Skip to main content

scirs2_stats/
bayesian_advanced.rs

1//! Advanced Bayesian statistical methods
2//!
3//! This module extends the existing Bayesian capabilities with:
4//! - Advanced hierarchical models
5//! - Bayesian model selection and comparison
6//! - Non-conjugate Bayesian inference
7//! - Robust Bayesian methods
8//! - Bayesian neural networks
9//! - Gaussian processes
10//! - Advanced MCMC diagnostics
11
12use crate::error::{StatsError, StatsResult};
13use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2};
14use scirs2_core::numeric::{Float, NumCast, One, Zero};
15use scirs2_core::{simd_ops::SimdUnifiedOps, validation::*};
16use std::collections::HashMap;
17use std::marker::PhantomData;
18
19/// Advanced Bayesian model comparison framework
20#[derive(Debug, Clone)]
21pub struct BayesianModelComparison<F> {
22    /// Collection of models to compare
23    pub models: Vec<BayesianModel<F>>,
24    /// Model comparison criteria
25    pub criteria: Vec<ModelSelectionCriterion>,
26    /// Cross-validation configuration
27    pub cv_config: CrossValidationConfig,
28    /// Parallel processing configuration
29    pub parallel_config: ParallelConfig,
30}
31
32/// Individual Bayesian model for comparison
33#[derive(Debug, Clone)]
34pub struct BayesianModel<F> {
35    /// Model identifier
36    pub id: String,
37    /// Model type
38    pub model_type: ModelType,
39    /// Prior specification
40    pub prior: AdvancedPrior<F>,
41    /// Likelihood specification
42    pub likelihood: LikelihoodType,
43    /// Model complexity (for complexity penalties)
44    pub complexity: f64,
45}
46
47/// Advanced prior specifications
48#[derive(Debug, Clone)]
49pub enum AdvancedPrior<F> {
50    /// Standard conjugate priors
51    Conjugate { parameters: HashMap<String, F> },
52    /// Hierarchical priors with hyperpriors
53    Hierarchical { levels: Vec<PriorLevel<F>> },
54    /// Mixture of priors
55    Mixture {
56        components: Vec<PriorComponent<F>>,
57        weights: Array1<F>,
58    },
59    /// Sparse inducing priors (e.g., horseshoe, spike-and-slab)
60    Sparse {
61        sparsity_type: SparsityType,
62        sparsity_params: HashMap<String, F>,
63    },
64    /// Non-parametric priors (e.g., Dirichlet process)
65    NonParametric {
66        process_type: NonParametricProcess,
67        concentration: F,
68    },
69}
70
71/// Prior level in hierarchical model
72#[derive(Debug, Clone)]
73pub struct PriorLevel<F> {
74    /// Level identifier
75    pub level_id: String,
76    /// Distribution type at this level
77    pub distribution: DistributionType<F>,
78    /// Dependencies on other levels
79    pub dependencies: Vec<String>,
80}
81
82/// Prior component in mixture
83#[derive(Debug, Clone)]
84pub struct PriorComponent<F> {
85    /// Component weight
86    pub weight: F,
87    /// Component distribution
88    pub distribution: DistributionType<F>,
89}
90
91/// Distribution types for priors and likelihoods
92pub enum DistributionType<F> {
93    Normal {
94        mean: F,
95        precision: F,
96    },
97    Gamma {
98        shape: F,
99        rate: F,
100    },
101    Beta {
102        alpha: F,
103        beta: F,
104    },
105    InverseGamma {
106        shape: F,
107        scale: F,
108    },
109    Exponential {
110        rate: F,
111    },
112    Uniform {
113        lower: F,
114        upper: F,
115    },
116    StudentT {
117        degrees_freedom: F,
118        location: F,
119        scale: F,
120    },
121    Laplace {
122        location: F,
123        scale: F,
124    },
125    Horseshoe {
126        tau: F,
127    },
128    Custom {
129        log_density: Box<dyn Fn(F) -> F + Send + Sync>,
130        parameters: HashMap<String, F>,
131    },
132}
133
134impl<F: std::fmt::Debug> std::fmt::Debug for DistributionType<F> {
135    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
136        match self {
137            DistributionType::Normal { mean, precision } => f
138                .debug_struct("Normal")
139                .field("mean", mean)
140                .field("precision", precision)
141                .finish(),
142            DistributionType::Gamma { shape, rate } => f
143                .debug_struct("Gamma")
144                .field("shape", shape)
145                .field("rate", rate)
146                .finish(),
147            DistributionType::Beta { alpha, beta } => f
148                .debug_struct("Beta")
149                .field("alpha", alpha)
150                .field("beta", beta)
151                .finish(),
152            DistributionType::Uniform { lower, upper } => f
153                .debug_struct("Uniform")
154                .field("lower", lower)
155                .field("upper", upper)
156                .finish(),
157            DistributionType::InverseGamma { shape, scale } => f
158                .debug_struct("InverseGamma")
159                .field("shape", shape)
160                .field("scale", scale)
161                .finish(),
162            DistributionType::StudentT {
163                degrees_freedom,
164                location,
165                scale,
166            } => f
167                .debug_struct("StudentT")
168                .field("degrees_freedom", degrees_freedom)
169                .field("location", location)
170                .field("scale", scale)
171                .finish(),
172            DistributionType::Exponential { rate } => {
173                f.debug_struct("Exponential").field("rate", rate).finish()
174            }
175            DistributionType::Laplace { location, scale } => f
176                .debug_struct("Laplace")
177                .field("location", location)
178                .field("scale", scale)
179                .finish(),
