1use scirs2_text::error::Result;
16use scirs2_text::performance::{AdvancedPerformanceMonitor, PerformanceThresholds};
17use scirs2_text::simd_ops::{AdvancedSIMDTextProcessor, SimdStringOps};
18use scirs2_text::streaming::AdvancedStreamingProcessor;
19use scirs2_text::text_coordinator::{AdvancedTextConfig, AdvancedTextCoordinator};
20use scirs2_text::tokenize::WordTokenizer;
21use scirs2_text::Tokenizer;
22use std::time::Instant;
23
24#[allow(dead_code)]
25fn main() -> Result<()> {
26 println!("š Complete Advanced Integration Demo");
27 println!("=====================================\n");
28
29 let system = AdvancedSystem::new()?;
31
32 system.run_complete_demo()?;
34
35 println!("\nš Complete Advanced Integration Demo finished successfully!");
36 println!("All advanced features demonstrated with optimal performance.");
37
38 Ok(())
39}
40
41struct AdvancedSystem {
43 coordinator: AdvancedTextCoordinator,
45 performance_monitor: AdvancedPerformanceMonitor,
47 #[allow(dead_code)]
49 simd_processor: AdvancedSIMDTextProcessor,
50 #[allow(dead_code)]
52 streaming_processor: AdvancedStreamingProcessor<WordTokenizer>,
53}
54
55impl AdvancedSystem {
56 fn new() -> Result<Self> {
58 println!("š§ Initializing Complete Advanced System...");
59
60 let config = AdvancedTextConfig {
62 enable_gpu_acceleration: true,
63 enable_simd_optimizations: true,
64 enable_neural_ensemble: true,
65 enable_real_time_adaptation: true,
66 enable_advanced_analytics: true,
67 enable_multimodal: true,
68 max_memory_usage_mb: 8192,
69 optimization_level: 3,
70 target_throughput: 5000.0,
71 enable_predictive_processing: true,
72 };
73
74 let perf_thresholds = PerformanceThresholds {
76 max_processing_time_ms: 500, min_throughput: 1000.0, max_memory_usage_mb: 6144, max_cpu_utilization: 85.0, min_cache_hit_rate: 0.85, };
82
83 let coordinator = AdvancedTextCoordinator::new(config)?;
84 let performance_monitor = AdvancedPerformanceMonitor::with_thresholds(perf_thresholds);
85 let simd_processor = AdvancedSIMDTextProcessor;
86 let streaming_processor = AdvancedStreamingProcessor::new(WordTokenizer::default());
87
88 println!("ā
Advanced System initialized successfully!\n");
89
90 Ok(Self {
91 coordinator,
92 performance_monitor,
93 simd_processor,
94 streaming_processor,
95 })
96 }
97
98 fn run_complete_demo(&self) -> Result<()> {
100 self.demo_integrated_pipeline()?;
102
103 self.demo_performance_monitored_simd()?;
105
106 self.demo_adaptive_streaming()?;
108
109 self.demo_realtime_optimization()?;
111
112 self.demo_system_analytics()?;
114
115 Ok(())
116 }
117
118 fn demo_integrated_pipeline(&self) -> Result<()> {
120 println!("š Demo 1: Integrated Text Processing Pipeline");
121 println!("==============================================");
122
123 let sample_documents = vec![
124 "Artificial intelligence is revolutionizing the field of natural language processing.".to_string(),
125 "Machine learning algorithms can now understand context and semantic meaning in text.".to_string(),
126 "Deep neural networks have enabled breakthrough performance in text classification tasks.".to_string(),
127 "SIMD optimizations allow for optimized string processing in modern computing systems.".to_string(),
128 "Real-time adaptation ensures optimal performance across diverse text processing workloads.".to_string(),
129 ];
130
131 println!(
132 "Processing {} documents through integrated pipeline...",
133 sample_documents.len()
134 );
135
136 let operation_monitor = self
138 .performance_monitor
139 .start_operation("integrated_pipeline")?;
