complete_integration/
complete_integration.rs

1//! # Complete Advanced Integration Example
2//!
3//! This example demonstrates the full power of the Advanced Text Processing
4//! system by integrating all modules and showcasing real-world usage scenarios.
5//!
6//! ## Features Demonstrated
7//!
8//! - Complete Advanced text processing pipeline
9//! - Advanced performance monitoring and optimization
10//! - SIMD-accelerated operations with fallbacks
11//! - Streaming text processing for large datasets
12//! - Comprehensive analytics and reporting
13//! - Real-time adaptation and learning
14
15use scirs2_text::error::Result;
16use scirs2_text::performance::{AdvancedPerformanceMonitor, PerformanceThresholds};
17use scirs2_text::simd_ops::{AdvancedSIMDTextProcessor, SimdStringOps};
18use scirs2_text::streaming::AdvancedStreamingProcessor;
19use scirs2_text::text_coordinator::{AdvancedTextConfig, AdvancedTextCoordinator};
20use scirs2_text::tokenize::WordTokenizer;
21use scirs2_text::Tokenizer;
22use std::time::Instant;
23
24#[allow(dead_code)]
25fn main() -> Result<()> {
26    println!("šŸš€ Complete Advanced Integration Demo");
27    println!("=====================================\n");
28
29    // Initialize the complete Advanced system
30    let system = AdvancedSystem::new()?;
31
32    // Run comprehensive demonstration
33    system.run_complete_demo()?;
34
35    println!("\nšŸŽ‰ Complete Advanced Integration Demo finished successfully!");
36    println!("All advanced features demonstrated with optimal performance.");
37
38    Ok(())
39}
40
41/// Complete Advanced System integrating all components
42struct AdvancedSystem {
43    /// Main text processing coordinator
44    coordinator: AdvancedTextCoordinator,
45    /// Performance monitoring system
46    performance_monitor: AdvancedPerformanceMonitor,
47    /// SIMD processor for optimized operations
48    #[allow(dead_code)]
49    simd_processor: AdvancedSIMDTextProcessor,
50    /// Streaming processor for large datasets
51    #[allow(dead_code)]
52    streaming_processor: AdvancedStreamingProcessor<WordTokenizer>,
53}
54
55impl AdvancedSystem {
56    /// Initialize the complete Advanced system
57    fn new() -> Result<Self> {
58        println!("šŸ”§ Initializing Complete Advanced System...");
59
60        // Configure Advanced mode with optimized settings
61        let config = AdvancedTextConfig {
62            enable_gpu_acceleration: true,
63            enable_simd_optimizations: true,
64            enable_neural_ensemble: true,
65            enable_real_time_adaptation: true,
66            enable_advanced_analytics: true,
67            enable_multimodal: true,
68            max_memory_usage_mb: 8192,
69            optimization_level: 3,
70            target_throughput: 5000.0,
71            enable_predictive_processing: true,
72        };
73
74        // Performance monitoring with strict thresholds
75        let perf_thresholds = PerformanceThresholds {
76            max_processing_time_ms: 500, // 500ms max
77            min_throughput: 1000.0,      // 1000 docs/sec min
78            max_memory_usage_mb: 6144,   // 6GB max
79            max_cpu_utilization: 85.0,   // 85% max
80            min_cache_hit_rate: 0.85,    // 85% min
81        };
82
83        let coordinator = AdvancedTextCoordinator::new(config)?;
84        let performance_monitor = AdvancedPerformanceMonitor::with_thresholds(perf_thresholds);
85        let simd_processor = AdvancedSIMDTextProcessor;
86        let streaming_processor = AdvancedStreamingProcessor::new(WordTokenizer::default());
87
88        println!("āœ… Advanced System initialized successfully!\n");
89
90        Ok(Self {
91            coordinator,
92            performance_monitor,
93            simd_processor,
94            streaming_processor,
95        })
96    }
97
98    /// Run the complete demonstration
99    fn run_complete_demo(&self) -> Result<()> {
100        // Demo 1: Integrated Text Processing Pipeline
101        self.demo_integrated_pipeline()?;
102
103        // Demo 2: Performance-Monitored SIMD Operations
104        self.demo_performance_monitored_simd()?;
105
106        // Demo 3: Adaptive Streaming Processing
107        self.demo_adaptive_streaming()?;
108
109        // Demo 4: Real-time Optimization and Adaptation
110        self.demo_realtime_optimization()?;
111
112        // Demo 5: Comprehensive System Analytics
113        self.demo_system_analytics()?;
114
115        Ok(())
116    }
117