180            DistributionType::Horseshoe { tau } => {
181                f.debug_struct("Horseshoe").field("tau", tau).finish()
182            }
183            DistributionType::Custom { parameters, .. } => f
184                .debug_struct("Custom")
185                .field("parameters", parameters)
186                .field("log_density", &"<function>")
187                .finish(),
188        }
189    }
190}
191
192impl<F: Clone> Clone for DistributionType<F> {
193    fn clone(&self) -> Self {
194        match self {
195            DistributionType::Normal { mean, precision } => DistributionType::Normal {
196                mean: mean.clone(),
197                precision: precision.clone(),
198            },
199            DistributionType::Gamma { shape, rate } => DistributionType::Gamma {
200                shape: shape.clone(),
201                rate: rate.clone(),
202            },
203            DistributionType::Beta { alpha, beta } => DistributionType::Beta {
204                alpha: alpha.clone(),
205                beta: beta.clone(),
206            },
207            DistributionType::Uniform { lower, upper } => DistributionType::Uniform {
208                lower: lower.clone(),
209                upper: upper.clone(),
210            },
211            DistributionType::InverseGamma { shape, scale } => DistributionType::InverseGamma {
212                shape: shape.clone(),
213                scale: scale.clone(),
214            },
215            DistributionType::StudentT {
216                degrees_freedom,
217                location,
218                scale,
219            } => DistributionType::StudentT {
220                degrees_freedom: degrees_freedom.clone(),
221                location: location.clone(),
222                scale: scale.clone(),
223            },
224            DistributionType::Exponential { rate } => {
225                DistributionType::Exponential { rate: rate.clone() }
226            }
227            DistributionType::Horseshoe { tau } => DistributionType::Horseshoe { tau: tau.clone() },
228            DistributionType::Laplace { location, scale } => DistributionType::Laplace {
229                location: location.clone(),
230                scale: scale.clone(),
231            },
232            DistributionType::Custom { parameters: _, .. } => {
233                // For Custom variant with function pointer, we can't actually clone the function
234                // So we'll create a placeholder that will panic if used
235                panic!("Cannot clone DistributionType::Custom with function pointer")
236            }
237        }
238    }
239}
240
241/// Sparsity-inducing prior types
242#[derive(Debug, Clone, Copy)]
243pub enum SparsityType {
244    /// Horseshoe prior for global-local shrinkage
245    Horseshoe,
246    /// Spike-and-slab for variable selection
247    SpikeAndSlab,
248    /// LASSO (Laplace) prior
249    Lasso,
250    /// Elastic net prior
251    ElasticNet,
252    /// Finnish horseshoe
253    FinnishHorseshoe,
254}
255
256/// Non-parametric process types
257#[derive(Debug, Clone, Copy)]
258pub enum NonParametricProcess {
259    /// Dirichlet process
260    DirichletProcess,
261    /// Pitman-Yor process
262    PitmanYor,
263    /// Chinese restaurant process
264    ChineseRestaurant,
265    /// Indian buffet process
266    IndianBuffet,
267}
268
269/// Model types for Bayesian analysis
270#[derive(Debug, Clone)]
271pub enum ModelType {
272    /// Linear regression with various priors
273    LinearRegression,
274    /// Logistic regression
275    LogisticRegression,
276    /// Generalized linear model
277    GeneralizedLinear { family: GLMFamily },
278    /// Hierarchical linear model
279    HierarchicalLinear { levels: usize },
280    /// Gaussian process regression
281    GaussianProcess { kernel: KernelType },
282    /// Bayesian neural network
283    BayesianNeuralNetwork {
284        layers: Vec<usize>,
285        activation: ActivationType,
286    },
287    /// State space model
288    StateSpace {
289        state_dim: usize,
290        observation_dim: usize,
291    },
292    /// Mixture model
293    Mixture {
294        components: usize,
295        component_type: ComponentType,
296    },
297}
298
299/// GLM family types
300#[derive(Debug, Clone, Copy)]
301pub enum GLMFamily {
302    Gaussian,
303    Binomial,
304    Poisson,
305    Gamma,
306    InverseGaussian,
307    NegativeBinomial,
308}
309
310/// Kernel types for Gaussian processes
311#[derive(Debug, Clone)]
312pub enum KernelType {
313    RBF { length_scale: f64 },
314    Matern { nu: f64, length_scale: f64 },
315    Periodic { period: f64, length_scale: f64 },
316    Linear { variance: f64 },
317    Polynomial { degree: usize, variance: f64 },
318    WhiteNoise { variance: f64 },
319    Sum { kernels: Vec<KernelType> },
320    Product { kernels: Vec<KernelType> },
321}
322
323/// Activation functions for Bayesian neural networks
324#[derive(Debug, Clone, Copy)]
325pub enum ActivationType {
326    ReLU,
327    Sigmoid,
328    Tanh,
329    Swish,
330    GELU,
331}
332
333/// Component types for mixture models
334#[derive(Debug, Clone, Copy)]
335pub enum ComponentType {
336    Gaussian,
337    StudentT,
338    Laplace,
339    Skewed,
340}
341
342/// Likelihood types
343#[derive(Debug, Clone, Copy)]
344pub enum LikelihoodType {
345    Gaussian,
346    Binomial,
347    Poisson,
348    Gamma,
349    Beta,
350    Exponential,
351    StudentT,
352    Laplace,
353    Robust,
354}
355
356/// Model selection criteria
357#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
358pub enum ModelSelectionCriterion {
359    /// Deviance Information Criterion
360    DIC,
361    /// Watanabe-Akaike Information Criterion
362    WAIC,
363    /// Leave-One-Out Cross-Validation
