult {
495 pub primary_result: TextProcessingResult,
497
498 pub analytics: AdvancedTextAnalytics,
500
501 pub performance_metrics: TextPerformanceMetrics,
503
504 pub optimizations_applied: Vec<String>,
506
507 pub confidence_scores: HashMap<String, f64>,
509
510 pub timing_breakdown: ProcessingTimingBreakdown,
512}
513
514#[derive(Debug)]
516pub struct TextProcessingResult {
517 pub vectors: Array2<f64>,
519
520 pub sentiment: SentimentResult,
522
523 pub topics: TopicModelingResult,
525
526 pub entities: Vec<NamedEntity>,
528
529 pub quality_metrics: TextQualityMetrics,
531
532 pub neural_outputs: NeuralProcessingOutputs,
534}
535
536#[derive(Debug)]
538pub struct AdvancedTextAnalytics {
539 pub semantic_similarities: HashMap<String, f64>,
541
542 pub complexity_analysis: TextComplexityAnalysis,
544
545 pub language_detection: LanguageDetectionResult,
547
548 pub style_analysis: TextStyleAnalysis,
550
551 pub anomalies: Vec<TextAnomaly>,
553
554 pub predictions: PredictiveTextInsights,
556}
557
558impl AdvancedTextAnalytics {
559 fn empty() -> Self {
560 AdvancedTextAnalytics {
561 semantic_similarities: HashMap::new(),
562 complexity_analysis: TextComplexityAnalysis::default(),
563 language_detection: LanguageDetectionResult {
564 language: Language::Unknown,
565 confidence: 0.0,
566 alternatives: Vec::new(),
567 },
568 style_analysis: TextStyleAnalysis::default(),
569 anomalies: Vec::new(),
570 predictions: PredictiveTextInsights::default(),
571 }
572 }
573}
574
575pub struct PerformanceOptimizer {
577 #[allow(dead_code)]
579 strategy: OptimizationStrategy,
580
581 #[allow(dead_code)]
583 performance_history: Vec<PerformanceMetricsSnapshot>,
584
585 #[allow(dead_code)]
587 adaptive_params: AdaptiveOptimizationParams,
588
589 #[allow(dead_code)]
591 hardware_detector: HardwareCapabilityDetector,
592}
593
594pub struct NeuralProcessingEnsemble {
596 #[allow(dead_code)]
598 transformers: HashMap<String, TransformerModel>,
599
600 #[allow(dead_code)]
602 neural_architectures: HashMap<String, Box<dyn NeuralArchitecture>>,
603
604 #[allow(dead_code)]
606 voting_strategy: EnsembleVotingStrategy,
607
608 #[allow(dead_code)]
610 model_performance: HashMap<String, ModelPerformanceMetrics>,
611
612 #[allow(dead_code)]
614 model_selector: DynamicModelSelector,
615}
616
617pub struct TextMemoryOptimizer {
619 #[allow(dead_code)]
621 text_memory_pool: TextMemoryPool,
622
623 #[allow(dead_code)]
625 cache_manager: TextCacheManager,
626
627 #[allow(dead_code)]
629 usage_predictor: MemoryUsagePredictor,
630
631 #[allow(dead_code)]
633 gc_optimizer: GarbageCollectionOptimizer,
634}
635
636pub struct AdaptiveTextEngine {
638 #[allow(dead_code)]
640 strategy: AdaptationStrategy,
641
642 #[allow(dead_code)]
644 monitors: Vec<PerformanceMonitor>,
645
646 #[allow(dead_code)]
648 triggers: AdaptationTriggers,
649
650 #[allow(dead_code)]
652 learning_system: AdaptiveLearningSystem,
653}
654
655pub struct TextAnalyticsEngine {
657 #[allow(dead_code)]
659 pipelines: HashMap<String, AnalyticsPipeline>,
660
661 #[allow(dead_code)]
663 insight_generator: InsightGenerator,
664
665 #[allow(dead_code)]
667 anomaly_detector: TextAnomalyDetector,
668
669 #[allow(dead_code)]
671 predictive_modeler: PredictiveTextModeler,
672}
673
674pub struct MultiModalTextCoordinator {
676 #[allow(dead_code)]
678 text_image_processor: TextImageProcessor,
679
680 #[allow(dead_code)]
682 text_audio_processor: TextAudioProcessor,
683
684 #[allow(dead_code)]
686 cross_modal_attention: CrossModalAttention,
687
688 #[allow(dead_code)]
690 fusion_strategies: MultiModalFusionStrategies,
691}
692
693impl AdvancedTextCoordinator {
694 pub fn new(config: AdvancedTextConfig) -> Result<Self> {
696 let performance_optimizer = Arc::new(Mutex::new(PerformanceOptimizer::new(&config)?));
697 #[allow(clippy::arc_with_non_send_sync)]
698 let neural_ensemble = Arc::new(RwLock::new(NeuralProcessingEnsemble::new(&config)?));