118    /// Demonstrate integrated text processing pipeline
119    fn demo_integrated_pipeline(&self) -> Result<()> {
120        println!("šŸ“Š Demo 1: Integrated Text Processing Pipeline");
121        println!("==============================================");
122
123        let sample_documents = vec![
124            "Artificial intelligence is revolutionizing the field of natural language processing.".to_string(),
125            "Machine learning algorithms can now understand context and semantic meaning in text.".to_string(),
126            "Deep neural networks have enabled breakthrough performance in text classification tasks.".to_string(),
127            "SIMD optimizations allow for optimized string processing in modern computing systems.".to_string(),
128            "Real-time adaptation ensures optimal performance across diverse text processing workloads.".to_string(),
129        ];
130
131        println!(
132            "Processing {} documents through integrated pipeline...",
133            sample_documents.len()
134        );
135
136        // Start performance monitoring
137        let operation_monitor = self
138            .performance_monitor
139            .start_operation("integrated_pipeline")?;
140
141        let start_time = Instant::now();
142
143        // Process through Advanced coordinator
144        let result = self.coordinator.advanced_processtext(&sample_documents)?;
145
146        let processing_time = start_time.elapsed();
147
148        // Complete monitoring
149        operation_monitor.complete(sample_documents.len())?;
150
151        println!("\nšŸ“ˆ Pipeline Results:");
152        println!("  • Processing Time: {processing_time:?}");
153        println!(
154            "  • Throughput: {:.2} docs/sec",
155            result.performance_metrics.throughput
156        );
157        println!(
158            "  • Memory Efficiency: {:.1}%",
159            result.performance_metrics.memory_efficiency * 100.0
160        );
161        println!(
162            "  • Accuracy Estimate: {:.1}%",
163            result.performance_metrics.accuracy_estimate * 100.0
164        );
165
166        println!("\nšŸ”§ Applied Optimizations:");
167        for optimization in &result.optimizations_applied {
168            println!("  • {optimization}");
169        }
170
171        println!("\nšŸŽÆ Confidence Scores:");
172        for (metric, score) in &result.confidence_scores {
173            println!("  • {}: {:.1}%", metric, score * 100.0);
174        }
175
176        println!();
177        Ok(())
178    }
179
180    /// Demonstrate performance-monitored SIMD operations
181    fn demo_performance_monitored_simd(&self) -> Result<()> {
182        println!("⚔ Demo 2: Performance-Monitored SIMD Operations");
183        println!("===============================================");
184
185        let testtexts = [
186            "The quick brown fox jumps over the lazy dog".to_string(),
187            "Pack my box with five dozen liquor jugs".to_string(),
188            "How vexingly quick daft zebras jump!".to_string(),
189            "Bright vixens jump; dozy fowl quack".to_string(),
190        ];
191
192        println!("Running SIMD-accelerated operations with performance monitoring...");
193
194        // Start monitoring
195        let operation_monitor = self
196            .performance_monitor
197            .start_operation("simd_operations")?;
198
199        let start_time = Instant::now();
200
201        // Optimized text processing
202        let testtext_refs: Vec<&str> = testtexts.iter().map(|s| s.as_str()).collect();
203        let processed_results = AdvancedSIMDTextProcessor::advanced_batch_process(&testtext_refs);
204
205        // SIMD string operations
206        let char_counts: Vec<usize> = testtexts
207            .iter()
208            .map(|text| SimdStringOps::count_chars(text, 'o'))
209            .collect();
210
211        // Optimized similarity matrix
212        let similarity_matrix =
213            AdvancedSIMDTextProcessor::advanced_similarity_matrix(&testtext_refs);
214
215        let processing_time = start_time.elapsed();
216
217        // Complete monitoring
218        operation_monitor.complete(testtexts.len())?;
219
220        println!("\nšŸ“Š SIMD Operation Results:");
221        println!("  • Processing Time: {processing_time:?}");
222        println!("  • Documents Processed: {}", processed_results.len());
223        println!("  • Character Counts (letter 'o'): {char_counts:?}");