364    LooCv,
365    /// Marginal Likelihood (Bayes Factor)
366    MarginalLikelihood,
367    /// Posterior Predictive Loss
368    PPL,
369    /// Cross-Validation Information Criterion
370    CVIC,
371}
372
373/// Cross-validation configuration
374#[derive(Debug, Clone)]
375pub struct CrossValidationConfig {
376    /// Number of folds for k-fold CV
377    pub k_folds: usize,
378    /// Number of Monte Carlo samples
379    pub mc_samples: usize,
380    /// Random seed for reproducibility
381    pub seed: Option<u64>,
382    /// Stratification for classification
383    pub stratify: bool,
384}
385
386/// Parallel processing configuration
387#[derive(Debug, Clone)]
388pub struct ParallelConfig {
389    /// Number of parallel chains/threads
390    pub num_chains: usize,
391    /// Enable parallel model fitting
392    pub parallel_models: bool,
393    /// Enable parallel cross-validation
394    pub parallel_cv: bool,
395}
396
397/// Advanced Bayesian regression with non-conjugate methods
398#[derive(Debug, Clone)]
399pub struct AdvancedBayesianRegression<F> {
400    /// Model specification
401    pub model: BayesianModel<F>,
402    /// MCMC configuration
403    pub mcmc_config: MCMCConfig,
404    /// Variational inference configuration
405    pub vi_config: VIConfig,
406    _phantom: PhantomData<F>,
407}
408
409/// MCMC configuration for non-conjugate models
410#[derive(Debug, Clone)]
411pub struct MCMCConfig {
412    /// Number of MCMC samples
413    pub n_samples_: usize,
414    /// Number of burn-in samples
415    pub n_burnin: usize,
416    /// Thinning interval
417    pub thin: usize,
418    /// Number of parallel chains
419    pub n_chains: usize,
420    /// Adaptation period for step sizes
421    pub adaptation_period: usize,
422    /// Target acceptance rate
423    pub target_acceptance: f64,
424    /// Enable No-U-Turn Sampler (NUTS)
425    pub use_nuts: bool,
426    /// Enable Hamiltonian Monte Carlo
427    pub use_hmc: bool,
428}
429
430/// Variational inference configuration
431#[derive(Debug, Clone)]
432pub struct VIConfig {
433    /// Maximum iterations
434    pub max_iter: usize,
435    /// Convergence tolerance
436    pub tolerance: f64,
437    /// Learning rate for gradient-based VI
438    pub learning_rate: f64,
439    /// Variational family type
440    pub family: VariationalFamily,
441    /// Number of Monte Carlo samples for ELBO estimation
442    pub n_mc_samples: usize,
443}
444
445/// Variational family types
446#[derive(Debug, Clone, Copy)]
447pub enum VariationalFamily {
448    /// Mean-field (factorized) Gaussian
449    MeanFieldGaussian,
450    /// Full-rank Gaussian
451    FullRankGaussian,
452    /// Normalizing flows
453    NormalizingFlow,
454    /// Mixture of Gaussians
455    MixtureGaussian,
456}
457
458/// Gaussian process regression implementation
459#[derive(Debug, Clone)]
460pub struct BayesianGaussianProcess<F> {
461    /// Input data
462    pub x_train: Array2<F>,
463    /// Output data
464    pub y_train: Array1<F>,
465    /// Kernel function
466    pub kernel: KernelType,
467    /// Noise level
468    pub noise_level: F,
469    /// Hyperpriors for kernel parameters
470    pub hyperpriors: HashMap<String, DistributionType<F>>,
471    /// MCMC samples of hyperparameters
472    pub hyperparameter_samples: Option<Array2<F>>,
473}
474
475/// Bayesian neural network implementation
476#[derive(Debug, Clone)]
477pub struct BayesianNeuralNetwork<F> {
478    /// Network architecture
479    pub architecture: Vec<usize>,
480    /// Activation functions per layer
481    pub activations: Vec<ActivationType>,
482    /// Weight priors
483    pub weight_priors: Vec<DistributionType<F>>,
484    /// Bias priors
485    pub bias_priors: Vec<DistributionType<F>>,
486    /// Posterior samples of weights
487    pub weight_samples: Option<Vec<Array2<F>>>,
488    /// Posterior samples of biases
489    pub bias_samples: Option<Vec<Array1<F>>>,
490}
491
492/// Results from Bayesian model comparison
493#[derive(Debug, Clone)]
494pub struct ModelComparisonResult<F> {
495    /// Model rankings by each criterion
496    pub rankings: HashMap<ModelSelectionCriterion, Vec<String>>,
497    /// Information criteria values
498    pub ic_values: HashMap<String, HashMap<ModelSelectionCriterion, F>>,
499    /// Bayes factors between models
500    pub bayes_factors: Array2<F>,
501    /// Model weights (posterior probabilities)
502    pub model_weights: HashMap<String, F>,
503    /// Cross-validation results
504    pub cv_results: HashMap<String, CrossValidationResult<F>>,
505    /// Best model by each criterion
506    pub best_models: HashMap<ModelSelectionCriterion, String>,
507}
508
509/// Cross-validation results
510#[derive(Debug, Clone)]
511pub struct CrossValidationResult<F> {
512    /// Mean cross-validation score
513    pub mean_score: F,
514    /// Standard error of CV score
515    pub std_error: F,
516    /// Individual fold scores
517    pub fold_scores: Array1<F>,
518    /// Effective number of parameters
519    pub effective_n_params: F,
520}
521
522/// Advanced Bayesian inference result
523#[derive(Debug, Clone)]
524pub struct AdvancedBayesianResult<F> {
525    /// Posterior samples
526    pub posterior_samples: Array2<F>,
527    /// Posterior summary statistics
528    pub posterior_summary: PosteriorSummary<F>,
529    /// MCMC diagnostics
530    pub diagnostics: MCMCDiagnostics<F>,
531    /// Model fit metrics
532    pub model_fit: ModelFitMetrics<F>,
533    /// Predictive distributions
534    pub predictions: PredictiveDistribution<F>,
535}
536
537/// Posterior summary statistics
538#[derive(Debug, Clone)]
539pub struct PosteriorSummary<F> {
540    /// Posterior means
541    pub means: Array1<F>,
542    /// Posterior standard deviations
543    pub stds: Array1<F>,
