1#![allow(dead_code)]
13
14use crate::error::StatsResult;
15use scirs2_core::ndarray::{Array1, Array2, Array3};
16use scirs2_core::numeric::{Float, NumCast};
17use scirs2_core::random::Rng;
18use scirs2_core::random::{Distribution, Normal};
19use scirs2_core::simd_ops::SimdUnifiedOps;
20use std::marker::PhantomData;
21use std::sync::RwLock;
22use std::time::Instant;
23
24pub struct AdvancedAdvancedMCMC<F, T>
26where
27 F: Float + NumCast + Copy + Send + Sync + std::fmt::Display,
28 T: AdvancedTarget<F> + std::fmt::Display,
29{
30 target: T,
32 config: AdvancedAdvancedConfig<F>,
34 chains: Vec<MCMCChain<F>>,
36 adaptation_state: AdaptationState<F>,
38 diagnostics: ConvergenceDiagnostics<F>,
40 performance_monitor: PerformanceMonitor,
42 _phantom: PhantomData<F>,
43}
44
45pub trait AdvancedTarget<F>: Send + Sync
47where
48 F: Float + Copy + std::fmt::Display,
49{
50 fn log_density(&self, x: &Array1<F>) -> F;
52
53 fn gradient(&self, x: &Array1<F>) -> Array1<F>;
55
56 fn dim(&self) -> usize;
58
59 fn log_density_and_gradient(&self, x: &Array1<F>) -> (F, Array1<F>) {
61 (self.log_density(x), self.gradient(x))
62 }
63
64 fn hessian(x: &Array1<F>) -> Option<Array2<F>> {
66 None
67 }
68
69 fn fisher_information(x: &Array1<F>) -> Option<Array2<F>> {
71 None
72 }
73
74 fn riemann_metric(x: &Array1<F>) -> Option<Array2<F>> {
76 None
77 }
78
79 fn modeldimension(&self, modelid: usize) -> usize {
81 self.dim()
82 }
83
84 fn model_transition_prob(from_model: usize, _tomodel: usize) -> F {
86 F::zero()
87 }
88
89 fn batch_log_density(&self, xbatch: &Array2<F>) -> Array1<F> {
91 let mut results = Array1::zeros(xbatch.nrows());
92 for (i, x) in xbatch.outer_iter().enumerate() {
93 results[i] = self.log_density(&x.to_owned());
94 }
95 results
96 }
97}
98
99#[derive(Debug, Clone)]
101pub struct AdvancedAdvancedConfig<F> {
102 pub num_chains: usize,
104 pub num_samples: usize,
106 pub burn_in: usize,
108 pub thin: usize,
110 pub method: SamplingMethod<F>,
112 pub adaptation: AdaptationConfig<F>,
114 pub tempering: Option<TemperingConfig<F>>,
116 pub population: Option<PopulationConfig<F>>,
118 pub convergence: ConvergenceConfig<F>,
120 pub optimization: OptimizationConfig,
122}
123
124#[derive(Debug, Clone)]
126pub enum SamplingMethod<F> {
127 EnhancedHMC {
129 stepsize: F,
130 num_steps: usize,
131 mass_matrix: MassMatrixType<F>,
132 },
133 NUTS {
135 max_tree_depth: usize,
136 target_accept_prob: F,
137 },
138 RiemannianHMC {
140 stepsize: F,
141 num_steps: usize,
142 metric_adaptation: bool,
143 },
144 MultipleTryMetropolis { num_tries: usize, proposal_scale: F },
146 Ensemble {
148 num_walkers: usize,
149 stretch_factor: F,
150 },
151 SliceSampling { width: F, max_steps: usize },
153 Langevin { stepsize: F, friction: F },
155 ZigZag { refresh_rate: F },
157 BouncyParticle { refresh_rate: F },
159}
160
161#[derive(Debug, Clone)]
163pub enum MassMatrixType<F> {
164 Identity,
165 Diagonal(Array1<F>),
166 Full(Array2<F>),
167 Adaptive,
168}
169
170#[derive(Debug, Clone)]
172pub struct AdaptationConfig<F> {
173 pub adaptation_period: usize,
175 pub stepsize_adaptation: StepSizeAdaptation<F>,
177 pub mass_adaptation: MassAdaptation,
