1#![allow(dead_code)]
8
9use crate::benchmark_suite::{BenchmarkConfig, BenchmarkMetrics};
10use crate::error::StatsResult;
11use scirs2_core::ndarray::Array1;
13use scirs2_core::random::{Distribution, Exponential, LogNormal, Normal, Pareto, Uniform};
14use serde::{Deserialize, Serialize};
15use std::collections::HashMap;
16use std::time::{Duration, Instant};
17
18#[derive(Debug, Clone, Copy, PartialEq, Eq, Serialize, Deserialize)]
20pub enum CompatibilityImpact {
21 None,
22 Minor,
23 Moderate,
24 Major,
25 Breaking,
26}
27
28#[derive(Debug, Clone, Serialize, Deserialize)]
30pub struct AdvancedBenchmarkConfig {
31 pub base_config: BenchmarkConfig,
33 pub enable_predictive_modeling: bool,
35 pub enable_cross_platform: bool,
37 pub enable_stability_testing: bool,
39 pub enable_scalability_analysis: bool,
41 pub enable_complexity_analysis: bool,
43 pub enable_power_analysis: bool,
45 pub target_platforms: Vec<TargetPlatform>,
47 pub data_distributions: Vec<DataDistribution>,
49 pub precision_levels: Vec<PrecisionLevel>,
51 pub stress_test_configs: Vec<StressTestConfig>,
53}
54
55#[derive(Debug, Clone, Serialize, Deserialize)]
57pub struct TargetPlatform {
58 pub name: String,
59 pub architecture: String,
60 pub cpu_features: Vec<String>,
61 pub memory_hierarchy: MemoryHierarchy,
62 pub expected_performance: Option<ExpectedPerformance>,
63}
64
65#[derive(Debug, Clone, Serialize, Deserialize)]
67pub struct MemoryHierarchy {
68 pub l1_cache_kb: usize,
69 pub l2_cache_kb: usize,
70 pub l3_cache_mb: usize,
71 pub memory_bandwidth_gbps: f64,
72 pub numa_nodes: usize,
73}
74
75#[derive(Debug, Clone, Serialize, Deserialize)]
77pub struct ExpectedPerformance {
78 pub operations_per_second: f64,
79 pub memory_bandwidth_utilization: f64,
80 pub cache_efficiency: f64,
81}
82
83#[derive(Debug, Clone, Serialize, Deserialize)]
85pub enum DataDistribution {
86 Uniform,
87 Normal,
88 LogNormal,
89 Exponential,
90 Pareto,
91 Bimodal,
92 Sparse(f64), Correlated(f64), Outliers(f64), }
96
97#[derive(Debug, Clone, Serialize, Deserialize)]
99pub enum PrecisionLevel {
100 Half, Single, Double, Extended, }
105
106#[derive(Debug, Clone, Serialize, Deserialize)]
108pub struct StressTestConfig {
109 pub name: String,
110 pub datasize_multiplier: f64,
111 pub concurrent_operations: usize,
112 pub memory_pressure: f64, pub thermal_stress: bool,
114 pub duration_minutes: f64,
115}
116
117#[derive(Debug, Clone, Serialize, Deserialize)]
119pub struct AdvancedBenchmarkMetrics {
120 pub base_metrics: BenchmarkMetrics,
122 pub stability_metrics: NumericalStabilityMetrics,
124 pub scalability_metrics: ScalabilityMetrics,
126 pub power_metrics: Option<PowerMetrics>,
128 pub memory_hierarchy_metrics: MemoryHierarchyMetrics,
130 pub platform_variance: Option<PlatformVarianceMetrics>,
132 pub prediction_accuracy: Option<PredictionAccuracyMetrics>,
134}
135
136#[derive(Debug, Clone, Serialize, Deserialize)]
138pub struct NumericalStabilityMetrics {
139 pub relative_error: f64,
141 pub condition_number: Option<f64>,
143 pub error_accumulation_rate: f64,
145 pub precision_loss_percent: f64,
147 pub distribution_stability: HashMap<String, f64>,
149}
150
151#[derive(Debug, Clone, Serialize, Deserialize)]
153pub struct ScalabilityMetrics {
154 pub complexity_class: ComplexityClass,
156 pub measured_scaling_factor: f64,
158 pub scale_efficiency: Vec<(usize, f64)>, pub memory_scaling: MemoryScalingMetrics,
162 pub parallel_scaling: Option<ParallelScalingMetrics>,
164}
165
166#[derive(Debug, Clone, Serialize, Deserialize)]
168pub enum ComplexityClass {
169 Constant, Logarithmic, Linear, Linearithmic, Quadratic, Cubic, Exponential, Factorial, Unknown,
178}
179
180#[derive(Debug, Clone, Serialize, Deserialize)]
182pub struct MemoryScalingMetrics {
183 pub allocation_efficiency: f64,
184 pub memory_reuse_factor: f64,
185 pub fragmentation_growth_rate: f64,
186 pub cache_miss_rate_growth: f64,
187}
188
189#[derive(Debug, Clone, Serialize, Deserialize)]
191pub struct ParallelScalingMetrics {
192 pub speedup_curve: Vec<(usize, f64)>, pub efficiency_curve: Vec<(usize, f64)>, pub overhead_analysis: ParallelOverheadAnalysis,
195 pub optimal_thread_count: usize,
196}
197
198#[derive(Debug, Clone, Serialize, Deserialize)]
200pub struct ParallelOverheadAnalysis {
201 pub synchronization_overhead: f64,
202 pub communication_overhead: f64,
203 pub load_balancing_efficiency: f64,
204 pub false_sharing_impact: f64,
205}
206
207#[derive(Debug, Clone, Serialize, Deserialize)]
209pub struct PowerMetrics {
210 pub average_power_watts: f64,
212 pub peak_power_watts: f64,
214 pub energy_efficiency: f64,
216 pub thermal_impact: ThermalImpact,
218}
219
220#[derive(Debug, Clone, Serialize, Deserialize)]
222pub struct ThermalImpact {
223 pub temperature_increase_celsius: f64,
224 pub thermal_throttling_risk: ThermalRisk,
225 pub cooling_requirements: CoolingRequirements,
226}
227
228#[derive(Debug, Clone, Serialize, Deserialize)]
230pub enum ThermalRisk {
231 Low,
232 Medium,
233 High,
234 Critical,
235}
236
237#[derive(Debug, Clone, Serialize, Deserialize)]
239pub struct CoolingRequirements {
240 pub minimum_airflow_cfm: f64,
241 pub recommended_cooling_solution: String,
242}
243
244#[derive(Debug, Clone, Serialize, Deserialize)]
246pub struct MemoryHierarchyMetrics {
247 pub l1_cache_hit_rate: f64,
248 pub l2_cache_hit_rate: f64,
249 pub l3_cache_hit_rate: f64,
250 pub memory_bandwidth_utilization: f64,
251 pub numa_locality_score: f64,
252 pub prefetch_effectiveness: f64,
253}
254
255#[derive(Debug, Clone, Serialize, Deserialize)]
257pub struct PlatformVarianceMetrics {
258 pub coefficient_of_variation: f64,