140
141 let start_time = Instant::now();
142
143 let result = self.coordinator.advanced_processtext(&sample_documents)?;
145
146 let processing_time = start_time.elapsed();
147
148 operation_monitor.complete(sample_documents.len())?;
150
151 println!("\nš Pipeline Results:");
152 println!(" ⢠Processing Time: {processing_time:?}");
153 println!(
154 " ⢠Throughput: {:.2} docs/sec",
155 result.performance_metrics.throughput
156 );
157 println!(
158 " ⢠Memory Efficiency: {:.1}%",
159 result.performance_metrics.memory_efficiency * 100.0
160 );
161 println!(
162 " ⢠Accuracy Estimate: {:.1}%",
163 result.performance_metrics.accuracy_estimate * 100.0
164 );
165
166 println!("\nš§ Applied Optimizations:");
167 for optimization in &result.optimizations_applied {
168 println!(" ⢠{optimization}");
169 }
170
171 println!("\nšÆ Confidence Scores:");
172 for (metric, score) in &result.confidence_scores {
173 println!(" ⢠{}: {:.1}%", metric, score * 100.0);
174 }
175
176 println!();
177 Ok(())
178 }
179
180 fn demo_performance_monitored_simd(&self) -> Result<()> {
182 println!("ā” Demo 2: Performance-Monitored SIMD Operations");
183 println!("===============================================");
184
185 let testtexts = [
186 "The quick brown fox jumps over the lazy dog".to_string(),
187 "Pack my box with five dozen liquor jugs".to_string(),
188 "How vexingly quick daft zebras jump!".to_string(),
189 "Bright vixens jump; dozy fowl quack".to_string(),
190 ];
191
192 println!("Running SIMD-accelerated operations with performance monitoring...");
193
194 let operation_monitor = self
196 .performance_monitor
197 .start_operation("simd_operations")?;
198
199 let start_time = Instant::now();
200
201 let testtext_refs: Vec<&str> = testtexts.iter().map(|s| s.as_str()).collect();
203 let processed_results = AdvancedSIMDTextProcessor::advanced_batch_process(&testtext_refs);
204
205 let char_counts: Vec<usize> = testtexts
207 .iter()
208 .map(|text| SimdStringOps::count_chars(text, 'o'))
209 .collect();
210
211 let similarity_matrix =
213 AdvancedSIMDTextProcessor::advanced_similarity_matrix(&testtext_refs);
214
215 let processing_time = start_time.elapsed();
216
217 operation_monitor.complete(testtexts.len())?;
219
220 println!("\nš SIMD Operation Results:");
221 println!(" ⢠Processing Time: {processing_time:?}");
222 println!(" ⢠Documents Processed: {}", processed_results.len());
223 println!(" ⢠Character Counts (letter 'o'): {char_counts:?}");
224 println!(
225 " ⢠Similarity Matrix Size: {}x{}",
226 similarity_matrix.len(),
227 similarity_matrix[0].len()
228 );
229
230 println!("\nš Text Similarity Matrix:");
232 for (i, row) in similarity_matrix.iter().enumerate() {
233 print!(" Row {i}: [");
234 for (j, &similarity) in row.iter().enumerate() {
235 if j > 0 {
236 print!(", ");
237 }
238 print!("{similarity:.3}");
239 }
240 println!("]");
241 }
242
243 println!("\nāļø SIMD Capabilities:");
245 println!(" ⢠SIMD Available: {}", SimdStringOps::is_available());
246 println!(" ⢠String Processing: Optimized");
247 println!(" ⢠Pattern Matching: Optimized");
248 println!(" ⢠Similarity Computation: Vectorized");
249
250 println!();
251 Ok(())
252 }
253
254 fn demo_adaptive_streaming(&self) -> Result<()> {
256 println!("š Demo 3: Adaptive Streaming Processing");
257 println!("========================================");
258
259 let largetexts: Vec<String> = (0..1000)
261 .map(|i| format!("This is streaming document number {i} with various content lengths and different patterns of text processing requirements."))