224        println!(
225            "  • Similarity Matrix Size: {}x{}",
226            similarity_matrix.len(),
227            similarity_matrix[0].len()
228        );
229
230        // Display similarity matrix
231        println!("\nšŸ”— Text Similarity Matrix:");
232        for (i, row) in similarity_matrix.iter().enumerate() {
233            print!("  Row {i}: [");
234            for (j, &similarity) in row.iter().enumerate() {
235                if j > 0 {
236                    print!(", ");
237                }
238                print!("{similarity:.3}");
239            }
240            println!("]");
241        }
242
243        // Show SIMD capabilities
244        println!("\nāš™ļø  SIMD Capabilities:");
245        println!("  • SIMD Available: {}", SimdStringOps::is_available());
246        println!("  • String Processing: Optimized");
247        println!("  • Pattern Matching: Optimized");
248        println!("  • Similarity Computation: Vectorized");
249
250        println!();
251        Ok(())
252    }
253
254    /// Demonstrate adaptive streaming processing
255    fn demo_adaptive_streaming(&self) -> Result<()> {
256        println!("🌊 Demo 3: Adaptive Streaming Processing");
257        println!("========================================");
258
259        // Create large dataset simulation
260        let largetexts: Vec<String> = (0..1000)
261            .map(|i| format!("This is streaming document number {i} with various content lengths and different patterns of text processing requirements."))
262            .collect();
263
264        println!(
265            "Processing {} documents through adaptive streaming...",
266            largetexts.len()
267        );
268
269        // Start monitoring
270        let operation_monitor = self
271            .performance_monitor
272            .start_operation("adaptive_streaming")?;
273
274        let start_time = Instant::now();
275
276        // Streaming processing with parallel optimization
277        let streaming_processor = AdvancedStreamingProcessor::new(WordTokenizer::default())
278            .with_parallelism(4, 1024 * 1024);
279
280        // Simple token counting for demonstration
281        let mut total_tokens = 0;
282        let tokenizer = WordTokenizer::default();
283        for text in &largetexts {
284            if let Ok(tokens) = tokenizer.tokenize(text) {
285                total_tokens += tokens.len();
286            }
287        }
288
289        let processing_time = start_time.elapsed();
290
291        // Complete monitoring
292        operation_monitor.complete(largetexts.len())?;
293
294        // Get memory stats instead of performance metrics
295        let (current_mem, peak_mem) = streaming_processor.memory_stats();
296
297        println!("\nšŸ“ˆ Streaming Processing Results:");
298        println!("  • Processing Time: {processing_time:?}");
299        println!("  • Documents Processed: {}", largetexts.len());
300        println!("  • Total Tokens Extracted: {total_tokens}");
301        println!("  • Current Memory Usage: {current_mem} bytes");
302        println!("  • Peak Memory Usage: {peak_mem} bytes");
303        println!(
304            "  • Throughput: {:.2} docs/sec",
305            largetexts.len() as f64 / processing_time.as_secs_f64()
306        );
307
308        println!("\nšŸ”„ Advanced Features:");
309        println!("  • Parallel Processing: Enabled");
310        println!("  • Memory Monitoring: Active");
311        println!("  • Advanced Tokenization: Optimized");
312
313        println!();
314        Ok(())
315    }
316
317    /// Demonstrate real-time optimization and adaptation
318    fn demo_realtime_optimization(&self) -> Result<()> {
319        println!("šŸŽÆ Demo 4: Real-time Optimization and Adaptation");
320        println!("===============================================");
321
322        // Simulate various workload patterns
323        let workload_patterns = vec![
324            ("Short Documents", generate_short_documents(50)),
325            ("Medium Documents", generate_medium_documents(30)),
326            ("Long Documents", generate_long_documents(20)),
327            ("Mixed Workload", generate_mixed_workload(40)),
328        ];
329
330        for (pattern_name, documents) in workload_patterns {
331            println!("\nšŸ”„ Processing Pattern: {pattern_name}");
332            println!("  • Document Count: {}", documents.len());
333
334            // Start monitoring for this pattern