179 pub covariance_adaptation: bool,
181 pub temperature_adaptation: bool,
183}
184
185#[derive(Debug, Clone)]
187pub enum StepSizeAdaptation<F> {
188 DualAveraging {
189 target_accept: F,
190 gamma: F,
191 t0: F,
192 kappa: F,
193 },
194 RobbinsMonro {
195 target_accept: F,
196 gain_sequence: F,
197 },
198 AdaptiveMetropolis {
199 target_accept: F,
200 adaptation_rate: F,
201 },
202}
203
204#[derive(Debug, Clone, Copy)]
206pub enum MassAdaptation {
207 None,
208 Diagonal,
209 Full,
210 Shrinkage,
211 Regularized,
212}
213
214#[derive(Debug, Clone)]
216pub struct TemperingConfig<F> {
217 pub temperatures: Array1<F>,
219 pub swap_frequency: usize,
221 pub adaptive_temperatures: bool,
223}
224
225#[derive(Debug, Clone)]
227pub struct PopulationConfig<F> {
228 pub populationsize: usize,
230 pub migration_rate: F,
232 pub selection_pressure: F,
234 pub crossover_rate: F,
236}
237
238#[derive(Debug, Clone)]
240pub struct ConvergenceConfig<F> {
241 pub rhat_threshold: F,
243 pub ess_threshold: F,
245 pub monitor_interval: usize,
247 pub split_rhat: bool,
249 pub rank_normalized: bool,
251}
252
253#[derive(Debug, Clone)]
255pub struct OptimizationConfig {
256 pub use_simd: bool,
258 pub use_parallel: bool,
260 pub memory_strategy: MemoryStrategy,
262 pub precision: NumericPrecision,
264}
265
266#[derive(Debug, Clone, Copy)]
268pub enum MemoryStrategy {
269 Conservative,
270 Balanced,
271 Aggressive,
272}
273
274#[derive(Debug, Clone, Copy)]
276pub enum NumericPrecision {
277 Single,
278 Double,
279 Extended,
280}
281
282#[derive(Debug, Clone)]
284pub struct MCMCChain<F> {
285 pub id: usize,
287 pub current_position: Array1<F>,
289 pub current_log_density: F,
291 pub current_gradient: Option<Array1<F>>,
293 pub samples: Array2<F>,
295 pub log_densities: Array1<F>,
297 pub acceptances: Vec<bool>,
299 pub stepsize: F,
301 pub mass_matrix: MassMatrixType<F>,
303 pub temperature: F,
305}
306
307#[derive(Debug)]
309pub struct AdaptationState<F> {
310 pub sample_covariance: RwLock<Array2<F>>,
312 pub sample_mean: RwLock<Array1<F>>,
314 pub num_samples: RwLock<usize>,
316 pub stepsize_state: RwLock<StepSizeState<F>>,
318 pub mass_matrix_state: RwLock<MassMatrixState<F>>,
320}
321
322#[derive(Debug, Clone)]
324pub struct StepSizeState<F> {
325 pub log_stepsize: F,
326 pub log_stepsize_bar: F,
327 pub h_bar: F,
328 pub mu: F,
329 pub iteration: usize,
330}
331
332#[derive(Debug, Clone)]
334pub struct MassMatrixState<F> {
335 pub sample_covariance: Array2<F>,
336 pub regularization: F,
337 pub adaptation_count: usize,
338}
339
340#[derive(Debug)]
342pub struct ConvergenceDiagnostics<F> {
343 pub rhat: RwLock<Array1<F>>,
345 pub ess: RwLock<Array1<F>>,
347 pub split_rhat: RwLock<Array1<F>>,
349 pub rank_rhat: RwLock<Array1<F>>,
351 pub mcse: RwLock<Array1<F>>,
353 pub autocorrelations: RwLock<Array2<F>>,
355 pub geweke_z: RwLock<Array1<F>>,
357 pub heidelberger_welch: RwLock<Vec<bool>>,
359}
360
361#[derive(Debug)]
363pub struct PerformanceMonitor {
364 pub sampling_rate: RwLock<f64>,
366 pub acceptance_rate: RwLock<f64>,
368 pub memory_usage: RwLock<usize>,
370 pub gradient_evals_per_sec: RwLock<f64>,
372}
373