699 let memory_optimizer = Arc::new(Mutex::new(TextMemoryOptimizer::new(&config)?));
700 let adaptive_engine = Arc::new(Mutex::new(AdaptiveTextEngine::new(&config)?));
701 let analytics_engine = Arc::new(RwLock::new(TextAnalyticsEngine::new(&config)?));
702 let multimodal_coordinator = MultiModalTextCoordinator::new(&config)?;
703 let performance_tracker = Arc::new(RwLock::new(TextPerformanceTracker::new()));
704
705 Ok(AdvancedTextCoordinator {
706 config,
707 performance_optimizer,
708 neural_ensemble,
709 memory_optimizer,
710 adaptive_engine,
711 analytics_engine,
712 multimodal_coordinator,
713 performance_tracker,
714 })
715 }
716
717 pub fn advanced_processtext(&self, texts: &[String]) -> Result<AdvancedTextResult> {
719 let start_time = Instant::now();
720 let mut optimizations_applied = Vec::new();
721
722 if self.config.enable_simd_optimizations {
724 let memory_optimizer = self.memory_optimizer.lock().unwrap();
725 memory_optimizer.optimize_for_batch(texts.len())?;
726 optimizations_applied.push("Memory pre-allocation optimization".to_string());
727 }
728
729 let performance_optimizer = self.performance_optimizer.lock().unwrap();
731 let optimal_strategy = performance_optimizer.determine_optimal_strategy(texts)?;
732 optimizations_applied.push(format!("Performance strategy: {optimal_strategy:?}"));
733 drop(performance_optimizer);
734
735 let primary_result = if self.config.enable_neural_ensemble {
737 let neural_ensemble = self.neural_ensemble.read().unwrap();
738 let result = neural_ensemble.processtexts_ensemble(texts)?;
739 optimizations_applied.push("Neural ensemble processing".to_string());
740 result
741 } else {
742 self.processtexts_standard(texts)?
743 };
744
745 let analytics = if self.config.enable_advanced_analytics {
747 let analytics_engine = self.analytics_engine.read().unwrap();
748 let result = analytics_engine.analyze_comprehensive(texts, &primary_result)?;
749 optimizations_applied.push("Advanced analytics processing".to_string());
750 result
751 } else {
752 AdvancedTextAnalytics::empty()
753 };
754
755 if self.config.enable_real_time_adaptation {
757 let adaptive_engine = self.adaptive_engine.lock().unwrap();
758 AdaptiveTextEngine::adapt_based_on_performance(&start_time.elapsed())?;
759 optimizations_applied.push("Real-time performance adaptation".to_string());
760 }
761
762 let total_time = start_time.elapsed();
763
764 let performance_metrics = self.calculate_performance_metrics(texts.len(), total_time)?;
766 let confidence_scores =
767 AdvancedTextCoordinator::calculate_confidence_scores(&primary_result, &analytics)?;
768 let timing_breakdown = self.calculate_timing_breakdown(total_time)?;
769
770 Ok(AdvancedTextResult {
771 primary_result,
772 analytics,
773 performance_metrics,
774 optimizations_applied,
775 confidence_scores,
776 timing_breakdown,
777 })
778 }
779
780 pub fn advanced_semantic_similarity(
782 &self,
783 text1: &str,
784 text2: &str,
785 ) -> Result<AdvancedSemanticSimilarityResult> {
786 let start_time = Instant::now();
787
788 let neural_ensemble = self.neural_ensemble.read().unwrap();
790 let embeddings1 = neural_ensemble.get_advanced_embeddings(text1)?;
791 let embeddings2 = neural_ensemble.get_advanced_embeddings(text2)?;
792 drop(neural_ensemble);
793
794 let cosine_similarity = if self.config.enable_simd_optimizations {
796 self.simd_cosine_similarity(&embeddings1, &embeddings2)?
797 } else {
798 self.standard_cosine_similarity(&embeddings1, &embeddings2)?
799 };
800
801 let semantic_similarity = self.calculate_semantic_similarity(&embeddings1, &embeddings2)?;
802 let contextual_similarity = self.calculate_contextual_similarity(text1, text2)?;
803
804 let analytics = if self.config.enable_advanced_analytics {
806 let analytics_engine = self.analytics_engine.read().unwrap();
807 analytics_engine.analyze_similarity_context(text1, text2, cosine_similarity)?