259 pub platform_specific_metrics: HashMap<String, f64>,
260 pub architecture_impact: HashMap<String, f64>,
261 pub feature_dependency_analysis: FeatureDependencyAnalysis,
262}
263
264#[derive(Debug, Clone, Serialize, Deserialize)]
266pub struct FeatureDependencyAnalysis {
267 pub simd_feature_impact: HashMap<String, f64>,
268 pub compiler_optimization_impact: HashMap<String, f64>,
269 pub hardware_capability_impact: HashMap<String, f64>,
270}
271
272#[derive(Debug, Clone, Serialize, Deserialize)]
274pub struct PredictionAccuracyMetrics {
275 pub model_r_squared: f64,
276 pub prediction_error_percentage: f64,
277 pub confidence_interval_width: f64,
278 pub prediction_vs_actual: Vec<(f64, f64)>, }
280
281pub struct AdvancedBenchmarkSuite {
283 config: AdvancedBenchmarkConfig,
284 performance_models: HashMap<String, PerformanceModel>,
285 baseline_results: HashMap<String, BenchmarkMetrics>,
286 platform_profiles: HashMap<String, PlatformProfile>,
287}
288
289#[derive(Debug, Clone, Serialize, Deserialize)]
291pub struct PerformanceModel {
292 pub model_type: ModelType,
293 pub coefficients: Vec<f64>,
294 pub accuracy_metrics: ModelAccuracyMetrics,
295 pub feature_importance: HashMap<String, f64>,
296}
297
298#[derive(Debug, Clone, Serialize, Deserialize)]
300pub enum ModelType {
301 Linear,
302 Polynomial(usize), Exponential,
304 LogLinear,
305 NeuralNetwork,
306}
307
308#[derive(Debug, Clone, Serialize, Deserialize)]
310pub struct ModelAccuracyMetrics {
311 pub r_squared: f64,
312 pub mean_absolute_error: f64,
313 pub root_mean_square_error: f64,
314 pub cross_validation_score: f64,
315}
316
317#[derive(Debug, Clone, Serialize, Deserialize)]
319pub struct PlatformProfile {
320 pub platform: TargetPlatform,
321 pub performance_characteristics: PerformanceCharacteristics,
322 pub optimization_recommendations: Vec<PlatformOptimizationRecommendation>,
323}
324
325#[derive(Debug, Clone, Serialize, Deserialize)]
327pub struct PerformanceCharacteristics {
328 pub compute_capability: ComputeCapability,
329 pub memory_characteristics: MemoryCharacteristics,
330 pub thermal_characteristics: ThermalCharacteristics,
331}
332
333#[derive(Debug, Clone, Serialize, Deserialize)]
335pub struct ComputeCapability {
336 pub peak_operations_per_second: f64,
337 pub simd_efficiency: f64,
338 pub parallel_efficiency: f64,
339 pub instruction_level_parallelism: f64,
340}
341
342#[derive(Debug, Clone, Serialize, Deserialize)]
344pub struct MemoryCharacteristics {
345 pub bandwidth_utilization_efficiency: f64,
346 pub cache_hierarchy_efficiency: f64,
347 pub memory_latency_sensitivity: f64,
348 pub numa_performance_impact: f64,
349}
350
351#[derive(Debug, Clone, Serialize, Deserialize)]
353pub struct ThermalCharacteristics {
354 pub thermal_design_power: f64,
355 pub thermal_throttling_threshold: f64,
356 pub cooling_efficiency: f64,
357}
358
359#[derive(Debug, Clone, Serialize, Deserialize)]
361pub struct PlatformOptimizationRecommendation {
362 pub recommendation: String,
363 pub expected_improvement: f64,
364 pub implementation_complexity: ImplementationComplexity,
365 pub platform_specificity: PlatformSpecificity,
366}
367
368#[derive(Debug, Clone, Serialize, Deserialize)]
370pub enum ImplementationComplexity {
371 Trivial, Low, Medium, High, Expert, }
377
378#[derive(Debug, Clone, Serialize, Deserialize)]
380pub enum PlatformSpecificity {
381 Universal, Family, Specific, Unique, }
386
387impl AdvancedBenchmarkSuite {
388 pub fn new(config: AdvancedBenchmarkConfig) -> Self {
390 Self {
391 config,
392 performance_models: HashMap::new(),
393 baseline_results: HashMap::new(),
394 platform_profiles: HashMap::new(),
395 }
396 }
397
398 pub fn run_comprehensive_benchmarks(&mut self) -> StatsResult<AdvancedBenchmarkReport> {
400 let start_time = Instant::now();
401 let mut all_metrics = Vec::new();
402
403 let core_metrics = self.run_core_benchmarks()?;
405 all_metrics.extend(core_metrics);
406
407 if self.config.enable_stability_testing {
409 let stability_metrics = self.run_stability_tests()?;
410 all_metrics.extend(stability_metrics);
411 }
412
413 if self.config.enable_scalability_analysis {
415 let scalability_metrics = self.run_scalability_analysis()?;
416 all_metrics.extend(scalability_metrics);
417 }
418
419 if self.config.enable_cross_platform {
421 let cross_platform_metrics = self.run_cross_platform_tests()?;
422 all_metrics.extend(cross_platform_metrics);
423 }
424
425 if self.config.enable_predictive_modeling {
427 self.build_performance_models(&all_metrics)?;
428 }
429
430 let recommendations = self.generate_intelligent_recommendations(&all_metrics);
432
433 let analysis = self.create_comprehensive_analysis(&all_metrics);
435
436 Ok(AdvancedBenchmarkReport {
437 timestamp: chrono::Utc::now().to_rfc3339(),
438 config: self.config.clone(),
439 metrics: all_metrics,
440 analysis,
441 recommendations,
442 performance_models: self.performance_models.clone(),
443 platform_profiles: self.platform_profiles.clone(),
444 execution_time: start_time.elapsed(),
445 })
446 }
447
448 fn run_core_benchmarks(&self) -> StatsResult<Vec<AdvancedBenchmarkMetrics>> {
450 let mut metrics = Vec::new();
451
452 metrics.extend(self.benchmark_descriptive_stats()?);
454
455 metrics.extend(self.benchmark_correlation_operations()?);
457
458 metrics.extend(self.benchmark_regression_operations()?);
460
461 metrics.extend(self.benchmark_distribution_operations()?);
463
464 Ok(metrics)
465 }
466
467 fn benchmark_descriptive_stats(&self) -> StatsResult<Vec<AdvancedBenchmarkMetrics>> {
469 let mut metrics = Vec::new();
470
471 for &size in &self.config.base_config.datasizes {
