scirs2_stats/
memory_optimization_advanced.rs

1//! Advanced memory optimization strategies for statistical computations
2//!
3//! This module provides sophisticated memory management techniques specifically
4//! designed for large-scale statistical operations, including streaming algorithms,
5//! memory-mapped data processing, cache-aware algorithms, and adaptive memory
6//! allocation strategies.
7
8use crate::error::{StatsError, StatsResult};
9use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2, Axis};
10use scirs2_core::numeric::{Float, NumCast, One, Zero};
11use serde::{Deserialize, Serialize};
12use std::alloc::{GlobalAlloc, Layout, System};
13use std::collections::{HashMap, VecDeque};
14use std::mem;
15use std::sync::{Arc, Mutex, RwLock};
16
17/// Memory optimization configuration for statistical operations
18#[derive(Debug, Clone, Serialize, Deserialize)]
19#[allow(dead_code)]
20pub struct MemoryOptimizationConfig {
21    /// Maximum memory usage in bytes before triggering optimization strategies
22    pub memory_limit: usize,
23    /// Enable streaming algorithms for large datasets
24    pub enable_streaming: bool,
25    /// Enable memory-mapped file operations
26    pub enable_memory_mapping: bool,
27    /// Enable cache-aware algorithm variants
28    pub enable_cache_optimization: bool,
29    /// Enable adaptive memory allocation
30    pub enable_adaptive_allocation: bool,
31    /// Target cache line size for optimization
32    pub cache_linesize: usize,
33    /// Memory pool initial size
34    pub memory_poolsize: usize,
35    /// Enable memory compression for intermediate results
36    pub enable_compression: bool,
37    /// Chunk size for streaming operations
38    pub streaming_chunksize: usize,
39}
40
41impl Default for MemoryOptimizationConfig {
42    fn default() -> Self {
43        Self {
44            memory_limit: 1024 * 1024 * 1024, // 1GB default limit
45            enable_streaming: true,
46            enable_memory_mapping: true,
47            enable_cache_optimization: true,
48            enable_adaptive_allocation: true,
49            cache_linesize: 64,                // Typical cache line size
50            memory_poolsize: 64 * 1024 * 1024, // 64MB pool
51            enable_compression: false,         // Disabled by default due to CPU overhead
52            streaming_chunksize: 10000,        // Default chunk size
53        }
54    }
55}
56
57/// Memory usage statistics and profiling information
58#[derive(Debug, Clone, Serialize, Deserialize)]
59#[allow(dead_code)]
60pub struct MemoryProfile {
61    /// Current memory usage in bytes
62    pub current_usage: usize,
63    /// Peak memory usage in bytes
64    pub peak_usage: usize,
65    /// Number of allocations
66    pub allocation_count: usize,
67    /// Number of deallocations
68    pub deallocation_count: usize,
69    /// Memory fragmentation ratio (0-1, lower is better)
70    pub fragmentation_ratio: f64,
71    /// Cache hit ratio (0-1, higher is better)
72    pub cache_hit_ratio: f64,
73    /// Memory efficiency score (0-100)
74    pub efficiency_score: f64,
75    /// Active memory pools
76    pub active_pools: Vec<MemoryPoolStats>,
77}
78
79/// Statistics for individual memory pools
80#[derive(Debug, Clone, Serialize, Deserialize)]
81#[allow(dead_code)]
82pub struct MemoryPoolStats {
83    /// Pool identifier
84    pub pool_id: String,
85    /// Pool size in bytes
86    pub poolsize: usize,
87    /// Used bytes in pool
88    pub used_bytes: usize,
89    /// Number of allocations from this pool
90    pub allocations: usize,
91    /// Average allocation size
92    pub avg_allocationsize: f64,
93}
94
95/// Streaming statistics calculator for large datasets
96pub struct StreamingStatsCalculator<F> {
97    config: MemoryOptimizationConfig,
98    /// Running count of elements processed
99    count: usize,
100    /// Running sum for mean calculation
101    sum: F,
102    /// Running sum of squares for variance calculation
103    sum_squares: F,
104    /// Running minimum value
105    min_value: Option<F>,
106    /// Running maximum value
107    max_value: Option<F>,
108    /// Memory profile tracking
109    memory_profile: Arc<Mutex<MemoryProfile>>,
110    /// Intermediate computation buffer
111    computation_buffer: VecDeque<F>,
112}
113
114/// Cache-aware matrix operations optimized for memory locality
115pub struct CacheOptimizedMatrix<F> {
116    data: Array2<F>,
117    blocksize: usize,
118    memory_layout: MatrixLayout,
119    cache_linesize: usize,
120}
121
122/// Memory layout optimization strategies
123#[derive(Debug, Clone, Copy)]
124#[allow(dead_code)]
125pub enum MatrixLayout {
126    RowMajor,
127    ColumnMajor,
128    BlockedRowMajor,
129    BlockedColumnMajor,