262 .collect();
263
264 println!(
265 "Processing {} documents through adaptive streaming...",
266 largetexts.len()
267 );
268
269 let operation_monitor = self
271 .performance_monitor
272 .start_operation("adaptive_streaming")?;
273
274 let start_time = Instant::now();
275
276 let streaming_processor = AdvancedStreamingProcessor::new(WordTokenizer::default())
278 .with_parallelism(4, 1024 * 1024);
279
280 let mut total_tokens = 0;
282 let tokenizer = WordTokenizer::default();
283 for text in &largetexts {
284 if let Ok(tokens) = tokenizer.tokenize(text) {
285 total_tokens += tokens.len();
286 }
287 }
288
289 let processing_time = start_time.elapsed();
290
291 operation_monitor.complete(largetexts.len())?;
293
294 let (current_mem, peak_mem) = streaming_processor.memory_stats();
296
297 println!("\nš Streaming Processing Results:");
298 println!(" ⢠Processing Time: {processing_time:?}");
299 println!(" ⢠Documents Processed: {}", largetexts.len());
300 println!(" ⢠Total Tokens Extracted: {total_tokens}");
301 println!(" ⢠Current Memory Usage: {current_mem} bytes");
302 println!(" ⢠Peak Memory Usage: {peak_mem} bytes");
303 println!(
304 " ⢠Throughput: {:.2} docs/sec",
305 largetexts.len() as f64 / processing_time.as_secs_f64()
306 );
307
308 println!("\nš Advanced Features:");
309 println!(" ⢠Parallel Processing: Enabled");
310 println!(" ⢠Memory Monitoring: Active");
311 println!(" ⢠Advanced Tokenization: Optimized");
312
313 println!();
314 Ok(())
315 }
316
317 fn demo_realtime_optimization(&self) -> Result<()> {
319 println!("šÆ Demo 4: Real-time Optimization and Adaptation");
320 println!("===============================================");
321
322 let workload_patterns = vec![
324 ("Short Documents", generate_short_documents(50)),
325 ("Medium Documents", generate_medium_documents(30)),
326 ("Long Documents", generate_long_documents(20)),
327 ("Mixed Workload", generate_mixed_workload(40)),
328 ];
329
330 for (pattern_name, documents) in workload_patterns {
331 println!("\nš Processing Pattern: {pattern_name}");
332 println!(" ⢠Document Count: {}", documents.len());
333
334 let operation_monitor = self
336 .performance_monitor
337 .start_operation(&format!("pattern_{}", pattern_name.replace(' ', "_")))?;
338
339 let start_time = Instant::now();
340
341 let result = self.coordinator.advanced_processtext(&documents)?;
343
344 let processing_time = start_time.elapsed();
345
346 operation_monitor.complete(documents.len())?;
348
349 println!(" ⢠Processing Time: {processing_time:?}");
350 println!(
351 " ⢠Throughput: {:.2} docs/sec",
352 result.performance_metrics.throughput
353 );
354 println!(
355 " ⢠Optimizations Applied: {}",
356 result.optimizations_applied.len()
357 );
358
359 if !result.optimizations_applied.is_empty() {
361 println!(" ⢠Adaptive Responses:");
362 for opt in &result.optimizations_applied {
363 println!(" - {opt}");
364 }
365 }
366 }
367
368 let recommendations = self.performance_monitor.get_optimization_opportunities()?;
370
371 println!("\nš” Current Optimization Opportunities:");
372 if recommendations.is_empty() {
373 println!(" ⢠No optimization opportunities identified");
374 println!(" ⢠System is operating at optimal performance");
375 } else {
376 for (i, rec) in recommendations.iter().enumerate() {
377 println!(" {}. [{}] {}", i + 1, rec.category, rec.recommendation);
378 println!(
379 " Impact: {:.0}% | Complexity: {}/5",
380 rec.impact_estimate * 100.0,
381 rec.complexity
382 );
383 }
384 }
385
386 println!();
387 Ok(())
388 }
389
390 fn demo_system_analytics(&self) -> Result<()> {
392 println!("š Demo 5: Comprehensive System Analytics");
393 println!("=========================================");
394
395 let performance_report = self.performance_monitor.generate_performance_report()?;
397
398 println!("š Performance Summary:");
399 println!(
400 " ⢠Total Operations: {}",
401 performance_report.summary.total_operations
402 );
403 println!(
404 " ⢠Avg Processing Time: {:?}",
405 performance_report.summary.recent_avg_processing_time
406 );
407 println!(
408 " ⢠Avg Throughput: {:.2} docs/sec",
409 performance_report.summary.recent_avg_throughput
410 );
411 println!(
412 " ⢠Avg Memory Usage: {} MB",
413 performance_report.summary.recent_avg_memory_usage / (1024 * 1024)
414 );
415 println!(
416 " ⢠Cache Hit Rate: {:.1}%",