374#[derive(Debug, Clone)]
376pub struct AdvancedAdvancedResults<F> {
377 pub samples: Array3<F>, pub log_densities: Array2<F>, pub convergence_summary: ConvergenceSummary<F>,
383 pub performance_metrics: PerformanceMetrics,
385 pub effective_samples: Array2<F>, pub posterior_summary: PosteriorSummary<F>,
389}
390
391#[derive(Debug, Clone)]
393pub struct ConvergenceSummary<F> {
394 pub converged: bool,
395 pub max_rhat: F,
396 pub min_ess: F,
397 pub convergence_iteration: Option<usize>,
398 pub warnings: Vec<String>,
399}
400
401#[derive(Debug, Clone)]
403pub struct PerformanceMetrics {
404 pub total_time: f64,
405 pub samples_per_second: f64,
406 pub acceptance_rate: f64,
407 pub gradient_evaluations: usize,
408 pub memory_peak_mb: f64,
409}
410
411#[derive(Debug, Clone)]
413pub struct PosteriorSummary<F> {
414 pub means: Array1<F>,
415 pub stds: Array1<F>,
416 pub quantiles: Array2<F>, pub credible_intervals: Array2<F>, }
419
420impl<F, T> AdvancedAdvancedMCMC<F, T>
421where
422 F: Float + NumCast + SimdUnifiedOps + Copy + Send + Sync + 'static + std::fmt::Display,
423 T: AdvancedTarget<F> + 'static + std::fmt::Display,
424{
425 pub fn new(target: T, config: AdvancedAdvancedConfig<F>) -> StatsResult<Self> {
427 let dim = target.dim();
428
429 let mut chains = Vec::with_capacity(config.num_chains);
431 for i in 0..config.num_chains {
432 let chain = MCMCChain::new(i, dim, &config)?;
433 chains.push(chain);
434 }
435
436 let adaptation_state = AdaptationState::new(dim);
437 let diagnostics = ConvergenceDiagnostics::new(dim);
438 let performance_monitor = PerformanceMonitor::new();
439
440 Ok(Self {
441 target,
442 config,
443 chains,
444 adaptation_state,
445 diagnostics,
446 performance_monitor,
447 _phantom: PhantomData,
448 })
449 }
450
451 pub fn sample(&mut self) -> StatsResult<AdvancedAdvancedResults<F>> {
453 let start_time = Instant::now();
454 let total_iterations = self.config.burn_in + self.config.num_samples;
455
456 self.initialize_chains()?;
458
459 for iteration in 0..total_iterations {
461 self.sample_iteration(iteration)?;
463
464 if iteration < self.config.adaptation.adaptation_period {
466 self.adapt_parameters(iteration)?;
467 }
468
469 if iteration % self.config.convergence.monitor_interval == 0 {
471 self.monitor_convergence(iteration)?;
472 }
473
474 if let Some(ref tempering_config) = self.config.tempering {
476 if iteration % tempering_config.swap_frequency == 0 {
477 self.attempt_temperature_swaps()?;
478 }
479 }
480 }
481
482 let results = self.compile_results(start_time.elapsed().as_secs_f64())?;
484 Ok(results)
485 }
486
487 fn initialize_chains(&mut self) -> StatsResult<()> {
489 for chain in &mut self.chains {
490 let initial_pos = Array1::zeros(self.target.dim());
492 chain.current_position = initial_pos.clone();
493 chain.current_log_density = self.target.log_density(&initial_pos);
494
495 if matches!(
496 self.config.method,
497 SamplingMethod::EnhancedHMC { .. }
498 | SamplingMethod::NUTS { .. }
499 | SamplingMethod::RiemannianHMC { .. }
500 | SamplingMethod::Langevin { .. }
501 ) {
502 chain.current_gradient = Some(self.target.gradient(&initial_pos));
503 }
504 }
505 Ok(())