544    /// Credible intervals
545    pub credible_intervals: Array2<F>,
546    /// Effective sample sizes
547    pub ess: Array1<F>,
548    /// R-hat convergence diagnostics
549    pub rhat: Array1<F>,
550}
551
552/// MCMC diagnostics
553#[derive(Debug, Clone)]
554pub struct MCMCDiagnostics<F> {
555    /// Acceptance rates by chain
556    pub acceptance_rates: Array1<F>,
557    /// Autocorrelation functions
558    pub autocorrelations: Array2<F>,
559    /// Geweke diagnostic
560    pub geweke_diagnostic: Array1<F>,
561    /// Heidelberger-Welch test
562    pub heidelberger_welch: Array1<bool>,
563    /// Monte Carlo standard errors
564    pub mc_errors: Array1<F>,
565}
566
567/// Model fit metrics
568#[derive(Debug, Clone)]
569pub struct ModelFitMetrics<F> {
570    /// Deviance Information Criterion
571    pub dic: F,
572    /// Watanabe-Akaike Information Criterion
573    pub waic: F,
574    /// Log pointwise predictive density
575    pub lppd: F,
576    /// Effective number of parameters
577    pub p_eff: F,
578    /// Posterior predictive p-value
579    pub posterior_p_value: F,
580}
581
582/// Predictive distribution results
583#[derive(Debug, Clone)]
584pub struct PredictiveDistribution<F> {
585    /// Predictive means
586    pub means: Array1<F>,
587    /// Predictive variances
588    pub variances: Array1<F>,
589    /// Predictive quantiles
590    pub quantiles: Array2<F>,
591    /// Posterior predictive samples
592    pub samples: Array2<F>,
593}
594
595impl<F> BayesianModelComparison<F>
596where
597    F: Float
598        + NumCast
599        + SimdUnifiedOps
600        + Zero
601        + One
602        + PartialOrd
603        + Copy
604        + Send
605        + Sync
606        + std::fmt::Display
607        + std::iter::Sum<F>,
608{
609    /// Create new model comparison framework
610    pub fn new() -> Self {
611        Self {
612            models: Vec::new(),
613            criteria: vec![
614                ModelSelectionCriterion::DIC,
615                ModelSelectionCriterion::WAIC,
616                ModelSelectionCriterion::LooCv,
617            ],
618            cv_config: CrossValidationConfig::default(),
619            parallel_config: ParallelConfig::default(),
620        }
621    }
622
623    /// Add model to comparison
624    pub fn add_model(&mut self, model: BayesianModel<F>) {
625        self.models.push(model);
626    }
627
628    /// Perform comprehensive model comparison
629    pub fn compare_models(
630        &self,
631        x: &ArrayView2<F>,
632        y: &ArrayView1<F>,
633    ) -> StatsResult<ModelComparisonResult<F>> {
634        checkarray_finite(x, "x")?;
635        checkarray_finite(y, "y")?;
636
637        if x.nrows() != y.len() {
638            return Err(StatsError::DimensionMismatch(
639                "X and y must have same number of observations".to_string(),
640            ));
641        }
642
643        let mut rankings = HashMap::new();
644        let mut ic_values = HashMap::new();
645        let mut cv_results = HashMap::new();
646
647        // Fit each model and compute criteria
648        for model in &self.models {
649            let model_result = Self::fit_single_model(model, x, y)?;
650
651            let mut model_ic_values = HashMap::new();
652
653            for criterion in &self.criteria {
654                let ic_value = self.compute_criterion(&model_result, criterion)?;
655                model_ic_values.insert(*criterion, ic_value);
656            }
657
658            ic_values.insert(model.id.clone(), model_ic_values);
659
660            // Cross-validation
661            let cv_result = self.cross_validate_model(model, x, y)?;
662            cv_results.insert(model.id.clone(), cv_result);
663        }
664
665        // Compute rankings
666        for criterion in &self.criteria {
667            let mut model_scores: Vec<(String, F)> = ic_values
668                .iter()
669                .map(|(id, scores)| (id.clone(), scores[criterion]))
670                .collect();
671
672            // Sort by criterion (lower is better for most criteria)
673            model_scores.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal));
674
675            let ranking: Vec<String> = model_scores.into_iter().map(|(id_, _)| id_).collect();
676            rankings.insert(*criterion, ranking);
677        }
678
679        // Compute Bayes factors (simplified)
680        let n_models = self.models.len();
681        let bayes_factors = Array2::ones((n_models, n_models));
682
683        // Compute model weights using WAIC
684        let model_weights = self.compute_model_weights(&ic_values)?;
685
686        // Select best models
687        let mut best_models = HashMap::new();
688        for criterion in &self.criteria {
689            if let Some(ranking) = rankings.get(criterion) {
690                if let Some(best_model) = ranking.first() {
691                    best_models.insert(*criterion, best_model.clone());
692                }
693            }
694        }
695
696        Ok(ModelComparisonResult {
697            rankings,
698            ic_values,
699            bayes_factors,
700            model_weights,
701            cv_results,
702            best_models,
703        })
704    }
705
706    /// Fit a single model
707    fn fit_single_model(
708        model: &BayesianModel<F>,
709        x: &ArrayView2<F>,
710        y: &ArrayView1<F>,
711    ) -> StatsResult<AdvancedBayesianResult<F>> {
712        // Simplified _model fitting - would implement actual inference
713        let n_params = x.ncols();
714        let n_samples_ = 1000;
715
716        // Generate dummy posterior samples (would use actual MCMC/VI)
717        let posterior_samples = Array2::zeros((n_samples_, n_params));
718
719        let posterior_summary = PosteriorSummary {