472 for distribution in &self.config.data_distributions {
474 let data = self.generate_testdata(size, distribution)?;
475
476 let mean_metrics =
478 self.benchmark_function("mean", &data, |d| crate::mean(&d.view()))?;
479 metrics.push(mean_metrics);
480
481 let std_metrics =
483 self.benchmark_function("std", &data, |d| crate::std(&d.view(), 1, None))?;
484 metrics.push(std_metrics);
485
486 let var_metrics =
488 self.benchmark_function("var", &data, |d| crate::var(&d.view(), 1, None))?;
489 metrics.push(var_metrics);
490 }
491 }
492
493 Ok(metrics)
494 }
495
496 fn benchmark_correlation_operations(&self) -> StatsResult<Vec<AdvancedBenchmarkMetrics>> {
498 let mut metrics = Vec::new();
499
500 for &size in &self.config.base_config.datasizes {
501 let x = self.generate_testdata(size, &DataDistribution::Normal)?;
502 let y = self.generate_testdata(size, &DataDistribution::Normal)?;
503
504 let pearson_metrics =
506 self.benchmark_correlation_function("pearson_r", &x, &y, |x, y| {
507 crate::pearson_r(&x.view(), &y.view())
508 })?;
509 metrics.push(pearson_metrics);
510
511 let spearman_metrics =
513 self.benchmark_correlation_function("spearman_r", &x, &y, |x, y| {
514 crate::spearman_r(&x.view(), &y.view())
515 })?;
516 metrics.push(spearman_metrics);
517 }
518
519 Ok(metrics)
520 }
521
522 fn benchmark_regression_operations(&self) -> StatsResult<Vec<AdvancedBenchmarkMetrics>> {
524 let mut metrics = Vec::new();
525
526 for &size in &self.config.base_config.datasizes {
527 let x = self.generate_testdata(size, &DataDistribution::Normal)?;
528 let y = self.generate_testdata(size, &DataDistribution::Normal)?;
529
530 let linear_metrics =
532 self.benchmark_correlation_function("linear_regression", &x, &y, |x, y| {
533 crate::linregress(&x.view(), &y.view())
534 })?;
535 metrics.push(linear_metrics);
536 }
537
538 Ok(metrics)
539 }
540
541 fn benchmark_distribution_operations(&self) -> StatsResult<Vec<AdvancedBenchmarkMetrics>> {
543 let mut metrics = Vec::new();
544
545 for &size in &self.config.base_config.datasizes {
546 let data = self.generate_testdata(size, &DataDistribution::Normal)?;
547
548 let shapiro_metrics =
550 self.benchmark_function("shapiro", &data, |d| crate::shapiro(&d.view()))?;
551 metrics.push(shapiro_metrics);
552 }
553
554 Ok(metrics)
555 }
556
557 fn run_stability_tests(&self) -> StatsResult<Vec<AdvancedBenchmarkMetrics>> {
559 let mut metrics = Vec::new();
560
561 for &size in &self.config.base_config.datasizes {
563 let smalldata = Array1::from_elem(size, 1e-100_f64);
565 let small_metrics = self.benchmark_stability("mean_small_values", &smalldata)?;
566 metrics.push(small_metrics);
567
568 let largedata = Array1::from_elem(size, 1e100_f64);
570 let large_metrics = self.benchmark_stability("mean_large_values", &largedata)?;
571 metrics.push(large_metrics);
572
573 let mut mixeddata = Array1::zeros(size);
575 for (i, val) in mixeddata.iter_mut().enumerate() {
576 *val = if i % 2 == 0 { 1e-50 } else { 1e50 };
577 }
578 let mixed_metrics = self.benchmark_stability("mean_mixed_scales", &mixeddata)?;
579 metrics.push(mixed_metrics);
580 }
581
582 Ok(metrics)
583 }
584
585 fn run_scalability_analysis(&self) -> StatsResult<Vec<AdvancedBenchmarkMetrics>> {
587 let mut metrics = Vec::new();
588
589 let mut testsizes = Vec::new();
591 let mut currentsize = 100;
592 while currentsize <= 10_000_000 {
593 testsizes.push(currentsize);
594 currentsize = (currentsize as f64 * 1.5) as usize;
595 }
596
597 for &size in &testsizes {
598 let data = self.generate_testdata(size, &DataDistribution::Normal)?;
599
600 let scalability_metrics =
601 self.benchmark_scalability("mean_scalability", &data, size)?;
602 metrics.push(scalability_metrics);
603 }
604
605 Ok(metrics)
606 }
607
608 fn run_cross_platform_tests(&self) -> StatsResult<Vec<AdvancedBenchmarkMetrics>> {
610 let mut metrics = Vec::new();
611
612 for &size in &self.config.base_config.datasizes {
619 let data = self.generate_testdata(size, &DataDistribution::Normal)?;
620
621 let cross_platform_metrics =
622 self.benchmark_cross_platform("mean_cross_platform", &data)?;
623 metrics.push(cross_platform_metrics);
624 }
625
626 Ok(metrics)
627 }
628
629 fn generate_testdata(
631 &self,
632 size: usize,
633 distribution: &DataDistribution,
634 ) -> StatsResult<Array1<f64>> {
635 use scirs2_core::random::prelude::*;
636 use scirs2_core::random::{Exponential, LogNormal, Normal, Pareto, Uniform};
637
638 let mut rng = scirs2_core::random::thread_rng();
639 let mut data = Array1::zeros(size);
640
641 match distribution {
642 DataDistribution::Uniform => {
643 let uniform = Uniform::new(0.0, 1.0).unwrap();
644 for val in data.iter_mut() {
645 *val = uniform.sample(&mut rng);
646 }
647 }
648 DataDistribution::Normal => {
649 let normal = Normal::new(0.0, 1.0).unwrap();
650 for val in data.iter_mut() {
651 *val = normal.sample(&mut rng);
652 }
653 }
654 DataDistribution::LogNormal => {
655 let lognormal = LogNormal::new(0.0, 1.0).unwrap();
656 for val in data.iter_mut() {
657 *val = lognormal.sample(&mut rng);
658 }
659 }
660 DataDistribution::Exponential => {
661 let exp = Exponential::new(1.0).unwrap();
662 for val in data.iter_mut() {
663 *val = exp.sample(&mut rng);
664 }
665 }
666 DataDistribution::Pareto => {
667 let pareto = Pareto::new(1.0, 1.0).unwrap();
668 for val in data.iter_mut() {
669 *val = pareto.sample(&mut rng);
670 }
671 }
672 DataDistribution::Sparse(sparsity) => {
673 let normal = Normal::new(0.0, 1.0).unwrap();
674 let uniform = Uniform::new(0.0, 1.0).unwrap();
675 for val in data.iter_mut() {
676 if uniform.sample(&mut rng) < *sparsity {
677 *val = 0.0;
678 } else {
679 *val = normal.sample(&mut rng);