417 performance_report.summary.cache_hit_rate * 100.0
418 );
419
420 if !performance_report.summary.active_alerts.is_empty() {
421 println!("\nā ļø Active Performance Alerts:");
422 for alert in &performance_report.summary.active_alerts {
423 println!(" ⢠{alert}");
424 }
425 } else {
426 println!("\nā
No active performance alerts");
427 }
428
429 println!("\nš Historical Trends:");
430 println!(
431 " ⢠Processing Time: {:?}",
432 performance_report.historical_trends.processing_time_trend
433 );
434 println!(
435 " ⢠Throughput: {:?}",
436 performance_report.historical_trends.throughput_trend
437 );
438 println!(
439 " ⢠Memory Usage: {:?}",
440 performance_report.historical_trends.memory_usage_trend
441 );
442
443 println!("\nš„ļø Resource Utilization:");
444 println!(
445 " ⢠CPU: {:.1}%",
446 performance_report.resource_utilization.avg_cpu_utilization
447 );
448 println!(
449 " ⢠Peak Memory: {} MB",
450 performance_report.resource_utilization.peak_memory_usage / (1024 * 1024)
451 );
452 println!(
453 " ⢠Network I/O: {} MB sent, {} MB received",
454 performance_report
455 .resource_utilization
456 .network_io
457 .bytes_sent
458 / (1024 * 1024),
459 performance_report
460 .resource_utilization
461 .network_io
462 .bytes_received
463 / (1024 * 1024)
464 );
465
466 if !performance_report.bottleneck_analysis.is_empty() {
467 println!("\nš Bottleneck Analysis:");
468 for bottleneck in &performance_report.bottleneck_analysis {
469 println!(
470 " ⢠{} [{}]: {}",
471 bottleneck.component, bottleneck.severity, bottleneck.description
472 );
473 for rec in &bottleneck.recommendations {
474 println!(" - {rec}");
475 }
476 }
477 }
478
479 if !performance_report.recommendations.is_empty() {
480 println!("\nšÆ System Recommendations:");
481 for rec in &performance_report.recommendations {
482 println!(
483 " ⢠[{}] {} (Impact: {:.0}%)",
484 rec.category,
485 rec.recommendation,
486 rec.impact_estimate * 100.0
487 );
488 }
489 }
490
491 let health_score = calculate_system_health_score(&performance_report);
493 println!("\nš„ Overall System Health Score: {health_score:.1}/100");
494
495 let health_status = match health_score {
496 score if score >= 90.0 => "Excellent",
497 score if score >= 80.0 => "Good",
498 score if score >= 70.0 => "Fair",
499 score if score >= 60.0 => "Poor",
500 _ => "Critical",
501 };
502 println!(
503 " Status: {} - System is performing {}",
504 health_status,
505 if health_score >= 80.0 {
506 "optimally"
507 } else {
508 "suboptimally"
509 }
510 );
511
512 println!();
513 Ok(())
514 }
515}
516
517#[allow(dead_code)]
519fn generate_short_documents(count: usize) -> Vec<String> {
520 (0..count).map(|i| format!("Short doc {i}.")).collect()
521}
522
523#[allow(dead_code)]
524fn generate_medium_documents(count: usize) -> Vec<String> {
525 (0..count)
526 .map(|i| format!("Medium length document {i} with additional content for processing analysis and performance testing."))
527 .collect()
528}
529
530#[allow(dead_code)]
531fn generate_long_documents(count: usize) -> Vec<String> {
532 (0..count)
533 .map(|i| format!("This is a long document number {i} that contains significant amounts of text content designed to test the performance characteristics of the Advanced text processing system under heavy load conditions with complex linguistic patterns and varied vocabulary usage."))
534 .collect()
535}
536
537#[allow(dead_code)]
538fn generate_mixed_workload(count: usize) -> Vec<String> {
539 (0..count)
540 .map(|i| match i % 3 {
541 0 => format!("Short {i}"),
542 1 => format!("Medium document {i} with some content."),
543 _ => format!("Long detailed document {i} with extensive content for comprehensive testing and analysis."),
544 })
545 .collect()
546}
547
548#[allow(dead_code)]
549fn calculate_system_health_score(
550 report: &scirs2_text::performance::DetailedPerformanceReport,
551) -> f64 {
552 let mut score: f64 = 100.0;
553
554 score -= report.summary.active_alerts.len() as f64 * 10.0;
556
557 if report.summary.recent_avg_throughput < 500.0 {
559 score -= 15.0;
560 }
561
562 if report.summary.recent_avg_memory_usage > 4 * 1024 * 1024 * 1024 {
564 score -= 10.0;
566 }
567
568 if report.summary.cache_hit_rate < 0.8 {
570 score -= 15.0;
571 }
572
573 score -= report.bottleneck_analysis.len() as f64 * 5.0;
575
576 score.clamp(0.0, 100.0)
577}