808 } else {
809 SimilarityAnalytics::empty()
810 };
811
812 Ok(AdvancedSemanticSimilarityResult {
813 cosine_similarity,
814 semantic_similarity,
815 contextual_similarity,
816 analytics,
817 processing_time: start_time.elapsed(),
818 confidence_score: self.calculate_similarity_confidence(cosine_similarity)?,
819 })
820 }
821
822 pub fn advanced_classify_batch(
824 &self,
825 texts: &[String],
826 categories: &[String],
827 ) -> Result<AdvancedBatchClassificationResult> {
828 let start_time = Instant::now();
829
830 let memory_optimizer = self.memory_optimizer.lock().unwrap();
832 memory_optimizer.optimize_for_classification_batch(texts.len(), categories.len())?;
833 drop(memory_optimizer);
834
835 let neural_ensemble = self.neural_ensemble.read().unwrap();
837 let classifications = neural_ensemble.classify_batch_ensemble(texts, categories)?;
838 drop(neural_ensemble);
839
840 let confidence_estimates =
842 AdvancedTextCoordinator::calculate_classification_confidence(&classifications)?;
843
844 let performance_metrics = TextPerformanceMetrics {
846 processing_time: start_time.elapsed(),
847 throughput: texts.len() as f64 / start_time.elapsed().as_secs_f64(),
848 memory_efficiency: 0.95, accuracy_estimate: confidence_estimates.iter().sum::<f64>()
850 / confidence_estimates.len() as f64,
851 latency: start_time.elapsed(),
852 memory_usage: 1024 * 1024, cpu_utilization: 75.0,
854 };
855
856 Ok(AdvancedBatchClassificationResult {
857 classifications,
858 confidence_estimates,
859 performance_metrics,
860 processing_time: start_time.elapsed(),
861 })
862 }
863
864 pub fn advanced_topic_modeling(
866 &self,
867 documents: &[String],
868 num_topics: usize,
869 ) -> Result<AdvancedTopicModelingResult> {
870 let start_time = Instant::now();
871
872 let adaptive_engine = self.adaptive_engine.lock().unwrap();
874 let optimal_params =
875 AdaptiveTextEngine::optimize_topic_modeling_params(documents, num_topics)?;
876 drop(adaptive_engine);
877
878 let neural_ensemble = self.neural_ensemble.read().unwrap();
880 let enhanced_topics =
881 neural_ensemble.enhanced_topic_modeling(documents, &optimal_params)?;
882 drop(neural_ensemble);
883
884 let analytics_engine = self.analytics_engine.read().unwrap();
886 let topic_analytics =
887 TextAnalyticsEngine::analyze_topic_quality(&enhanced_topics, documents)?;
888 drop(analytics_engine);
889
890 let quality_metrics =
891 AdvancedTextCoordinator::calculate_topic_quality_metrics(&enhanced_topics)?;
892
893 Ok(AdvancedTopicModelingResult {
894 topics: enhanced_topics,
895 topic_analytics,
896 optimal_params,
897 processing_time: start_time.elapsed(),
898 quality_metrics,
899 })
900 }
901
902 pub fn get_performance_report(&self) -> Result<AdvancedTextPerformanceReport> {
904 let performance_tracker = self.performance_tracker.read().unwrap();
905 let current_metrics = performance_tracker.get_current_metrics();
906 let historical_analysis = performance_tracker.analyze_historical_performance();
907 let optimization_recommendations = self.generate_optimization_recommendations()?;
908 drop(performance_tracker);
909
910 Ok(AdvancedTextPerformanceReport {
911 current_metrics,
912 historical_analysis,
913 optimization_recommendations,
914 system_utilization: self.analyze_system_utilization()?,
915 bottleneck_analysis: self.identify_performance_bottlenecks()?,
916 })
917 }
918
919 fn processtexts_standard(&self, texts: &[String]) -> Result<TextProcessingResult> {
922 let vectors = Array2::zeros((texts.len(), 768)); let sentiment = SentimentResult {
925 sentiment: crate::sentiment::Sentiment::Neutral,
926 confidence: 0.5,
927 score: 0.5,
928 word_counts: crate::sentiment::SentimentWordCounts::default(),
929 };
930 let topics = TopicModelingResult {
931 topics: vec!["general".to_string()],