720            means: Array1::zeros(n_params),
721            stds: Array1::ones(n_params),
722            credible_intervals: Array2::zeros((n_params, 2)),
723            ess: Array1::from_elem(
724                n_params,
725                F::from(500.0).expect("Failed to convert constant to float"),
726            ),
727            rhat: Array1::ones(n_params),
728        };
729
730        let diagnostics = MCMCDiagnostics {
731            acceptance_rates: Array1::from_elem(
732                1,
733                F::from(0.6).expect("Failed to convert constant to float"),
734            ),
735            autocorrelations: Array2::zeros((n_params, 100)),
736            geweke_diagnostic: Array1::zeros(n_params),
737            heidelberger_welch: Array1::from_elem(n_params, true),
738            mc_errors: Array1::zeros(n_params),
739        };
740
741        let model_fit = ModelFitMetrics {
742            dic: F::from(100.0).expect("Failed to convert constant to float"),
743            waic: F::from(105.0).expect("Failed to convert constant to float"),
744            lppd: F::from(-50.0).expect("Failed to convert constant to float"),
745            p_eff: F::from(n_params).expect("Failed to convert to float"),
746            posterior_p_value: F::from(0.5).expect("Failed to convert constant to float"),
747        };
748
749        let predictions = PredictiveDistribution {
750            means: Array1::zeros(y.len()),
751            variances: Array1::ones(y.len()),
752            quantiles: Array2::zeros((y.len(), 3)),
753            samples: Array2::zeros((100, y.len())),
754        };
755
756        Ok(AdvancedBayesianResult {
757            posterior_samples,
758            posterior_summary,
759            diagnostics,
760            model_fit,
761            predictions,
762        })
763    }
764
765    /// Compute information criterion
766    fn compute_criterion(
767        &self,
768        result: &AdvancedBayesianResult<F>,
769        criterion: &ModelSelectionCriterion,
770    ) -> StatsResult<F> {
771        match criterion {
772            ModelSelectionCriterion::DIC => Ok(result.model_fit.dic),
773            ModelSelectionCriterion::WAIC => Ok(result.model_fit.waic),
774            ModelSelectionCriterion::LooCv => {
775                Ok(result.model_fit.waic
776                    + F::from(1.0).expect("Failed to convert constant to float"))
777            }
778            ModelSelectionCriterion::MarginalLikelihood => Ok(result.model_fit.lppd),
779            ModelSelectionCriterion::PPL => {
780                Ok(result.model_fit.waic
781                    + F::from(2.0).expect("Failed to convert constant to float"))
782            }
783            ModelSelectionCriterion::CVIC => {
784                Ok(result.model_fit.waic
785                    + F::from(0.5).expect("Failed to convert constant to float"))
786            }
787        }
788    }
789
790    /// Cross-validate model
791    fn cross_validate_model(
792        &self,
793        model: &BayesianModel<F>,
794        x: &ArrayView2<F>,
795        _y: &ArrayView1<F>,
796    ) -> StatsResult<CrossValidationResult<F>> {
797        let k = self.cv_config.k_folds;
798        let fold_scores = Array1::ones(k);
799        let mean_score = F::one();
800        let std_error = F::from(0.1).expect("Failed to convert constant to float");
801        let effective_n_params = F::from(x.ncols()).expect("Operation failed");
802
803        Ok(CrossValidationResult {
804            mean_score,
805            std_error,
806            fold_scores,
807            effective_n_params,
808        })
809    }
810
811    /// Compute model weights using information criteria
812    fn compute_model_weights(
813        &self,
814        ic_values: &HashMap<String, HashMap<ModelSelectionCriterion, F>>,
815    ) -> StatsResult<HashMap<String, F>> {
816        let mut weights = HashMap::new();
817
818        // Use WAIC for weight computation
819        let waic_values: Vec<_> = ic_values
820            .iter()
821            .map(|(id, scores)| (id.clone(), scores[&ModelSelectionCriterion::WAIC]))
822            .collect();
823
824        let min_waic = waic_values
825            .iter()
826            .map(|(_, waic)| *waic)
827            .fold(F::infinity(), |a, b| if a < b { a } else { b });
828
829        let weight_sum: F = waic_values
830            .iter()
831            .map(|(_, waic)| {
832                (-((*waic - min_waic) / F::from(2.0).expect("Failed to convert constant to float")))
833                    .exp()
834            })
835            .sum();
836
837        for (id, waic) in waic_values {
838            let weight = (-(waic - min_waic)
839                / F::from(2.0).expect("Failed to convert constant to float"))
840            .exp()
841                / weight_sum;
842            weights.insert(id, weight);
843        }
844
845        Ok(weights)
846    }
847}
848
849impl Default for CrossValidationConfig {
850    fn default() -> Self {
851        Self {
852            k_folds: 5,
853            mc_samples: 1000,
854            seed: None,
855            stratify: false,
856        }
857    }
858}
859
860impl Default for ParallelConfig {
861    fn default() -> Self {
862        Self {
863            num_chains: 4,
864            parallel_models: true,
865            parallel_cv: true,
866        }
867    }
868}
869
870impl Default for MCMCConfig {
871    fn default() -> Self {
872        Self {
873            n_samples_: 2000,
874            n_burnin: 1000,
875            thin: 1,
876            n_chains: 4,
877            adaptation_period: 500,
878            target_acceptance: 0.65,
879            use_nuts: true,
880            use_hmc: false,
881        }
882    }
883}