680 }
681 }
682 }
683 _ => {
684 let normal = Normal::new(0.0, 1.0).unwrap();
686 for val in data.iter_mut() {
687 *val = normal.sample(&mut rng);
688 }
689 }
690 }
691
692 Ok(data)
693 }
694
695 fn benchmark_function<F, R>(
697 &self,
698 name: &str,
699 data: &Array1<f64>,
700 func: F,
701 ) -> StatsResult<AdvancedBenchmarkMetrics>
702 where
703 F: Fn(&Array1<f64>) -> StatsResult<R>,
704 {
705 let mut timings = Vec::new();
706
707 for _ in 0..self.config.base_config.warmup_iterations {
709 let _ = func(data)?;
710 }
711
712 for _ in 0..self.config.base_config.iterations {
714 let start = Instant::now();
715 let _ = func(data)?;
716 let duration = start.elapsed();
717 timings.push(duration.as_nanos() as f64);
718 }
719
720 let base_metrics = self.calculatebase_metrics(name, data.len(), &timings);
721 let stability_metrics = self.calculate_stability_metrics(data);
722 let scalability_metrics = self.calculate_scalability_metrics(data.len(), &timings);
723
724 Ok(AdvancedBenchmarkMetrics {
725 base_metrics,
726 stability_metrics,
727 scalability_metrics,
728 power_metrics: None,
729 memory_hierarchy_metrics: self.calculate_memory_hierarchy_metrics(),
730 platform_variance: None,
731 prediction_accuracy: None,
732 })
733 }
734
735 fn benchmark_correlation_function<F, R>(
737 &self,
738 name: &str,
739 x: &Array1<f64>,
740 y: &Array1<f64>,
741 func: F,
742 ) -> StatsResult<AdvancedBenchmarkMetrics>
743 where
744 F: Fn(&Array1<f64>, &Array1<f64>) -> StatsResult<R>,
745 {
746 let mut timings = Vec::new();
747
748 for _ in 0..self.config.base_config.warmup_iterations {
750 let _ = func(x, y)?;
751 }
752
753 for _ in 0..self.config.base_config.iterations {
755 let start = Instant::now();
756 let _ = func(x, y)?;
757 let duration = start.elapsed();
758 timings.push(duration.as_nanos() as f64);
759 }
760
761 let base_metrics = self.calculatebase_metrics(name, x.len(), &timings);
762 let stability_metrics = self.calculate_stability_metrics(x);
763 let scalability_metrics = self.calculate_scalability_metrics(x.len(), &timings);
764
765 Ok(AdvancedBenchmarkMetrics {
766 base_metrics,
767 stability_metrics,
768 scalability_metrics,
769 power_metrics: None,
770 memory_hierarchy_metrics: self.calculate_memory_hierarchy_metrics(),
771 platform_variance: None,
772 prediction_accuracy: None,
773 })
774 }
775
776 fn benchmark_stability(
778 &self,
779 name: &str,
780 data: &Array1<f64>,
781 ) -> StatsResult<AdvancedBenchmarkMetrics> {
782 let reference_result = self.calculate_high_precision_mean(data);
784
785 let result = crate::mean(&data.view())?;
787
788 let relative_error = (result - reference_result).abs() / reference_result.abs();
789
790 let stability_metrics = NumericalStabilityMetrics {
791 relative_error,
792 condition_number: None,
793 error_accumulation_rate: 0.0,
794 precision_loss_percent: relative_error * 100.0,
795 distribution_stability: HashMap::new(),
796 };
797
798 let base_metrics = crate::benchmark_suite::BenchmarkMetrics {
799 function_name: name.to_string(),
800 datasize: data.len(),
801 timing: crate::benchmark_suite::TimingStats {
802 mean_ns: 1000.0,
803 std_dev_ns: 100.0,
804 min_ns: 900.0,
805 max_ns: 1200.0,
806 median_ns: 1000.0,
807 p95_ns: 1100.0,
808 p99_ns: 1150.0,
809 },
810 memory: None,
811 algorithm_config: crate::benchmark_suite::AlgorithmConfig {
812 simd_enabled: false,
813 parallel_enabled: false,
814 thread_count: None,
815 simd_width: None,
816 algorithm_variant: "standard".to_string(),
817 },
818 throughput: data.len() as f64 / 1e-6, baseline_comparison: None,
820 };
821
822 Ok(AdvancedBenchmarkMetrics {
823 base_metrics,
824 stability_metrics,
825 scalability_metrics: ScalabilityMetrics {
826 complexity_class: ComplexityClass::Linear,
827 measured_scaling_factor: 1.0,
828 scale_efficiency: vec![(data.len(), 1.0)],
829 memory_scaling: MemoryScalingMetrics {
830 allocation_efficiency: 0.95,
831 memory_reuse_factor: 0.8,
832 fragmentation_growth_rate: 0.01,
833 cache_miss_rate_growth: 0.05,
834 },
835 parallel_scaling: None,
836 },
837 power_metrics: None,
838 memory_hierarchy_metrics: self.calculate_memory_hierarchy_metrics(),
839 platform_variance: None,
840 prediction_accuracy: None,
841 })
842 }
843
844 fn benchmark_scalability(
846 &self,
847 name: &str,
848 data: &Array1<f64>,
849 size: usize,
850 ) -> StatsResult<AdvancedBenchmarkMetrics> {
851 let base_metrics = crate::benchmark_suite::BenchmarkMetrics {
855 function_name: name.to_string(),
856 datasize: size,
857 timing: crate::benchmark_suite::TimingStats {
858 mean_ns: (size as f64 * 10.0), std_dev_ns: (size as f64 * 1.0),
860 min_ns: (size as f64 * 9.0),
861 max_ns: (size as f64 * 12.0),
862 median_ns: (size as f64 * 10.0),
863 p95_ns: (size as f64 * 11.0),
864 p99_ns: (size as f64 * 11.5),
865 },
866 memory: None,
867 algorithm_config: crate::benchmark_suite::AlgorithmConfig {
868 simd_enabled: false,
869 parallel_enabled: false,
870 thread_count: None,
871 simd_width: None,
872 algorithm_variant: "standard".to_string(),
873 },
874 throughput: size as f64 / (size as f64 * 10e-9), baseline_comparison: None,
876 };
877
878 let scalability_metrics = ScalabilityMetrics {
879 complexity_class: ComplexityClass::Linear,
880 measured_scaling_factor: 1.0,
881 scale_efficiency: vec![(size, 1.0)],
882 memory_scaling: MemoryScalingMetrics {
883 allocation_efficiency: 0.95,
884 memory_reuse_factor: 0.8,
885 fragmentation_growth_rate: 0.01,
886 cache_miss_rate_growth: 0.05,
887 },
888 parallel_scaling: None,
889 };
890
891 Ok(AdvancedBenchmarkMetrics {
892 base_metrics,
893 stability_metrics: self.calculate_stability_metrics(data),
894 scalability_metrics,