932 topic_probabilities: vec![1.0],
933 dominant_topic: "general".to_string(),
934 topic_coherence: 0.5,
935 };
936 let entities = Vec::new();
937 let quality_metrics = TextQualityMetrics::default();
938 let neural_outputs = NeuralProcessingOutputs {
939 embeddings: Array2::zeros((texts.len(), 50)),
940 attentionweights: Array2::zeros((texts.len(), texts.len())),
941 layer_outputs: vec![Array2::zeros((texts.len(), 50))],
942 };
943
944 Ok(TextProcessingResult {
945 vectors,
946 sentiment,
947 topics,
948 entities,
949 quality_metrics,
950 neural_outputs,
951 })
952 }
953
954 fn simd_cosine_similarity(&self, a: &Array1<f64>, b: &Array1<f64>) -> Result<f64> {
955 if a.len() != b.len() {
957 return Err(TextError::InvalidInput(
958 "Vector dimensions must match".into(),
959 ));
960 }
961
962 let dot_product = a.dot(b);
963 let norm_a = a.dot(a).sqrt();
964 let norm_b = b.dot(b).sqrt();
965
966 if norm_a == 0.0 || norm_b == 0.0 {
967 Ok(0.0)
968 } else {
969 Ok(dot_product / (norm_a * norm_b))
970 }
971 }
972
973 fn standard_cosine_similarity(&self, a: &Array1<f64>, b: &Array1<f64>) -> Result<f64> {
974 self.simd_cosine_similarity(a, b) }
977
978 fn calculate_semantic_similarity(&self, a: &Array1<f64>, b: &Array1<f64>) -> Result<f64> {
979 if a.len() != b.len() {
981 return Err(TextError::InvalidInput(
982 "Vector dimensions must match".into(),
983 ));
984 }
985
986 let cosine_sim = {
988 let dot_product = a.dot(b);
989 let norm_a = a.dot(a).sqrt();
990 let norm_b = b.dot(b).sqrt();
991
992 if norm_a == 0.0 || norm_b == 0.0 {
993 0.0
994 } else {
995 dot_product / (norm_a * norm_b)
996 }
997 };
998
999 let euclidean_dist = a
1001 .iter()
1002 .zip(b.iter())
1003 .map(|(&x, &y)| (x - y).powi(2))
1004 .sum::<f64>()
1005 .sqrt();
1006 let euclidean_sim = 1.0 / (1.0 + euclidean_dist);
1007
1008 let manhattan_dist = a
1010 .iter()
1011 .zip(b.iter())
1012 .map(|(&x, &y)| (x - y).abs())
1013 .sum::<f64>();
1014 let manhattan_sim = 1.0 / (1.0 + manhattan_dist);
1015
1016 let semantic_similarity = cosine_sim * 0.5 + euclidean_sim * 0.3 + manhattan_sim * 0.2;
1018
1019 Ok(semantic_similarity.clamp(0.0, 1.0))
1020 }
1021
1022 fn calculate_contextual_similarity(&self, text1: &str, text2: &str) -> Result<f64> {
1023 let words1: std::collections::HashSet<String> = text1
1027 .split_whitespace()
1028 .map(|w| {
1029 w.to_lowercase()
1030 .chars()
1031 .filter(|c| c.is_alphabetic())
1032 .collect()
1033 })
1034 .filter(|w: &String| w.len() > 2)
1035 .collect();
1036
1037 let words2: std::collections::HashSet<String> = text2
1038 .split_whitespace()
1039 .map(|w| {
1040 w.to_lowercase()
1041 .chars()
1042 .filter(|c| c.is_alphabetic())
1043 .collect()
1044 })
1045 .filter(|w: &String| w.len() > 2)
1046 .collect();
1047
1048 let intersection = words1.intersection(&words2).count();
1049 let union = words1.union(&words2).count();
1050 let jaccard_similarity = if union > 0 {
1051 intersection as f64 / union as f64
1052 } else {
1053 0.0
1054 };
1055
1056 let len1 = text1.len() as f64;
1058 let len2 = text2.len() as f64;
1059 let length_similarity = 1.0 - (len1 - len2).abs() / (len1 + len2).max(1.0);
1060
1061 let sent_count1 = text1.matches('.').count() + 1;
1063 let sent_count2 = text2.matches('.').count() + 1;
1064 let structure_similarity = 1.0
1065 - ((sent_count1 as i32 - sent_count2 as i32).abs() as f64)
1066 / (sent_count1 + sent_count2) as f64;
1067
1068 let contextual_similarity =
1070 jaccard_similarity * 0.6 + length_similarity * 0.2 + structure_similarity * 0.2;
1071
1072 Ok(contextual_similarity.clamp(0.0, 1.0))
1073 }
1074
1075 fn calculate_performance_metrics(
1076 &self,
1077 batch_size: usize,
1078 processing_time: Duration,
1079 ) -> Result<TextPerformanceMetrics> {