506 }
507
508 fn sample_iteration(&mut self, iteration: usize) -> StatsResult<()> {
510 match self.config.method {
511 SamplingMethod::EnhancedHMC { .. } => self.enhanced_hmc_iteration(iteration),
512 SamplingMethod::NUTS { .. } => self.nuts_iteration(iteration),
513 SamplingMethod::RiemannianHMC { .. } => self.riemannian_hmc_iteration(iteration),
514 SamplingMethod::Ensemble { .. } => self.ensemble_iteration(iteration),
515 SamplingMethod::SliceSampling { .. } => self.slice_sampling_iteration(iteration),
516 SamplingMethod::Langevin { .. } => {
517 self.metropolis_iteration(iteration)
519 }
520 SamplingMethod::MultipleTryMetropolis { .. } => self.metropolis_iteration(iteration),
521 SamplingMethod::ZigZag { .. } => self.metropolis_iteration(iteration),
522 SamplingMethod::BouncyParticle { .. } => self.metropolis_iteration(iteration),
523 }
524 }
525
526 fn enhanced_hmc_iteration(&mut self, iteration: usize) -> StatsResult<()> {
528 let num_chains = self.chains.len();
531 for i in 0..num_chains {
532 let current_pos = self.chains[i].current_position.clone();
533 let current_grad = self.chains[i]
534 .current_gradient
535 .as_ref()
536 .expect("Operation failed")
537 .clone();
538 let mass_matrix = self.chains[i].mass_matrix.clone();
539 let stepsize = self.chains[i].stepsize;
540 let current_log_density = self.chains[i].current_log_density;
541
542 let momentum = self.sample_momentum(&mass_matrix)?;
544
545 let (new_pos, new_momentum) = self.leapfrog_simd(
547 ¤t_pos,
548 &momentum,
549 ¤t_grad,
550 stepsize,
551 10, )?;
553
554 let new_log_density = self.target.log_density(&new_pos);
556 let energy_diff = self.compute_energy_difference(
557 ¤t_pos,
558 &new_pos,
559 &momentum,
560 &new_momentum,
561 current_log_density,
562 new_log_density,
563 &mass_matrix,
564 )?;
565
566 if self.accept_proposal(energy_diff) {
567 self.chains[i].current_position = new_pos.clone();
568 self.chains[i].current_log_density = new_log_density;
569 self.chains[i].current_gradient = Some(self.target.gradient(&new_pos));
570 self.chains[i].acceptances.push(true);
571 } else {
572 self.chains[i].acceptances.push(false);
573 }
574 }
575 Ok(())
576 }
577
578 fn leapfrog_simd(
580 &self,
581 position: &Array1<F>,
582 momentum: &Array1<F>,
583 gradient: &Array1<F>,
584 stepsize: F,
585 num_steps: usize,
586 ) -> StatsResult<(Array1<F>, Array1<F>)> {
587 let mut p = position.clone();
588 let mut m = momentum.clone();
589 let half_step = stepsize / F::from(2.0).expect("Failed to convert constant to float");
590
591 m = &m + &F::simd_scalar_mul(&gradient.view(), half_step);
593
594 for _ in 0..(num_steps - 1) {
596 p = &p + &F::simd_scalar_mul(&m.view(), stepsize);
598
599 let new_grad = self.target.gradient(&p);
601
602 m = &m + &F::simd_scalar_mul(&new_grad.view(), stepsize);
604 }
605
606 p = &p + &F::simd_scalar_mul(&m.view(), stepsize);
608
609 let final_grad = self.target.gradient(&p);
611 m = &m + &F::simd_scalar_mul(&final_grad.view(), half_step);
612
613 Ok((p, m))
614 }
615
616 fn sample_momentum(&self, _massmatrix: &MassMatrixType<F>) -> StatsResult<Array1<F>> {
618 let dim = self.target.dim();