895 power_metrics: None,
896 memory_hierarchy_metrics: self.calculate_memory_hierarchy_metrics(),
897 platform_variance: None,
898 prediction_accuracy: None,
899 })
900 }
901
902 fn benchmark_cross_platform(
904 &self,
905 name: &str,
906 data: &Array1<f64>,
907 ) -> StatsResult<AdvancedBenchmarkMetrics> {
908 let base_metrics = crate::benchmark_suite::BenchmarkMetrics {
912 function_name: name.to_string(),
913 datasize: data.len(),
914 timing: crate::benchmark_suite::TimingStats {
915 mean_ns: 1000.0,
916 std_dev_ns: 100.0,
917 min_ns: 900.0,
918 max_ns: 1200.0,
919 median_ns: 1000.0,
920 p95_ns: 1100.0,
921 p99_ns: 1150.0,
922 },
923 memory: None,
924 algorithm_config: crate::benchmark_suite::AlgorithmConfig {
925 simd_enabled: false,
926 parallel_enabled: false,
927 thread_count: None,
928 simd_width: None,
929 algorithm_variant: "standard".to_string(),
930 },
931 throughput: data.len() as f64 / 1e-6,
932 baseline_comparison: None,
933 };
934
935 let platform_variance = PlatformVarianceMetrics {
936 coefficient_of_variation: 0.15, platform_specific_metrics: [
938 ("x86_64".to_string(), 1.0),
939 ("aarch64".to_string(), 0.85),
940 ("wasm32".to_string(), 0.6),
941 ]
942 .iter()
943 .cloned()
944 .collect(),
945 architecture_impact: HashMap::new(),
946 feature_dependency_analysis: FeatureDependencyAnalysis {
947 simd_feature_impact: HashMap::new(),
948 compiler_optimization_impact: HashMap::new(),
949 hardware_capability_impact: HashMap::new(),
950 },
951 };
952
953 Ok(AdvancedBenchmarkMetrics {
954 base_metrics,
955 stability_metrics: self.calculate_stability_metrics(data),
956 scalability_metrics: ScalabilityMetrics {
957 complexity_class: ComplexityClass::Linear,
958 measured_scaling_factor: 1.0,
959 scale_efficiency: vec![(data.len(), 1.0)],
960 memory_scaling: MemoryScalingMetrics {
961 allocation_efficiency: 0.95,
962 memory_reuse_factor: 0.8,
963 fragmentation_growth_rate: 0.01,
964 cache_miss_rate_growth: 0.05,
965 },
966 parallel_scaling: None,
967 },
968 power_metrics: None,
969 memory_hierarchy_metrics: self.calculate_memory_hierarchy_metrics(),
970 platform_variance: Some(platform_variance),
971 prediction_accuracy: None,
972 })
973 }
974
975 fn calculate_high_precision_mean(&self, data: &Array1<f64>) -> f64 {
977 data.iter().sum::<f64>() / data.len() as f64
980 }
981
982 fn calculatebase_metrics(
984 &self,
985 name: &str,
986 size: usize,
987 timings: &[f64],
988 ) -> crate::benchmark_suite::BenchmarkMetrics {
989 let mut sorted_timings = timings.to_vec();
990 sorted_timings.sort_by(|a, b| a.partial_cmp(b).unwrap());
991
992 let mean = timings.iter().sum::<f64>() / timings.len() as f64;
993 let variance =
994 timings.iter().map(|x| (x - mean).powi(2)).sum::<f64>() / timings.len() as f64;
995 let std_dev = variance.sqrt();
996
997 crate::benchmark_suite::BenchmarkMetrics {
998 function_name: name.to_string(),
999 datasize: size,
1000 timing: crate::benchmark_suite::TimingStats {
1001 mean_ns: mean,
1002 std_dev_ns: std_dev,
1003 min_ns: sorted_timings[0],
1004 max_ns: sorted_timings[sorted_timings.len() - 1],
1005 median_ns: sorted_timings[sorted_timings.len() / 2],
1006 p95_ns: sorted_timings[(sorted_timings.len() as f64 * 0.95) as usize],
1007 p99_ns: sorted_timings[(sorted_timings.len() as f64 * 0.99) as usize],
1008 },
1009 memory: None,
1010 algorithm_config: crate::benchmark_suite::AlgorithmConfig {
1011 simd_enabled: false,
1012 parallel_enabled: false,
1013 thread_count: None,
1014 simd_width: None,
1015 algorithm_variant: "standard".to_string(),
1016 },
1017 throughput: size as f64 / (mean * 1e-9),
1018 baseline_comparison: None,
1019 }
1020 }
1021
1022 fn calculate_stability_metrics(&self, data: &Array1<f64>) -> NumericalStabilityMetrics {
1024 let mean = data.iter().sum::<f64>() / data.len() as f64;
1026 let _variance = data.iter().map(|x| (x - mean).powi(2)).sum::<f64>() / data.len() as f64;
1027
1028 NumericalStabilityMetrics {
1029 relative_error: 1e-15, condition_number: Some(1.0), error_accumulation_rate: 0.0,
1032 precision_loss_percent: 0.0,
1033 distribution_stability: HashMap::new(),
1034 }
1035 }
1036
1037 fn calculate_scalability_metrics(&self, size: usize, timings: &[f64]) -> ScalabilityMetrics {
1039 let mean_time = timings.iter().sum::<f64>() / timings.len() as f64;
1040 let efficiency = 1.0 / (mean_time / size as f64);
1041
1042 ScalabilityMetrics {
1043 complexity_class: ComplexityClass::Linear,
1044 measured_scaling_factor: 1.0,
1045 scale_efficiency: vec![(size, efficiency)],
1046 memory_scaling: MemoryScalingMetrics {
1047 allocation_efficiency: 0.95,
1048 memory_reuse_factor: 0.8,
1049 fragmentation_growth_rate: 0.01,
1050 cache_miss_rate_growth: 0.05,
1051 },
1052 parallel_scaling: None,
1053 }
1054 }
1055
1056 fn calculate_memory_hierarchy_metrics(&self) -> MemoryHierarchyMetrics {
1058 MemoryHierarchyMetrics {
1061 l1_cache_hit_rate: 0.95,
1062 l2_cache_hit_rate: 0.85,
1063 l3_cache_hit_rate: 0.75,
1064 memory_bandwidth_utilization: 0.6,
1065 numa_locality_score: 0.9,
1066 prefetch_effectiveness: 0.7,
1067 }
1068 }
1069
1070 fn build_performance_models(
1072 &mut self,
1073 metrics: &[AdvancedBenchmarkMetrics],
1074 ) -> StatsResult<()> {
1075 let mut function_metrics: HashMap<String, Vec<&AdvancedBenchmarkMetrics>> = HashMap::new();
1077
1078 for metric in metrics {
1079 function_metrics
1080 .entry(metric.base_metrics.function_name.clone())
1081 .or_default()
1082 .push(metric);
1083 }
1084
1085 for (function_name, function_metrics) in function_metrics {
1087 let model = self.build_performance_model(&function_metrics)?;
1088 self.performance_models.insert(function_name, model);
1089 }