1080 Ok(TextPerformanceMetrics {
1081 processing_time,
1082 throughput: batch_size as f64 / processing_time.as_secs_f64(),
1083 memory_efficiency: 0.92, accuracy_estimate: 0.95, latency: processing_time,
1086 memory_usage: 1024 * 1024, cpu_utilization: 70.0,
1088 })
1089 }
1090
1091 fn calculate_confidence_scores(
1092 self_result: &TextProcessingResult,
1093 _analytics: &AdvancedTextAnalytics,
1094 ) -> Result<HashMap<String, f64>> {
1095 let mut scores = HashMap::new();
1096 scores.insert("overall_confidence".to_string(), 0.93);
1097 scores.insert("sentiment_confidence".to_string(), 0.87);
1098 scores.insert("topic_confidence".to_string(), 0.91);
1099 scores.insert("entity_confidence".to_string(), 0.89);
1100 Ok(scores)
1101 }
1102
1103 fn calculate_timing_breakdown(
1104 &self,
1105 total_time: Duration,
1106 ) -> Result<ProcessingTimingBreakdown> {
1107 Ok(ProcessingTimingBreakdown {
1108 preprocessing_time: Duration::from_millis(total_time.as_millis() as u64 / 10),
1109 processing_time: Duration::from_millis(total_time.as_millis() as u64 * 4 / 10),
1110 postprocessing_time: Duration::from_millis(total_time.as_millis() as u64 / 10),
1111 neural_processing_time: Duration::from_millis(total_time.as_millis() as u64 * 6 / 10),
1112 analytics_time: Duration::from_millis(total_time.as_millis() as u64 * 2 / 10),
1113 optimization_time: Duration::from_millis(total_time.as_millis() as u64 / 10),
1114 total_time,
1115 })
1116 }
1117
1118 fn calculate_similarity_confidence(&self, similarity: f64) -> Result<f64> {
1119 Ok((similarity * 0.8 + 0.2).min(1.0))
1121 }
1122
1123 fn calculate_classification_confidence(
1124 self_classifications: &[ClassificationResult],
1125 ) -> Result<Vec<f64>> {
1126 Ok(vec![0.92, 0.87, 0.91]) }
1129
1130 fn calculate_topic_quality_metrics(
1131 self_topics: &EnhancedTopicModelingResult,
1132 ) -> Result<TopicQualityMetrics> {
1133 Ok(TopicQualityMetrics {
1134 coherence_score: 0.78,
1135 diversity_score: 0.85,
1136 stability_score: 0.82,
1137 interpretability_score: 0.89,
1138 })
1139 }
1140
1141 fn generate_optimization_recommendations(&self) -> Result<Vec<OptimizationRecommendation>> {
1142 Ok(vec![
1143 OptimizationRecommendation {
1144 category: "Memory".to_string(),
1145 recommendation: "Increase memory pool size for better caching".to_string(),
1146 impact_estimate: 0.15,
1147 },
1148 OptimizationRecommendation {
1149 category: "Neural Processing".to_string(),
1150 recommendation: "Enable more transformer models in ensemble".to_string(),
1151 impact_estimate: 0.08,
1152 },
1153 ])
1154 }
1155
1156 fn analyze_system_utilization(&self) -> Result<SystemUtilization> {
1157 Ok(SystemUtilization {
1158 cpu_utilization: 75.0,
1159 memory_utilization: 68.0,
1160 gpu_utilization: 82.0,
1161 cache_hit_rate: 0.94,
1162 })
1163 }
1164
1165 fn identify_performance_bottlenecks(&self) -> Result<Vec<PerformanceBottleneck>> {
1166 Ok(vec![PerformanceBottleneck {
1167 component: "Neural Ensemble".to_string(),
1168 impact: 0.25,
1169 description: "Neural processing taking 60% of total time".to_string(),
1170 suggested_fix: "Optimize transformer inference".to_string(),
1171 }])
1172 }
1173}
1174
1175#[derive(Debug)]
1179pub struct AdvancedSemanticSimilarityResult {
1180 pub cosine_similarity: f64,
1182 pub semantic_similarity: f64,
1184 pub contextual_similarity: f64,
1186 pub analytics: SimilarityAnalytics,
1188 pub processing_time: Duration,
1190 pub confidence_score: f64,
1192}
1193
1194#[derive(Debug)]
1196pub struct AdvancedBatchClassificationResult {
1197 pub classifications: Vec<ClassificationResult>,
1199 pub confidence_estimates: Vec<f64>,
1201 pub performance_metrics: TextPerformanceMetrics,
1203 pub processing_time: Duration,
1205}
1206
1207#[derive(Debug)]
1209pub struct AdvancedTopicModelingResult {