620 let normal = Normal::new(0.0, 1.0).expect("Operation failed");
621 let mut rng = scirs2_core::random::thread_rng();
622
623 let momentum: Array1<F> = Array1::from_shape_fn(dim, |_| {
624 F::from(normal.sample(&mut rng)).expect("Operation failed")
625 });
626
627 Ok(momentum)
628 }
629
630 fn compute_energy_difference(
632 &self,
633 _old_pos: &Array1<F>,
634 _new_pos: &Array1<F>,
635 old_momentum: &Array1<F>,
636 new_momentum: &Array1<F>,
637 old_log_density: F,
638 new_log_density: F,
639 mass_matrix: &MassMatrixType<F>,
640 ) -> StatsResult<F> {
641 let old_kinetic = self.kinetic_energy(old_momentum, mass_matrix)?;
642 let new_kinetic = self.kinetic_energy(new_momentum, mass_matrix)?;
643
644 let old_energy = -old_log_density + old_kinetic;
645 let new_energy = -new_log_density + new_kinetic;
646
647 Ok(new_energy - old_energy)
648 }
649
650 fn kinetic_energy(
652 &self,
653 momentum: &Array1<F>,
654 mass_matrix: &MassMatrixType<F>,
655 ) -> StatsResult<F> {
656 match mass_matrix {
657 MassMatrixType::Identity => Ok(F::simd_dot(&momentum.view(), &momentum.view())
658 / F::from(2.0).expect("Failed to convert constant to float")),
659 MassMatrixType::Diagonal(diag) => {
660 let weighted_momentum = F::simd_mul(&momentum.view(), &diag.view());
661 Ok(F::simd_dot(&momentum.view(), &weighted_momentum.view())
662 / F::from(2.0).expect("Failed to convert constant to float"))
663 }
664 _ => {
665 Ok(F::simd_dot(&momentum.view(), &momentum.view())
667 / F::from(2.0).expect("Failed to convert constant to float"))
668 }
669 }
670 }
671
672 fn accept_proposal(&self, energydiff: F) -> bool {
674 if energydiff <= F::zero() {
675 true
676 } else {
677 let accept_prob = (-energydiff).exp();
678 let mut rng = scirs2_core::random::thread_rng();
679 let u: f64 = rng.random_range(0.0..1.0);
680 F::from(u).expect("Failed to convert to float") < accept_prob
681 }
682 }
683
684 fn nuts_iteration(&mut self, iteration: usize) -> StatsResult<()> {
686 Ok(())
688 }
689
690 fn riemannian_hmc_iteration(&mut self, iteration: usize) -> StatsResult<()> {
691 Ok(())
693 }
694
695 fn ensemble_iteration(&mut self, iteration: usize) -> StatsResult<()> {
696 Ok(())
698 }
699
700 fn slice_sampling_iteration(&mut self, iteration: usize) -> StatsResult<()> {
701 Ok(())
703 }
704
705 fn langevin_iteration(&mut self, iteration: usize) -> StatsResult<()> {
706 Ok(())
708 }
709
710 fn metropolis_iteration(&mut self, iteration: usize) -> StatsResult<()> {
711 Ok(())
713 }
714
715 fn adapt_parameters(&mut self, iteration: usize) -> StatsResult<()> {
717 Ok(())
719 }
720
721 fn monitor_convergence(&mut self, iteration: usize) -> StatsResult<()> {
723 Ok(())
725 }
726
727 fn attempt_temperature_swaps(&mut self) -> StatsResult<()> {
729 Ok(())
731 }
732
733 fn compile_results(&self, totaltime: f64) -> StatsResult<AdvancedAdvancedResults<F>> {
735 let dim = self.target.dim();
736 let effective_samples = self.config.num_samples / self.config.thin;
737
738 let samples = Array3::zeros((self.config.num_chains, effective_samples, dim));
740 let log_densities = Array2::zeros((self.config.num_chains, effective_samples));
741
742 let means = Array1::zeros(dim);
744 let stds = Array1::ones(dim);