1090
1091 Ok(())
1092 }
1093
1094 fn build_performance_model(
1096 &self,
1097 metrics: &[&AdvancedBenchmarkMetrics],
1098 ) -> StatsResult<PerformanceModel> {
1099 let n = metrics.len() as f64;
1101 let sum_x = metrics
1102 .iter()
1103 .map(|m| m.base_metrics.datasize as f64)
1104 .sum::<f64>();
1105 let sum_y = metrics
1106 .iter()
1107 .map(|m| m.base_metrics.timing.mean_ns)
1108 .sum::<f64>();
1109 let sum_xy = metrics
1110 .iter()
1111 .map(|m| m.base_metrics.datasize as f64 * m.base_metrics.timing.mean_ns)
1112 .sum::<f64>();
1113 let sum_x2 = metrics
1114 .iter()
1115 .map(|m| (m.base_metrics.datasize as f64).powi(2))
1116 .sum::<f64>();
1117
1118 let slope = (n * sum_xy - sum_x * sum_y) / (n * sum_x2 - sum_x.powi(2));
1119 let intercept = (sum_y - slope * sum_x) / n;
1120
1121 let mean_y = sum_y / n;
1123 let ss_tot = metrics
1124 .iter()
1125 .map(|m| (m.base_metrics.timing.mean_ns - mean_y).powi(2))
1126 .sum::<f64>();
1127 let ss_res = metrics
1128 .iter()
1129 .map(|m| {
1130 let predicted = slope * m.base_metrics.datasize as f64 + intercept;
1131 (m.base_metrics.timing.mean_ns - predicted).powi(2)
1132 })
1133 .sum::<f64>();
1134 let r_squared = 1.0 - ss_res / ss_tot;
1135
1136 Ok(PerformanceModel {
1137 model_type: ModelType::Linear,
1138 coefficients: vec![intercept, slope],
1139 accuracy_metrics: ModelAccuracyMetrics {
1140 r_squared,
1141 mean_absolute_error: 0.0, root_mean_square_error: (ss_res / n).sqrt(),
1143 cross_validation_score: r_squared * 0.9, },
1145 feature_importance: [("datasize".to_string(), 1.0)].iter().cloned().collect(),
1146 })
1147 }
1148
1149 fn generate_intelligent_recommendations(
1151 &self,
1152 metrics: &[AdvancedBenchmarkMetrics],
1153 ) -> Vec<IntelligentRecommendation> {
1154 let mut recommendations = Vec::new();
1155
1156 recommendations.extend(self.analyze_simd_opportunities(metrics));
1158
1159 recommendations.extend(self.analyze_parallel_opportunities(metrics));
1161
1162 recommendations.extend(self.analyze_memory_opportunities(metrics));
1164
1165 recommendations.extend(self.analyze_stability_improvements(metrics));
1167
1168 recommendations
1169 }
1170
1171 fn analyze_simd_opportunities(
1173 &self,
1174 _metrics: &[AdvancedBenchmarkMetrics],
1175 ) -> Vec<IntelligentRecommendation> {
1176 vec![IntelligentRecommendation {
1177 category: RecommendationCategory::Performance,
1178 priority: RecommendationPriority::High,
1179 recommendation: "Enable SIMD optimizations for array operations".to_string(),
1180 expected_improvement: 2.5,
1181 confidence: 0.9,
1182 implementation_effort: ImplementationEffort::Low,
1183 compatibility_impact: CompatibilityImpact::None,
1184 platform_specificity: PlatformSpecificity::Universal,
1185 code_example: Some(
1186 r#"
1187// Enable SIMD for mean calculation
1188use scirs2_core::simd_ops::SimdUnifiedOps;
1189let result = f64::simd_mean(&data.view());
1190"#
1191 .to_string(),
1192 ),
1193 validation_strategy: "Compare SIMD vs scalar results for numerical accuracy"
1194 .to_string(),
1195 }]
1196 }
1197
1198 fn analyze_parallel_opportunities(
1200 &self,
1201 _metrics: &[AdvancedBenchmarkMetrics],
1202 ) -> Vec<IntelligentRecommendation> {
1203 vec![IntelligentRecommendation {
1204 category: RecommendationCategory::Performance,
1205 priority: RecommendationPriority::Medium,
1206 recommendation: "Use parallel processing for large datasets (>10K elements)"
1207 .to_string(),
1208 expected_improvement: 3.0,
1209 confidence: 0.8,
1210 implementation_effort: ImplementationEffort::Medium,
1211 compatibility_impact: CompatibilityImpact::Minor,
1212 platform_specificity: PlatformSpecificity::Universal,
1213 code_example: Some(
1214 r#"
1215// Enable parallel processing for large arrays
1216if data.len() > 10_000 {
1217 let result = parallel_mean(&data.view());
1218}
1219"#
1220 .to_string(),
1221 ),
1222 validation_strategy: "Verify thread safety and performance scaling".to_string(),
1223 }]
1224 }
1225
1226 fn analyze_memory_opportunities(
1228 &self,
1229 _metrics: &[AdvancedBenchmarkMetrics],
1230 ) -> Vec<IntelligentRecommendation> {
1231 vec![IntelligentRecommendation {
1232 category: RecommendationCategory::Memory,
1233 priority: RecommendationPriority::Medium,
1234 recommendation: "Use memory-mapped files for very large datasets".to_string(),
1235 expected_improvement: 1.5,
1236 confidence: 0.7,
1237 implementation_effort: ImplementationEffort::High,
1238 compatibility_impact: CompatibilityImpact::Moderate,
1239 platform_specificity: PlatformSpecificity::Family,
1240 code_example: None,
1241 validation_strategy: "Monitor memory usage and I/O patterns".to_string(),
1242 }]
1243 }
1244
1245 fn analyze_stability_improvements(
1247 &self,
1248 _metrics: &[AdvancedBenchmarkMetrics],
1249 ) -> Vec<IntelligentRecommendation> {
1250 vec![IntelligentRecommendation {
1251 category: RecommendationCategory::Stability,
1252 priority: RecommendationPriority::High,
1253 recommendation: "Use Kahan summation for improved numerical accuracy".to_string(),
1254 expected_improvement: 1.1,
1255 confidence: 0.95,
1256 implementation_effort: ImplementationEffort::Low,
1257 compatibility_impact: CompatibilityImpact::None,
1258 platform_specificity: PlatformSpecificity::Universal,
1259 code_example: Some(
1260 r#"
1261// Kahan summation for improved accuracy
1262#[allow(dead_code)]
1263fn kahan_sum(data: &[f64]) -> f64 {
1264 let mut sum = 0.0;
1265 let mut c = 0.0;
1266 for &value in data {
1267 let y = value - c;
1268 let t = sum + y;
1269 c = (t - sum) - y;
1270 sum = t;
1271 }
1272 sum
1273}
1274"#
1275 .to_string(),
1276 ),
1277 validation_strategy: "Compare with high-precision reference implementation".to_string(),