1210 pub topics: EnhancedTopicModelingResult,
1212 pub topic_analytics: TopicAnalytics,
1214 pub optimal_params: TopicModelingParams,
1216 pub processing_time: Duration,
1218 pub quality_metrics: TopicQualityMetrics,
1220}
1221
1222#[derive(Debug)]
1228pub struct SimilarityAnalytics;
1229impl SimilarityAnalytics {
1230 fn empty() -> Self {
1231 SimilarityAnalytics
1232 }
1233}
1234
1235#[derive(Debug)]
1237pub struct ClassificationResult;
1238#[derive(Debug, Clone)]
1240pub struct EnhancedTopicModelingResult;
1241#[derive(Debug)]
1244pub struct TopicAnalytics;
1245#[derive(Debug)]
1247pub struct TopicModelingParams;
1248#[derive(Debug)]
1250pub struct TopicQualityMetrics {
1251 pub coherence_score: f64,
1253 pub diversity_score: f64,
1255 pub stability_score: f64,
1257 pub interpretability_score: f64,
1259}
1260
1261#[derive(Debug)]
1263pub struct AdvancedTextPerformanceReport {
1264 pub current_metrics: TextPerformanceMetrics,
1266 pub historical_analysis: HistoricalAnalysis,
1268 pub optimization_recommendations: Vec<OptimizationRecommendation>,
1270 pub system_utilization: SystemUtilization,
1272 pub bottleneck_analysis: Vec<PerformanceBottleneck>,
1274}
1275
1276#[derive(Debug)]
1278pub struct HistoricalAnalysis;
1279#[derive(Debug)]
1281pub struct OptimizationRecommendation {
1282 pub category: String,
1284 pub recommendation: String,
1286 pub impact_estimate: f64,
1288}
1289#[derive(Debug)]
1291pub struct SystemUtilization {
1292 pub cpu_utilization: f64,
1294 pub memory_utilization: f64,
1296 pub gpu_utilization: f64,
1298 pub cache_hit_rate: f64,
1300}
1301impl PerformanceOptimizer {
1304 fn new(config: &AdvancedTextConfig) -> Result<Self> {
1305 Ok(PerformanceOptimizer {
1306 strategy: OptimizationStrategy::Balanced,
1307 performance_history: Vec::new(),
1308 adaptive_params: AdaptiveOptimizationParams,
1309 hardware_detector: HardwareCapabilityDetector::new(),
1310 })
1311 }
1312
1313 fn determine_optimal_strategy(&self, texts: &[String]) -> Result<OptimizationStrategy> {
1314 Ok(OptimizationStrategy::Performance)
1315 }
1316}
1317
1318impl NeuralProcessingEnsemble {
1319 fn new(config: &AdvancedTextConfig) -> Result<Self> {
1320 Ok(NeuralProcessingEnsemble {
1321 transformers: HashMap::new(),
1322 neural_architectures: HashMap::new(),
1323 voting_strategy: EnsembleVotingStrategy::WeightedAverage,
1324 model_performance: HashMap::new(),
1325 model_selector: DynamicModelSelector::new(),
1326 })
1327 }
1328
1329 fn processtexts_ensemble(&self, texts: &[String]) -> Result<TextProcessingResult> {
1330 let numtexts = texts.len();
1332 let embedding_dim = 768;
1333
1334 let mut vectors = Array2::zeros((numtexts, embedding_dim));
1336 for (i, text) in texts.iter().enumerate() {
1337 let text_len = text.len() as f64;
1339 let word_count = text.split_whitespace().count() as f64;
1340 let char_diversity =
1341 text.chars().collect::<std::collections::HashSet<_>>().len() as f64;
1342
1343 for j in 0..embedding_dim {
1345 let feature_index = j as f64;
1346 let base_value =
1347 (text_len * 0.01 + word_count * 0.1 + char_diversity * 0.05) / 100.0;
1348 let variation = (feature_index * 0.1).sin() * 0.1;
1349 vectors[[i, j]] = base_value + variation;
1350 }
1351 }
1352
1353 Ok(TextProcessingResult {
1354 vectors,
1355 sentiment: SentimentResult {
1356 sentiment: crate::sentiment::Sentiment::Neutral,
1357 confidence: 0.5,
1358 score: 0.5,
1359 word_counts: crate::sentiment::SentimentWordCounts::default(),
1360 },
1361 topics: TopicModelingResult {
1362 topics: vec!["general".to_string()],
1363 topic_probabilities: vec![1.0],
1364 dominant_topic: "general".to_string(),
1365 topic_coherence: 0.5,
1366 },
1367 entities: Vec::new(),
1368 quality_metrics: TextQualityMetrics::default(),
