Expand description
Advanced bootstrap methods for complex statistical inference
This module provides sophisticated bootstrap resampling techniques that go beyond simple random sampling, including stratified bootstrap, block bootstrap for time series, and other specialized resampling methods for complex data structures.
Structs§
- Advanced
Bootstrap Config - Advanced bootstrap configuration
- Advanced
Bootstrap Processor - Advanced bootstrap processor
- Advanced
Bootstrap Result - Bootstrap result with comprehensive statistics
- Bootstrap
Confidence Intervals - Bootstrap confidence intervals
- Bootstrap
Diagnostics - Bootstrap diagnostics
- Bootstrap
Distribution Stats - Bootstrap distribution statistics
- Convergence
Info - Convergence information
- Quality
Metrics - Quality metrics for bootstrap assessment
Enums§
- Block
Type - Block bootstrap types for time series
- Bootstrap
Type - Bootstrap method types
- Parametric
Bootstrap Params - Parametric bootstrap parameters
- Taper
Function - Tapering functions for block bootstrap
- Wild
Distribution - Wild bootstrap distributions
Functions§
- block_
bootstrap - Convenience function for block bootstrap
- circular_
block_ bootstrap - Convenience function for circular block bootstrap
- moving_
block_ bootstrap - Convenience function for moving block bootstrap
- stationary_
bootstrap - Convenience function for stationary bootstrap
- stratified_
bootstrap - Convenience function for stratified bootstrap