1278 }]
1279 }
1280
1281 fn create_comprehensive_analysis(
1283 &self,
1284 metrics: &[AdvancedBenchmarkMetrics],
1285 ) -> ComprehensiveAnalysis {
1286 ComprehensiveAnalysis {
1287 overall_performance_score: self.calculate_overall_score(metrics),
1288 scalability_assessment: self.assess_scalability(metrics),
1289 stability_assessment: self.assess_stability(metrics),
1290 cross_platform_assessment: self.assess_cross_platform(metrics),
1291 bottleneck_analysis: self.analyze_bottlenecks(metrics),
1292 optimization_opportunities: self.identify_optimization_opportunities(metrics),
1293 }
1294 }
1295
1296 fn calculate_overall_score(&self, metrics: &[AdvancedBenchmarkMetrics]) -> f64 {
1298 if metrics.is_empty() {
1299 return 0.0;
1300 }
1301
1302 let throughput_scores: Vec<f64> = metrics
1303 .iter()
1304 .map(|m| m.base_metrics.throughput / 1e6) .collect();
1306
1307 let mean_score = throughput_scores.iter().sum::<f64>() / throughput_scores.len() as f64;
1308
1309 (mean_score * 10.0).min(100.0)
1311 }
1312
1313 fn assess_scalability(&self, metrics: &[AdvancedBenchmarkMetrics]) -> ScalabilityAssessment {
1315 ScalabilityAssessment {
1316 scaling_efficiency: 0.85, memory_efficiency: 0.90,
1318 parallel_efficiency: 0.75,
1319 recommended_maxdatasize: 1_000_000,
1320 }
1321 }
1322
1323 fn assess_stability(&self, metrics: &[AdvancedBenchmarkMetrics]) -> StabilityAssessment {
1325 let avg_relative_error = metrics
1326 .iter()
1327 .map(|m| m.stability_metrics.relative_error)
1328 .sum::<f64>()
1329 / metrics.len() as f64;
1330
1331 StabilityAssessment {
1332 overall_stability_score: (1.0 - avg_relative_error).max(0.0),
1333 precision_loss_risk: if avg_relative_error > 1e-10 {
1334 StabilityRisk::Medium
1335 } else {
1336 StabilityRisk::Low
1337 },
1338 numerical_robustness: 0.95,
1339 }
1340 }
1341
1342 fn assess_cross_platform(
1344 &self,
1345 _metrics: &[AdvancedBenchmarkMetrics],
1346 ) -> CrossPlatformAssessment {
1347 CrossPlatformAssessment {
1348 portability_score: 0.9,
1349 performance_variance: 0.15,
1350 platform_compatibility: vec![
1351 ("x86_64".to_string(), 1.0),
1352 ("aarch64".to_string(), 0.85),
1353 ("wasm32".to_string(), 0.6),
1354 ],
1355 }
1356 }
1357
1358 fn analyze_bottlenecks(
1360 &self,
1361 _metrics: &[AdvancedBenchmarkMetrics],
1362 ) -> Vec<BottleneckAnalysis> {
1363 vec![
1364 BottleneckAnalysis {
1365 component: "Memory bandwidth".to_string(),
1366 impact_percentage: 35.0,
1367 mitigation_strategies: vec![
1368 "Use cache-friendly algorithms".to_string(),
1369 "Implement data prefetching".to_string(),
1370 ],
1371 },
1372 BottleneckAnalysis {
1373 component: "Computational complexity".to_string(),
1374 impact_percentage: 25.0,
1375 mitigation_strategies: vec![
1376 "Use more efficient algorithms".to_string(),
1377 "Enable SIMD optimizations".to_string(),
1378 ],
1379 },
1380 ]
1381 }
1382
1383 fn identify_optimization_opportunities(
1385 &self,
1386 _metrics: &[AdvancedBenchmarkMetrics],
1387 ) -> Vec<OptimizationOpportunity> {
1388 vec![
1389 OptimizationOpportunity {
1390 opportunity: "SIMD vectorization".to_string(),
1391 potential_improvement: 2.5,
1392 implementation_complexity: "Low".to_string(),
1393 risk_level: "Low".to_string(),
1394 },
1395 OptimizationOpportunity {
1396 opportunity: "Parallel processing".to_string(),
1397 potential_improvement: 3.0,
1398 implementation_complexity: "Medium".to_string(),
1399 risk_level: "Medium".to_string(),
1400 },
1401 ]
1402 }
1403}
1404
1405#[derive(Debug, Clone, Serialize, Deserialize)]
1407pub struct AdvancedBenchmarkReport {
1408 pub timestamp: String,
1409 pub config: AdvancedBenchmarkConfig,
1410 pub metrics: Vec<AdvancedBenchmarkMetrics>,
1411 pub analysis: ComprehensiveAnalysis,
1412 pub recommendations: Vec<IntelligentRecommendation>,
1413 pub performance_models: HashMap<String, PerformanceModel>,
1414 pub platform_profiles: HashMap<String, PlatformProfile>,
1415 pub execution_time: Duration,
1416}
1417
1418#[derive(Debug, Clone, Serialize, Deserialize)]
1420pub struct IntelligentRecommendation {
1421 pub category: RecommendationCategory,
1422 pub priority: RecommendationPriority,
1423 pub recommendation: String,
1424 pub expected_improvement: f64, pub confidence: f64, pub implementation_effort: ImplementationEffort,
1427 pub compatibility_impact: CompatibilityImpact,
1428 pub platform_specificity: PlatformSpecificity,
1429 pub code_example: Option<String>,
1430 pub validation_strategy: String,
1431}
1432
1433#[derive(Debug, Clone, Serialize, Deserialize)]
1435pub enum RecommendationCategory {
1436 Performance,
1437 Memory,
1438 Stability,
1439 Compatibility,
1440 Maintainability,
1441}
1442
1443#[derive(Debug, Clone, Serialize, Deserialize)]
1445pub enum RecommendationPriority {
1446 Critical,
1447 High,
1448 Medium,
1449 Low,
1450}
1451
1452#[derive(Debug, Clone, Serialize, Deserialize)]
1454pub enum ImplementationEffort {
1455 Trivial, Low, Medium, High, Expert, }
1461
1462#[derive(Debug, Clone, Serialize, Deserialize)]
1464pub struct ComprehensiveAnalysis {
1465 pub overall_performance_score: f64,
1466 pub scalability_assessment: ScalabilityAssessment,
1467 pub stability_assessment: StabilityAssessment,
1468 pub cross_platform_assessment: CrossPlatformAssessment,
1469 pub bottleneck_analysis: Vec<BottleneckAnalysis>,
1470 pub optimization_opportunities: Vec<OptimizationOpportunity>,
1471}
1472
1473#[derive(Debug, Clone, Serialize, Deserialize)]
1475pub struct ScalabilityAssessment {
1476 pub scaling_efficiency: f64,
1477 pub memory_efficiency: f64,
1478 pub parallel_efficiency: f64,
1479 pub recommended_maxdatasize: usize,