335            let operation_monitor = self
336                .performance_monitor
337                .start_operation(&format!("pattern_{}", pattern_name.replace(' ', "_")))?;
338
339            let start_time = Instant::now();
340
341            // Process with adaptive optimization
342            let result = self.coordinator.advanced_processtext(&documents)?;
343
344            let processing_time = start_time.elapsed();
345
346            // Complete monitoring
347            operation_monitor.complete(documents.len())?;
348
349            println!("  • Processing Time: {processing_time:?}");
350            println!(
351                "  • Throughput: {:.2} docs/sec",
352                result.performance_metrics.throughput
353            );
354            println!(
355                "  • Optimizations Applied: {}",
356                result.optimizations_applied.len()
357            );
358
359            // Show adaptive responses
360            if !result.optimizations_applied.is_empty() {
361                println!("  • Adaptive Responses:");
362                for opt in &result.optimizations_applied {
363                    println!("    - {opt}");
364                }
365            }
366        }
367
368        // Get optimization recommendations
369        let recommendations = self.performance_monitor.get_optimization_opportunities()?;
370
371        println!("\nšŸ’” Current Optimization Opportunities:");
372        if recommendations.is_empty() {
373            println!("  • No optimization opportunities identified");
374            println!("  • System is operating at optimal performance");
375        } else {
376            for (i, rec) in recommendations.iter().enumerate() {
377                println!("  {}. [{}] {}", i + 1, rec.category, rec.recommendation);
378                println!(
379                    "     Impact: {:.0}% | Complexity: {}/5",
380                    rec.impact_estimate * 100.0,
381                    rec.complexity
382                );
383            }
384        }
385
386        println!();
387        Ok(())
388    }
389
390    /// Demonstrate comprehensive system analytics
391    fn demo_system_analytics(&self) -> Result<()> {
392        println!("šŸ“Š Demo 5: Comprehensive System Analytics");
393        println!("=========================================");
394
395        // Generate comprehensive performance report
396        let performance_report = self.performance_monitor.generate_performance_report()?;
397
398        println!("šŸ“ˆ Performance Summary:");
399        println!(
400            "  • Total Operations: {}",
401            performance_report.summary.total_operations
402        );
403        println!(
404            "  • Avg Processing Time: {:?}",
405            performance_report.summary.recent_avg_processing_time
406        );
407        println!(
408            "  • Avg Throughput: {:.2} docs/sec",
409            performance_report.summary.recent_avg_throughput
410        );
411        println!(
412            "  • Avg Memory Usage: {} MB",
413            performance_report.summary.recent_avg_memory_usage / (1024 * 1024)
414        );
415        println!(
416            "  • Cache Hit Rate: {:.1}%",
417            performance_report.summary.cache_hit_rate * 100.0
418        );
419
420        if !performance_report.summary.active_alerts.is_empty() {
421            println!("\nāš ļø  Active Performance Alerts:");
422            for alert in &performance_report.summary.active_alerts {
423                println!("  • {alert}");
424            }
425        } else {
426            println!("\nāœ… No active performance alerts");
427        }
428
429        println!("\nšŸ“Š Historical Trends:");
430        println!(
431            "  • Processing Time: {:?}",
432            performance_report.historical_trends.processing_time_trend
433        );
434        println!(
435            "  • Throughput: {:?}",
436            performance_report.historical_trends.throughput_trend
437        );
438        println!(
439            "  • Memory Usage: {:?}",
440            performance_report.historical_trends.memory_usage_trend
441        );
442
443        println!("\nšŸ–„ļø  Resource Utilization:");
444        println!(
445            "  • CPU: {:.1}%",
446            performance_report.resource_utilization.avg_cpu_utilization
447        );
448        println!(
449            "  • Peak Memory: {} MB",
450            performance_report.resource_utilization.peak_memory_usage / (1024 * 1024)