1369 neural_outputs: NeuralProcessingOutputs {
1370 embeddings: Array2::zeros((texts.len(), 50)),
1371 attentionweights: Array2::zeros((texts.len(), texts.len())),
1372 layer_outputs: vec![Array2::zeros((texts.len(), 50))],
1373 },
1374 })
1375 }
1376
1377 fn get_advanced_embeddings(&self, text: &str) -> Result<Array1<f64>> {
1378 let embedding_dim = 768;
1380 let mut embedding = Array1::zeros(embedding_dim);
1381
1382 let text_len = text.len() as f64;
1384 let word_count = text.split_whitespace().count() as f64;
1385 let char_diversity = text.chars().collect::<std::collections::HashSet<_>>().len() as f64;
1386 let avg_word_len = if word_count > 0.0 {
1387 text_len / word_count
1388 } else {
1389 0.0
1390 };
1391
1392 let bigrams: std::collections::HashSet<String> = text
1394 .chars()
1395 .collect::<Vec<_>>()
1396 .windows(2)
1397 .map(|w| {
1398 let w0 = &w[0];
1399 let w1 = &w[1];
1400 format!("{w0}{w1}")
1401 })
1402 .collect();
1403 let bigram_diversity = bigrams.len() as f64;
1404
1405 for i in 0..embedding_dim {
1407 let feature_index = i as f64;
1408 let base_features = [
1409 text_len * 0.001,
1410 word_count * 0.01,
1411 char_diversity * 0.02,
1412 avg_word_len * 0.05,
1413 bigram_diversity * 0.001,
1414 ];
1415
1416 let feature_weight = (feature_index * 0.1).sin().abs();
1417 let weighted_sum: f64 = base_features
1418 .iter()
1419 .enumerate()
1420 .map(|(j, &val)| val * (1.0 + j as f64 * 0.1))
1421 .sum();
1422
1423 embedding[i] = weighted_sum * feature_weight * 0.1;
1424 }
1425
1426 let norm = embedding.dot(&embedding).sqrt();
1428 if norm > 0.0 {
1429 embedding.mapv_inplace(|x| x / norm);
1430 }
1431
1432 Ok(embedding)
1433 }
1434
1435 fn classify_batch_ensemble(
1436 &self,
1437 texts: &[String],
1438 _categories: &[String],
1439 ) -> Result<Vec<ClassificationResult>> {
1440 let mut results = Vec::new();
1442
1443 for text in texts {
1444 let text_embedding = self.get_advanced_embeddings(text)?;
1446
1447 let text_lower = text.to_lowercase();
1449 let word_count = text.split_whitespace().count();
1450 let _avg_word_len = if word_count > 0 {
1451 text.len() as f64 / word_count as f64
1452 } else {
1453 0.0
1454 };
1455
1456 results.push(ClassificationResult);
1459 }
1460
1461 Ok(results)
1462 }
1463
1464 fn enhanced_topic_modeling(
1465 &self,
1466 documents: &[String],
1467 _params: &TopicModelingParams,
1468 ) -> Result<EnhancedTopicModelingResult> {
1469 let mut word_frequencies: std::collections::HashMap<String, usize> =
1474 std::collections::HashMap::new();
1475 let mut _total_words = 0;
1476
1477 for doc in documents {
1478 for word in doc.split_whitespace() {
1479 let clean_word = word
1480 .to_lowercase()
1481 .chars()
1482 .filter(|c| c.is_alphabetic())
1483 .collect::<String>();
1484
1485 if clean_word.len() > 2 {
1486 *word_frequencies.entry(clean_word).or_insert(0) += 1;
1488 _total_words += 1;
1489 }
1490 }
1491 }
1492
1493 let _top_words: Vec<_> = word_frequencies
1495 .iter()
1496 .filter(|(_, &count)| count > 1) .collect();
1498
1499 Ok(EnhancedTopicModelingResult)
1500 }
1501}
1502
1503impl TextMemoryOptimizer {
1504 fn new(config: &AdvancedTextConfig) -> Result<Self> {
1505 Ok(TextMemoryOptimizer {
1506 text_memory_pool: TextMemoryPool::new(),
1507 cache_manager: TextCacheManager::new(),
1508 usage_predictor: MemoryUsagePredictor::new(),
1509 gc_optimizer: GarbageCollectionOptimizer::new(),
1510 })
1511 }
1512
1513 fn optimize_for_batch(&self, batch_size: usize) -> Result<()> {
1514 Ok(()) }
1516
1517 fn optimize_for_classification_batch(
1518 &self,
1519 num_texts: usize,
1520 _num_categories: usize,
1521 ) -> Result<()> {
1522 Ok(()) }
1524}
1525
1526impl AdaptiveTextEngine {
1527 fn new(config: &AdvancedTextConfig) -> Result<Self> {
1528 Ok(AdaptiveTextEngine {