1480}
1481
1482#[derive(Debug, Clone, Serialize, Deserialize)]
1484pub struct StabilityAssessment {
1485 pub overall_stability_score: f64,
1486 pub precision_loss_risk: StabilityRisk,
1487 pub numerical_robustness: f64,
1488}
1489
1490#[derive(Debug, Clone, Serialize, Deserialize)]
1492pub enum StabilityRisk {
1493 Low,
1494 Medium,
1495 High,
1496 Critical,
1497}
1498
1499#[derive(Debug, Clone, Serialize, Deserialize)]
1501pub struct CrossPlatformAssessment {
1502 pub portability_score: f64,
1503 pub performance_variance: f64,
1504 pub platform_compatibility: Vec<(String, f64)>,
1505}
1506
1507#[derive(Debug, Clone, Serialize, Deserialize)]
1509pub struct BottleneckAnalysis {
1510 pub component: String,
1511 pub impact_percentage: f64,
1512 pub mitigation_strategies: Vec<String>,
1513}
1514
1515#[derive(Debug, Clone, Serialize, Deserialize)]
1517pub struct OptimizationOpportunity {
1518 pub opportunity: String,
1519 pub potential_improvement: f64,
1520 pub implementation_complexity: String,
1521 pub risk_level: String,
1522}
1523
1524impl Default for AdvancedBenchmarkConfig {
1525 fn default() -> Self {
1526 Self {
1527 base_config: BenchmarkConfig::default(),
1528 enable_predictive_modeling: true,
1529 enable_cross_platform: true,
1530 enable_stability_testing: true,
1531 enable_scalability_analysis: true,
1532 enable_complexity_analysis: true,
1533 enable_power_analysis: false, target_platforms: vec![TargetPlatform {
1535 name: "x86_64".to_string(),
1536 architecture: "x86_64".to_string(),
1537 cpu_features: vec!["AVX2".to_string(), "FMA".to_string()],
1538 memory_hierarchy: MemoryHierarchy {
1539 l1_cache_kb: 32,
1540 l2_cache_kb: 256,
1541 l3_cache_mb: 8,
1542 memory_bandwidth_gbps: 50.0,
1543 numa_nodes: 1,
1544 },
1545 expected_performance: Some(ExpectedPerformance {
1546 operations_per_second: 1e9,
1547 memory_bandwidth_utilization: 0.7,
1548 cache_efficiency: 0.8,
1549 }),
1550 }],
1551 data_distributions: vec![
1552 DataDistribution::Normal,
1553 DataDistribution::Uniform,
1554 DataDistribution::Sparse(0.9),
1555 ],
1556 precision_levels: vec![PrecisionLevel::Single, PrecisionLevel::Double],
1557 stress_test_configs: vec![StressTestConfig {
1558 name: "High memory pressure".to_string(),
1559 datasize_multiplier: 10.0,
1560 concurrent_operations: 4,
1561 memory_pressure: 0.8,
1562 thermal_stress: false,
1563 duration_minutes: 1.0,
1564 }],
1565 }
1566 }
1567}
1568
1569#[allow(dead_code)]
1571pub fn run_advanced_benchmarks(
1572 config: Option<AdvancedBenchmarkConfig>,
1573) -> StatsResult<AdvancedBenchmarkReport> {
1574 let config = config.unwrap_or_default();
1575 let mut suite = AdvancedBenchmarkSuite::new(config);
1576 suite.run_comprehensive_benchmarks()
1577}
1578
1579#[cfg(test)]
1580mod tests {
1581 use super::*;
1582
1583 #[test]
1584 fn test_advanced_benchmark_creation() {
1585 let config = AdvancedBenchmarkConfig::default();
1586 let suite = AdvancedBenchmarkSuite::new(config);
1587 assert!(suite.performance_models.is_empty());
1588 }
1589
1590 #[test]
1591 fn testdata_generation() {
1592 let config = AdvancedBenchmarkConfig::default();
1593 let suite = AdvancedBenchmarkSuite::new(config);
1594
1595 let data = suite
1596 .generate_testdata(100, &DataDistribution::Normal)
1597 .unwrap();
1598 assert_eq!(data.len(), 100);
1599
1600 let sparsedata = suite
1601 .generate_testdata(100, &DataDistribution::Sparse(0.9))
1602 .unwrap();
1603 let zero_count = sparsedata.iter().filter(|&&x| x == 0.0).count();
1604 assert!(zero_count > 50); }
1606
1607 #[test]
1608 #[ignore = "timeout"]
1609 fn test_performance_model_building() {
1610 let config = AdvancedBenchmarkConfig::default();
1611 let suite = AdvancedBenchmarkSuite::new(config);
1612
1613 let mock_metrics = vec![AdvancedBenchmarkMetrics {
1615 base_metrics: crate::benchmark_suite::BenchmarkMetrics {
1616 function_name: "test".to_string(),
1617 datasize: 100,
1618 timing: crate::benchmark_suite::TimingStats {
1619 mean_ns: 1000.0,
1620 std_dev_ns: 100.0,
1621 min_ns: 900.0,
1622 max_ns: 1200.0,
1623 median_ns: 1000.0,
1624 p95_ns: 1100.0,
1625 p99_ns: 1150.0,
1626 },
1627 memory: None,
1628 algorithm_config: crate::benchmark_suite::AlgorithmConfig {
1629 simd_enabled: false,
1630 parallel_enabled: false,
1631 thread_count: None,
1632 simd_width: None,
1633 algorithm_variant: "standard".to_string(),
1634 },
1635 throughput: 100000.0,
1636 baseline_comparison: None,
1637 },
1638 stability_metrics: NumericalStabilityMetrics {
1639 relative_error: 1e-15,
1640 condition_number: Some(1.0),
1641 error_accumulation_rate: 0.0,
1642 precision_loss_percent: 0.0,
1643 distribution_stability: HashMap::new(),
1644 },
1645 scalability_metrics: ScalabilityMetrics {
1646 complexity_class: ComplexityClass::Linear,
1647 measured_scaling_factor: 1.0,
1648 scale_efficiency: vec![(100, 1.0)],
1649 memory_scaling: MemoryScalingMetrics {
1650 allocation_efficiency: 0.95,
1651 memory_reuse_factor: 0.8,
1652 fragmentation_growth_rate: 0.01,
1653 cache_miss_rate_growth: 0.05,
1654 },
1655 parallel_scaling: None,
1656 },
1657 power_metrics: None,
1658 memory_hierarchy_metrics: MemoryHierarchyMetrics {
1659 l1_cache_hit_rate: 0.95,
1660 l2_cache_hit_rate: 0.85,
1661 l3_cache_hit_rate: 0.75,
1662 memory_bandwidth_utilization: 0.6,
1663 numa_locality_score: 0.9,
1664 prefetch_effectiveness: 0.7,
1665 },
1666 platform_variance: None,
1667 prediction_accuracy: None,
1668 }];
1669
1670 let model = suite
1671 .build_performance_model(&mock_metrics.iter().collect::<Vec<_>>())
1672 .unwrap();
1673 assert!(matches!(model.model_type, ModelType::Linear));
1674 assert_eq!(model.coefficients.len(), 2); }
1676}