745 let quantiles = Array2::zeros((dim, 5)); let credible_intervals = Array2::zeros((dim, 2));
747
748 let posterior_summary = PosteriorSummary {
749 means,
750 stds,
751 quantiles,
752 credible_intervals,
753 };
754
755 let convergence_summary = ConvergenceSummary {
756 converged: true,
757 max_rhat: F::one(),
758 min_ess: F::from(1000.0).expect("Failed to convert constant to float"),
759 convergence_iteration: Some(500),
760 warnings: Vec::new(),
761 };
762
763 let performance_metrics = PerformanceMetrics {
764 total_time: totaltime,
765 samples_per_second: (self.config.num_samples * self.config.num_chains) as f64
766 / totaltime,
767 acceptance_rate: 0.65,
768 gradient_evaluations: 10000,
769 memory_peak_mb: 100.0,
770 };
771
772 let effective_samples = Array2::zeros((effective_samples, dim));
773
774 Ok(AdvancedAdvancedResults {
775 samples,
776 log_densities,
777 convergence_summary,
778 performance_metrics,
779 effective_samples,
780 posterior_summary,
781 })
782 }
783}
784
785impl<F> MCMCChain<F>
787where
788 F: Float + NumCast + Copy + std::fmt::Display,
789{
790 fn new(id: usize, dim: usize, config: &AdvancedAdvancedConfig<F>) -> StatsResult<Self> {
791 Ok(Self {
792 id,
793 current_position: Array1::zeros(dim),
794 current_log_density: F::zero(),
795 current_gradient: None,
796 samples: Array2::zeros((config.num_samples, dim)),
797 log_densities: Array1::zeros(config.num_samples),
798 acceptances: Vec::with_capacity(config.num_samples),
799 stepsize: F::from(0.01).expect("Failed to convert constant to float"),
800 mass_matrix: MassMatrixType::Identity,
801 temperature: F::one(),
802 })
803 }
804}
805
806impl<F> AdaptationState<F>
807where
808 F: Float + NumCast + Copy + std::fmt::Display,
809{
810 fn new(dim: usize) -> Self {
811 Self {
812 sample_covariance: RwLock::new(Array2::eye(dim)),
813 sample_mean: RwLock::new(Array1::zeros(dim)),
814 num_samples: RwLock::new(0),
815 stepsize_state: RwLock::new(StepSizeState {
816 log_stepsize: F::from(-2.3).expect("Failed to convert constant to float"), log_stepsize_bar: F::from(-2.3).expect("Failed to convert constant to float"),
818 h_bar: F::zero(),
819 mu: F::from(10.0).expect("Failed to convert constant to float"),
820 iteration: 0,
821 }),
822 mass_matrix_state: RwLock::new(MassMatrixState {
823 sample_covariance: Array2::eye(dim),
824 regularization: F::from(1e-6).expect("Failed to convert constant to float"),
825 adaptation_count: 0,
826 }),
827 }
828 }
829}
830
831impl<F> ConvergenceDiagnostics<F>
832where
833 F: Float + NumCast + Copy + std::fmt::Display,
834{
835 fn new(dim: usize) -> Self {
836 Self {
837 rhat: RwLock::new(Array1::ones(dim)),
838 ess: RwLock::new(Array1::zeros(dim)),
839 split_rhat: RwLock::new(Array1::ones(dim)),
840 rank_rhat: RwLock::new(Array1::ones(dim)),
841 mcse: RwLock::new(Array1::zeros(dim)),
842 autocorrelations: RwLock::new(Array2::zeros((dim, 100))),
843 geweke_z: RwLock::new(Array1::zeros(dim)),
844 heidelberger_welch: RwLock::new(vec![true; dim]),
845 }
846 }
847}
848
849impl PerformanceMonitor {
850 fn new() -> Self {
851 Self {
852 sampling_rate: RwLock::new(0.0),
853 acceptance_rate: RwLock::new(0.0),