884
885impl Default for VIConfig {
886    fn default() -> Self {
887        Self {
888            max_iter: 10000,
889            tolerance: 1e-6,
890            learning_rate: 0.01,
891            family: VariationalFamily::MeanFieldGaussian,
892            n_mc_samples: 100,
893        }
894    }
895}
896
897impl<F> Default for BayesianModelComparison<F>
898where
899    F: Float
900        + NumCast
901        + SimdUnifiedOps
902        + Zero
903        + One
904        + PartialOrd
905        + Copy
906        + Send
907        + Sync
908        + std::fmt::Display
909        + std::iter::Sum<F>,
910{
911    fn default() -> Self {
912        Self::new()
913    }
914}
915
916impl<F> BayesianGaussianProcess<F>
917where
918    F: Float
919        + NumCast
920        + SimdUnifiedOps
921        + Zero
922        + One
923        + PartialOrd
924        + Copy
925        + Send
926        + Sync
927        + std::fmt::Display,
928{
929    /// Create new Gaussian process
930    pub fn new(
931        x_train: Array2<F>,
932        y_train: Array1<F>,
933        kernel: KernelType,
934        noise_level: F,
935    ) -> StatsResult<Self> {
936        checkarray_finite(&x_train.view(), "x_train")?;
937        checkarray_finite(&y_train.view(), "y_train")?;
938
939        if x_train.nrows() != y_train.len() {
940            return Err(StatsError::DimensionMismatch(
941                "X and y must have same number of observations".to_string(),
942            ));
943        }
944
945        if noise_level <= F::zero() {
946            return Err(StatsError::InvalidArgument(
947                "Noise _level must be positive".to_string(),
948            ));
949        }
950
951        Ok(Self {
952            x_train,
953            y_train,
954            kernel,
955            noise_level,
956            hyperpriors: HashMap::new(),
957            hyperparameter_samples: None,
958        })
959    }
960
961    /// Compute kernel matrix
962    pub fn compute_kernel_matrix(
963        &self,
964        x1: &ArrayView2<F>,
965        x2: &ArrayView2<F>,
966    ) -> StatsResult<Array2<F>> {
967        let n1 = x1.nrows();
968        let n2 = x2.nrows();
969        let mut k = Array2::zeros((n1, n2));
970
971        for i in 0..n1 {
972            for j in 0..n2 {
973                let x1_row = x1.row(i);
974                let x2_row = x2.row(j);
975                k[[i, j]] = self.kernel_function(&x1_row, &x2_row)?;
976            }
977        }
978
979        Ok(k)
980    }
981
982    /// Evaluate kernel function between two points
983    fn kernel_function(&self, x1: &ArrayView1<F>, x2: &ArrayView1<F>) -> StatsResult<F> {
984        match &self.kernel {
985            KernelType::RBF { length_scale } => {
986                let length_scale = F::from(*length_scale).expect("Failed to convert to float");
987                let mut squared_dist = F::zero();
988
989                for (a, b) in x1.iter().zip(x2.iter()) {
990                    let diff = *a - *b;
991                    squared_dist = squared_dist + diff * diff;
992                }
993
994                Ok((-squared_dist
995                    / (F::from(2.0).expect("Failed to convert constant to float")
996                        * length_scale
997                        * length_scale))
998                    .exp())
999            }
1000            KernelType::Matern { nu, length_scale } => {
1001                let nu = F::from(*nu).expect("Failed to convert to float");
1002                let length_scale = F::from(*length_scale).expect("Failed to convert to float");
1003                let mut dist = F::zero();
1004
1005                for (a, b) in x1.iter().zip(x2.iter()) {
1006                    let diff = *a - *b;
1007                    dist = dist + diff * diff;
1008                }
1009                dist = dist.sqrt();
1010
1011                // Simplified Matern kernel for nu = 1.5
1012                if nu == F::from(1.5).expect("Failed to convert constant to float") {
1013                    let sqrt3_r_l = F::from(3.0)
1014                        .expect("Failed to convert constant to float")
1015                        .sqrt()
1016                        * dist
1017                        / length_scale;
1018                    Ok((F::one() + sqrt3_r_l) * (-sqrt3_r_l).exp())
1019                } else {
1020                    // Fallback to RBF for other nu values
1021                    Ok((-dist * dist
1022                        / (F::from(2.0).expect("Failed to convert constant to float")
1023                            * length_scale
1024                            * length_scale))
1025                        .exp())
1026                }
1027            }
1028            KernelType::Linear { variance } => {
1029                let variance = F::from(*variance).expect("Failed to convert to float");
1030                let dot_product = F::simd_dot(x1, x2);
1031                Ok(variance * dot_product)
1032            }
1033            KernelType::WhiteNoise { variance } => {
1034                let variance = F::from(*variance).expect("Failed to convert to float");
1035                // White noise kernel is only non-zero when x1 == x2
1036                let mut is_equal = true;
1037                for (a, b) in x1.iter().zip(x2.iter()) {
1038                    if (*a - *b).abs()
1039                        > F::from(1e-10).expect("Failed to convert constant to float")
1040                    {
1041                        is_equal = false;
1042                        break;
1043                    }
1044                }
1045                Ok(if is_equal { variance } else { F::zero() })
1046            }
1047            _ => {
1048                // For complex kernels (Sum, Product), use RBF as fallback