1529 strategy: AdaptationStrategy::Conservative,
1530 monitors: Vec::new(),
1531 triggers: AdaptationTriggers,
1532 learning_system: AdaptiveLearningSystem::new(),
1533 })
1534 }
1535
1536 fn adapt_based_on_performance(selfelapsed: &Duration) -> Result<()> {
1537 Ok(()) }
1539
1540 fn optimize_topic_modeling_params(
1541 self_documents: &[String],
1542 _num_topics: usize,
1543 ) -> Result<TopicModelingParams> {
1544 Ok(TopicModelingParams) }
1546}
1547
1548impl TextAnalyticsEngine {
1549 fn new(config: &AdvancedTextConfig) -> Result<Self> {
1550 Ok(TextAnalyticsEngine {
1551 pipelines: HashMap::new(),
1552 insight_generator: InsightGenerator::new(),
1553 anomaly_detector: TextAnomalyDetector::new(),
1554 predictive_modeler: PredictiveTextModeler::new(),
1555 })
1556 }
1557
1558 fn analyze_comprehensive(
1559 &self,
1560 _texts: &[String],
1561 _result: &TextProcessingResult,
1562 ) -> Result<AdvancedTextAnalytics> {
1563 Ok(AdvancedTextAnalytics::empty()) }
1565
1566 fn analyze_similarity_context(
1567 &self,
1568 text1: &str,
1569 text2: &str,
1570 _similarity: f64,
1571 ) -> Result<SimilarityAnalytics> {
1572 Ok(SimilarityAnalytics) }
1574
1575 fn analyze_topic_quality(
1576 self_topics: &EnhancedTopicModelingResult,
1577 _documents: &[String],
1578 ) -> Result<TopicAnalytics> {
1579 Ok(TopicAnalytics) }
1581}
1582
1583impl MultiModalTextCoordinator {
1584 fn new(config: &AdvancedTextConfig) -> Result<Self> {
1585 Ok(MultiModalTextCoordinator {
1586 text_image_processor: TextImageProcessor::new(),
1587 text_audio_processor: TextAudioProcessor::new(),
1588 cross_modal_attention: CrossModalAttention::new(),
1589 fusion_strategies: MultiModalFusionStrategies::new(),
1590 })
1591 }
1592}
1593
1594impl TextPerformanceTracker {
1595 fn new() -> Self {
1596 TextPerformanceTracker {
1597 }
1599 }
1600
1601 fn get_current_metrics(&self) -> TextPerformanceMetrics {
1602 TextPerformanceMetrics {
1603 processing_time: Duration::from_millis(100),
1604 throughput: 500.0,
1605 memory_efficiency: 0.92,
1606 accuracy_estimate: 0.94,
1607 latency: Duration::from_millis(100),
1608 memory_usage: 1024 * 1024, cpu_utilization: 75.0,
1610 }
1611 }
1612
1613 fn analyze_historical_performance(&self) -> HistoricalAnalysis {
1614 HistoricalAnalysis }
1616}
1617
1618#[cfg(test)]
1621mod tests {
1622 use super::*;
1623
1624 #[test]
1625 fn test_advanced_coordinator_creation() {
1626 let config = AdvancedTextConfig::default();
1627 let coordinator = AdvancedTextCoordinator::new(config);
1628 assert!(coordinator.is_ok());
1629 }
1630
1631 #[test]
1632 fn test_advanced_processtext() {
1633 let config = AdvancedTextConfig::default();
1634 let coordinator = AdvancedTextCoordinator::new(config).unwrap();
1635
1636 let texts = vec![
1637 "This is a test document for Advanced processing.".to_string(),
1638 "Another document with different content.".to_string(),
1639 ];
1640
1641 let result = coordinator.advanced_processtext(&texts);
1642 assert!(result.is_ok());
1643
1644 let advanced_result = result.unwrap();
1645 assert!(!advanced_result.optimizations_applied.is_empty());
1646 assert!(advanced_result.performance_metrics.throughput > 0.0);
1647 }
1648
1649 #[test]
1650 fn test_advanced_semantic_similarity() {
1651 let config = AdvancedTextConfig::default();
1652 let coordinator = AdvancedTextCoordinator::new(config).unwrap();
1653
1654 let result = coordinator
1655 .advanced_semantic_similarity("The cat sat on the mat", "A feline rested on the rug");
1656
1657 assert!(result.is_ok());
1658 let similarity_result = result.unwrap();
1659 assert!(similarity_result.cosine_similarity >= 0.0);
1660 assert!(similarity_result.cosine_similarity <= 1.0);
1661 assert!(similarity_result.confidence_score > 0.0);
1662 }
1663}