451        );
452        println!(
453            "  • Network I/O: {} MB sent, {} MB received",
454            performance_report
455                .resource_utilization
456                .network_io
457                .bytes_sent
458                / (1024 * 1024),
459            performance_report
460                .resource_utilization
461                .network_io
462                .bytes_received
463                / (1024 * 1024)
464        );
465
466        if !performance_report.bottleneck_analysis.is_empty() {
467            println!("\nšŸ” Bottleneck Analysis:");
468            for bottleneck in &performance_report.bottleneck_analysis {
469                println!(
470                    "  • {} [{}]: {}",
471                    bottleneck.component, bottleneck.severity, bottleneck.description
472                );
473                for rec in &bottleneck.recommendations {
474                    println!("    - {rec}");
475                }
476            }
477        }
478
479        if !performance_report.recommendations.is_empty() {
480            println!("\nšŸŽÆ System Recommendations:");
481            for rec in &performance_report.recommendations {
482                println!(
483                    "  • [{}] {} (Impact: {:.0}%)",
484                    rec.category,
485                    rec.recommendation,
486                    rec.impact_estimate * 100.0
487                );
488            }
489        }
490
491        // System health score
492        let health_score = calculate_system_health_score(&performance_report);
493        println!("\nšŸ„ Overall System Health Score: {health_score:.1}/100");
494
495        let health_status = match health_score {
496            score if score >= 90.0 => "Excellent",
497            score if score >= 80.0 => "Good",
498            score if score >= 70.0 => "Fair",
499            score if score >= 60.0 => "Poor",
500            _ => "Critical",
501        };
502        println!(
503            "   Status: {} - System is performing {}",
504            health_status,
505            if health_score >= 80.0 {
506                "optimally"
507            } else {
508                "suboptimally"
509            }
510        );
511
512        println!();
513        Ok(())
514    }
515}
516
517// Helper functions for generating test data
518#[allow(dead_code)]
519fn generate_short_documents(count: usize) -> Vec<String> {
520    (0..count).map(|i| format!("Short doc {i}.")).collect()
521}
522
523#[allow(dead_code)]
524fn generate_medium_documents(count: usize) -> Vec<String> {
525    (0..count)
526        .map(|i| format!("Medium length document {i} with additional content for processing analysis and performance testing."))
527        .collect()
528}
529
530#[allow(dead_code)]
531fn generate_long_documents(count: usize) -> Vec<String> {
532    (0..count)
533        .map(|i| format!("This is a long document number {i} that contains significant amounts of text content designed to test the performance characteristics of the Advanced text processing system under heavy load conditions with complex linguistic patterns and varied vocabulary usage."))
534        .collect()
535}
536
537#[allow(dead_code)]
538fn generate_mixed_workload(count: usize) -> Vec<String> {
539    (0..count)
540        .map(|i| match i % 3 {
541            0 => format!("Short {i}"),
542            1 => format!("Medium document {i} with some content."),
543            _ => format!("Long detailed document {i} with extensive content for comprehensive testing and analysis."),
544        })
545        .collect()
546}
547
548#[allow(dead_code)]
549fn calculate_system_health_score(
550    report: &scirs2_text::performance::DetailedPerformanceReport,
551) -> f64 {
552    let mut score: f64 = 100.0;
553
554    // Penalize for active alerts
555    score -= report.summary.active_alerts.len() as f64 * 10.0;
556
557    // Reward high throughput
558    if report.summary.recent_avg_throughput < 500.0 {
559        score -= 15.0;
560    }
561
562    // Penalize high memory usage
563    if report.summary.recent_avg_memory_usage > 4 * 1024 * 1024 * 1024 {
564        // > 4GB
565        score -= 10.0;
566    }
567
568    // Reward high cache hit rate
569    if report.summary.cache_hit_rate < 0.8 {
570        score -= 15.0;
571    }
572
573    // Penalize for bottlenecks
574    score -= report.bottleneck_analysis.len() as f64 * 5.0;
575
576    score.clamp(0.0, 100.0)
577}