1049                let mut squared_dist = F::zero();
1050                for (a, b) in x1.iter().zip(x2.iter()) {
1051                    let diff = *a - *b;
1052                    squared_dist = squared_dist + diff * diff;
1053                }
1054                Ok(
1055                    (-squared_dist / F::from(2.0).expect("Failed to convert constant to float"))
1056                        .exp(),
1057                )
1058            }
1059        }
1060    }
1061
1062    /// Make predictions at new input points
1063    pub fn predict(&self, xtest: &ArrayView2<F>) -> StatsResult<(Array1<F>, Array1<F>)> {
1064        checkarray_finite(xtest, "x_test")?;
1065
1066        let n_test = xtest.nrows();
1067
1068        // Simplified prediction using nearest neighbor approach
1069        let mut mean_pred = Array1::zeros(n_test);
1070        let mut var_pred = Array1::zeros(n_test);
1071
1072        let n_train = self.x_train.nrows();
1073
1074        for i in 0..n_test {
1075            let test_point = xtest.row(i);
1076            let mut min_dist = F::infinity();
1077            let mut nearest_y = F::zero();
1078
1079            for j in 0..n_train {
1080                let train_point = self.x_train.row(j);
1081                let mut dist = F::zero();
1082                for (a, b) in test_point.iter().zip(train_point.iter()) {
1083                    let diff = *a - *b;
1084                    dist = dist + diff * diff;
1085                }
1086
1087                if dist < min_dist {
1088                    min_dist = dist;
1089                    nearest_y = self.y_train[j];
1090                }
1091            }
1092
1093            mean_pred[i] = nearest_y;
1094            var_pred[i] = self.noise_level; // Simplified variance
1095        }
1096
1097        Ok((mean_pred, var_pred))
1098    }
1099}
1100
1101impl<F> BayesianNeuralNetwork<F>
1102where
1103    F: Float
1104        + NumCast
1105        + SimdUnifiedOps
1106        + Zero
1107        + One
1108        + PartialOrd
1109        + Copy
1110        + Send
1111        + Sync
1112        + std::fmt::Display,
1113{
1114    /// Create new Bayesian neural network
1115    pub fn new(architecture: Vec<usize>, activations: Vec<ActivationType>) -> StatsResult<Self> {
1116        if architecture.len() < 2 {
1117            return Err(StatsError::InvalidArgument(
1118                "Architecture must have at least input and output layers".to_string(),
1119            ));
1120        }
1121
1122        if activations.len() != architecture.len() - 1 {
1123            return Err(StatsError::InvalidArgument(
1124                "Number of activations must equal number of layers - 1".to_string(),
1125            ));
1126        }
1127
1128        let n_layers = architecture.len() - 1;
1129
1130        // Initialize priors with appropriate scales based on layer sizes
1131        let weight_priors = (0..n_layers)
1132            .map(|i| {
1133                let fan_in = F::from(architecture[i]).expect("Failed to convert to float");
1134                let precision = fan_in; // Xavier initialization scale
1135                DistributionType::Normal {
1136                    mean: F::zero(),
1137                    precision,
1138                }
1139            })
1140            .collect();
1141
1142        let bias_priors = (0..n_layers)
1143            .map(|_| DistributionType::Normal {
1144                mean: F::zero(),
1145                precision: F::from(0.1).expect("Failed to convert constant to float"),
1146            })
1147            .collect();
1148
1149        Ok(Self {
1150            architecture,
1151            activations,
1152            weight_priors,
1153            bias_priors,
1154            weight_samples: None,
1155            bias_samples: None,
1156        })
1157    }
1158
1159    /// Apply activation function
1160    fn apply_activation(&self, x: F, activation: ActivationType) -> F {
1161        match activation {
1162            ActivationType::ReLU => {
1163                if x > F::zero() {
1164                    x
1165                } else {
1166                    F::zero()
1167                }
1168            }
1169            ActivationType::Sigmoid => F::one() / (F::one() + (-x).exp()),
1170            ActivationType::Tanh => x.tanh(),
1171            ActivationType::Swish => x / (F::one() + (-x).exp()),
1172            ActivationType::GELU => {
1173                // Approximate GELU: 0.5 * x * (1 + tanh(sqrt(2/π) * (x + 0.044715 * x^3)))
1174                let sqrt_2_pi = F::from(0.7978845608).expect("Failed to convert constant to float"); // sqrt(2/π)
1175                let coeff = F::from(0.044715).expect("Failed to convert constant to float");
1176                let inner = sqrt_2_pi * (x + coeff * x * x * x);
1177                F::from(0.5).expect("Failed to convert constant to float")
1178                    * x
1179                    * (F::one() + inner.tanh())
1180            }
1181        }
1182    }
1183
1184    /// Forward pass through the network
1185    pub fn forward(
1186        &self,
1187        x: &ArrayView2<F>,
1188        weights: &[Array2<F>],
1189        biases: &[Array1<F>],
1190    ) -> StatsResult<Array2<F>> {
1191        checkarray_finite(x, "x")?;
1192
1193        if weights.len() != self.architecture.len() - 1 {
1194            return Err(StatsError::InvalidArgument(
1195                "Number of weight matrices must match network layers".to_string(),
1196            ));
1197        }
1198
1199        if biases.len() != self.architecture.len() - 1 {
1200            return Err(StatsError::InvalidArgument(
1201                "Number of bias vectors must match network layers".to_string(),
1202            ));
1203        }
1204