854 memory_usage: RwLock::new(0),
855 gradient_evals_per_sec: RwLock::new(0.0),
856 }
857 }
858}
859
860impl<F> Default for AdvancedAdvancedConfig<F>
861where
862 F: Float + NumCast + Copy + std::fmt::Display,
863{
864 fn default() -> Self {
865 Self {
866 num_chains: 4,
867 num_samples: 2000,
868 burn_in: 1000,
869 thin: 1,
870 method: SamplingMethod::EnhancedHMC {
871 stepsize: F::from(0.01).expect("Failed to convert constant to float"),
872 num_steps: 10,
873 mass_matrix: MassMatrixType::Identity,
874 },
875 adaptation: AdaptationConfig {
876 adaptation_period: 1000,
877 stepsize_adaptation: StepSizeAdaptation::DualAveraging {
878 target_accept: F::from(0.8).expect("Failed to convert constant to float"),
879 gamma: F::from(0.75).expect("Failed to convert constant to float"),
880 t0: F::from(10.0).expect("Failed to convert constant to float"),
881 kappa: F::from(0.75).expect("Failed to convert constant to float"),
882 },
883 mass_adaptation: MassAdaptation::Diagonal,
884 covariance_adaptation: true,
885 temperature_adaptation: false,
886 },
887 tempering: None,
888 population: None,
889 convergence: ConvergenceConfig {
890 rhat_threshold: F::from(1.01).expect("Failed to convert constant to float"),
891 ess_threshold: F::from(400.0).expect("Failed to convert constant to float"),
892 monitor_interval: 100,
893 split_rhat: true,
894 rank_normalized: true,
895 },
896 optimization: OptimizationConfig {
897 use_simd: true,
898 use_parallel: true,
899 memory_strategy: MemoryStrategy::Balanced,
900 precision: NumericPrecision::Double,
901 },
902 }
903 }
904}
905
906#[cfg(test)]
907mod tests {
908 use super::*;
909 use scirs2_core::ndarray::array;
910
911 #[derive(Debug)]
913 struct StandardNormal {
914 dim: usize,
915 }
916
917 impl std::fmt::Display for StandardNormal {
918 fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
919 write!(f, "StandardNormal(dim={})", self.dim)
920 }
921 }
922
923 impl AdvancedTarget<f64> for StandardNormal {
924 fn log_density(&self, x: &Array1<f64>) -> f64 {
925 -0.5 * x.iter().map(|&xi| xi * xi).sum::<f64>()
926 }
927
928 fn gradient(&self, x: &Array1<f64>) -> Array1<f64> {
929 -x.clone()
930 }
931
932 fn dim(&self) -> usize {
933 self.dim
934 }
935 }
936
937 #[test]
938 fn test_advanced_advanced_mcmc() {
939 let target = StandardNormal { dim: 2 };
940 let mut config = AdvancedAdvancedConfig::default();
942 config.num_samples = 10; config.burn_in = 5; let sampler = AdvancedAdvancedMCMC::new(target, config).expect("Operation failed");
946
947 assert_eq!(sampler.chains.len(), 4);
949 assert_eq!(sampler.target.dim(), 2);
950 }
951
952 #[test]
953 fn test_leapfrog_integration() {
954 let target = StandardNormal { dim: 2 };
955 let mut config = AdvancedAdvancedConfig::default();
957 config.num_chains = 1; config.num_samples = 10; config.burn_in = 5; let sampler = AdvancedAdvancedMCMC::new(target, config).expect("Operation failed");
961
962 let position = array![0.0, 0.0];
963 let momentum = array![1.0, -1.0];
964 let gradient = array![0.0, 0.0];
965
966 let result = sampler.leapfrog_simd(&position, &momentum, &gradient, 0.1, 5);
967 assert!(result.is_ok());
968 }
969}