1205        let mut activations = x.to_owned();
1206
1207        for (layer_idx, &activation_type) in self.activations.iter().enumerate() {
1208            // Linear transformation: z = x * W + b
1209            let z = self.linear_transform(
1210                &activations.view(),
1211                &weights[layer_idx],
1212                &biases[layer_idx],
1213            )?;
1214
1215            // Apply activation function
1216            activations = z.mapv(|val| self.apply_activation(val, activation_type));
1217        }
1218
1219        Ok(activations)
1220    }
1221
1222    /// Linear transformation: z = x * W + b
1223    fn linear_transform(
1224        &self,
1225        x: &ArrayView2<F>,
1226        weights: &Array2<F>,
1227        bias: &Array1<F>,
1228    ) -> StatsResult<Array2<F>> {
1229        let (batchsize, input_dim) = x.dim();
1230        let (weight_input_dim, output_dim) = weights.dim();
1231
1232        if input_dim != weight_input_dim {
1233            return Err(StatsError::DimensionMismatch(
1234                "Input dimension must match weight matrix input dimension".to_string(),
1235            ));
1236        }
1237
1238        if bias.len() != output_dim {
1239            return Err(StatsError::DimensionMismatch(
1240                "Bias length must match weight matrix output dimension".to_string(),
1241            ));
1242        }
1243
1244        // Matrix multiplication: x * W
1245        let mut result = Array2::zeros((batchsize, output_dim));
1246
1247        for i in 0..batchsize {
1248            for j in 0..output_dim {
1249                let mut sum = F::zero();
1250                for k in 0..input_dim {
1251                    sum = sum + x[[i, k]] * weights[[k, j]];
1252                }
1253                result[[i, j]] = sum + bias[j];
1254            }
1255        }
1256
1257        Ok(result)
1258    }
1259
1260    /// Sample parameters from priors
1261    fn sample_from_normal(mean: F, precision: F) -> StatsResult<F> {
1262        // Simple Box-Muller transform
1263        let u1 = F::from(0.5).expect("Failed to convert constant to float"); // Would use actual random numbers
1264        let u2 = F::from(0.5).expect("Failed to convert constant to float");
1265
1266        let z = (-F::from(2.0).expect("Failed to convert constant to float") * u1.ln()).sqrt()
1267            * (F::from(2.0 * std::f64::consts::PI).expect("Failed to convert to float") * u2).cos();
1268
1269        let std_dev = F::one() / precision.sqrt();
1270        Ok(mean + std_dev * z)
1271    }
1272
1273    /// Make predictions with uncertainty quantification
1274    pub fn predict_with_uncertainty(
1275        &self,
1276        x: &ArrayView2<F>,
1277        _n_samples_: usize,
1278    ) -> StatsResult<(Array2<F>, Array2<F>)> {
1279        checkarray_finite(x, "x")?;
1280
1281        let n_test = x.nrows();
1282        let output_dim = self.architecture.last().expect("Operation failed");
1283
1284        let mut predictions = Array2::zeros((n_test, *output_dim));
1285        let mut prediction_vars = Array2::zeros((n_test, *output_dim));
1286
1287        // Simplified prediction - would implement actual parameter sampling
1288        for i in 0..n_test {
1289            for j in 0..*output_dim {
1290                predictions[[i, j]] = F::zero(); // Would compute actual prediction
1291                prediction_vars[[i, j]] = F::one(); // Would compute actual variance
1292            }
1293        }
1294
1295        Ok((predictions, prediction_vars))
1296    }
1297}
1298
1299#[cfg(test)]
1300mod tests {
1301    use super::*;
1302    use scirs2_core::ndarray::array;
1303
1304    #[test]
1305    fn test_model_comparison() {
1306        let mut comparison = BayesianModelComparison::<f64>::new();
1307
1308        let model = BayesianModel {
1309            id: "linear_model".to_string(),
1310            model_type: ModelType::LinearRegression,
1311            prior: AdvancedPrior::Conjugate {
1312                parameters: HashMap::new(),
1313            },
1314            likelihood: LikelihoodType::Gaussian,
1315            complexity: 3.0,
1316        };
1317
1318        comparison.add_model(model);
1319
1320        let x = array![[1.0, 2.0], [3.0, 4.0], [5.0, 6.0]];
1321        let y = array![1.0, 2.0, 3.0];
1322
1323        let result = comparison.compare_models(&x.view(), &y.view());
1324        assert!(result.is_ok());
1325    }
1326
1327    #[test]
1328    fn test_gaussian_process() {
1329        let x_train = array![[1.0], [2.0], [3.0]];
1330        let y_train = array![1.0, 4.0, 9.0];
1331        let gp = BayesianGaussianProcess::new(
1332            x_train.clone(),
1333            y_train.clone(),
1334            KernelType::RBF { length_scale: 1.0 },
1335            0.1,
1336        )
1337        .expect("Operation failed");
1338
1339        // Test creation
1340        assert_eq!(gp.x_train.nrows(), 3);
1341        assert_eq!(gp.y_train.len(), 3);
1342
1343        // Test prediction
1344        let x_test = array![[1.5], [2.5]];
1345        let result = gp.predict(&x_test.view());
1346        assert!(result.is_ok());
1347    }
1348
1349    #[test]
1350    fn test_bayesian_neural_network() {
1351        let bnn = BayesianNeuralNetwork::new(
1352            vec![2, 5, 1],
1353            vec![ActivationType::ReLU, ActivationType::Sigmoid],
1354        )
1355        .expect("Operation failed");
1356
1357        // Test creation
1358        assert_eq!(bnn.architecture.len(), 3);
1359        assert_eq!(bnn.activations.len(), 2);
1360
1361        // Test prediction with uncertainty
1362        let x_test = array![[1.0, 2.0], [3.0, 4.0]];
1363        let result = bnn.predict_with_uncertainty(&x_test.view(), 10);
1364        assert!(result.is_ok());
1365    }
1366}