130    ZOrderCurve,
131}
132
133/// Adaptive memory allocator for statistical computations
134pub struct AdaptiveStatsAllocator {
135    config: MemoryOptimizationConfig,
136    memory_pools: HashMap<String, Arc<Mutex<MemoryPool>>>,
137    allocation_patterns: Arc<RwLock<AllocationPatternAnalyzer>>,
138    global_stats: Arc<Mutex<MemoryProfile>>,
139}
140
141/// Memory pool optimized for statistical data types
142#[allow(dead_code)]
143struct MemoryPool {
144    pool_id: String,
145    base_ptr: *mut u8,
146    poolsize: usize,
147    usedsize: usize,
148    free_blocks: Vec<MemoryBlock>,
149    used_blocks: Vec<MemoryBlock>,
150    allocation_count: usize,
151}
152
153/// Memory block descriptor
154#[derive(Debug, Clone)]
155#[allow(dead_code)]
156struct MemoryBlock {
157    offset: usize,
158    size: usize,
159    alignment: usize,
160    allocation_time: std::time::Instant,
161}
162
163/// Allocation pattern analyzer for optimizing future allocations
164#[allow(dead_code)]
165struct AllocationPatternAnalyzer {
166    allocation_history: VecDeque<AllocationEvent>,
167    pattern_cache: HashMap<String, AllocationPattern>,
168    prediction_accuracy: f64,
169}
170
171/// Allocation event for pattern analysis
172#[derive(Debug, Clone)]
173#[allow(dead_code)]
174struct AllocationEvent {
175    size: usize,
176    alignment: usize,
177    lifetime: std::time::Duration,
178    operation_type: String,
179    timestamp: std::time::Instant,
180}
181
182/// Identified allocation pattern
183#[derive(Debug, Clone)]
184#[allow(dead_code)]
185struct AllocationPattern {
186    typicalsize: usize,
187    typical_alignment: usize,
188    expected_lifetime: std::time::Duration,
189    frequency: f64,
190    confidence: f64,
191}
192
193/// Memory-mapped statistical data processor
194pub struct MemoryMappedStatsProcessor {
195    config: MemoryOptimizationConfig,
196    mapped_files: HashMap<String, MemoryMappedFile>,
197    cache_manager: CacheManager,
198}
199
200/// Memory-mapped file wrapper
201#[allow(dead_code)]
202struct MemoryMappedFile {
203    file_path: String,
204    filesize: usize,
205    mapped_ptr: *const u8,
206    access_pattern: AccessPattern,
207}
208
209/// File access pattern tracking
210#[derive(Debug, Clone)]
211struct AccessPattern {
212    sequential_ratio: f64,
213    random_ratio: f64,
214    hot_regions: Vec<MemoryRegion>,
215}
216
217/// Memory region descriptor
218#[derive(Debug, Clone)]
219struct MemoryRegion {
220    start_offset: usize,
221    end_offset: usize,
222    access_frequency: f64,
223    last_access: std::time::Instant,
224}
225
226/// Cache manager for optimizing memory access patterns
227#[allow(dead_code)]
228struct CacheManager {
229    cachesize: usize,
230    cache_entries: HashMap<u64, CacheEntry>,
231    access_order: VecDeque<u64>,
232    hit_count: usize,
233    miss_count: usize,
234}
235
236/// Cache entry with metadata
237#[allow(dead_code)]
238struct CacheEntry {
239    data: Vec<u8>,
240    access_count: usize,
241    last_access: std::time::Instant,
242    size: usize,
243}
244
245impl<F> StreamingStatsCalculator<F>
246where
247    F: Float + NumCast + Zero + One + Send + Sync + std::fmt::Display,
248{
249    /// Create a new streaming statistics calculator
250    pub fn new(config: MemoryOptimizationConfig) -> Self {
251        Self {
252            config,
253            count: 0,
254            sum: F::zero(),
255            sum_squares: F::zero(),
256            min_value: None,
257            max_value: None,
258            memory_profile: Arc::new(Mutex::new(MemoryProfile::new())),
259            computation_buffer: VecDeque::with_capacity(1000), // Small buffer for efficiency
260        }
261    }
262
263    /// Process a chunk of data in streaming fashion
264    pub fn process_chunk(&mut self, chunk: ArrayView1<F>) -> StatsResult<()> {
265        self.update_memory_profile();
266
267        for &value in chunk.iter() {
268            self.count += 1;
269            self.sum = self.sum + value;
270            self.sum_squares = self.sum_squares + value * value;
271
272            // Update min/max
273            match self.min_value {
274                None => self.min_value = Some(value),
275                Some(current_min) => {
276                    if value < current_min {
277                        self.min_value = Some(value);
278                    }
279                }
280            }
281
282            match self.max_value {
283                None => self.max_value = Some(value),
284                Some(current_max) => {
285                    if value > current_max {
286                        self.max_value = Some(value);
287                    }
288                }
289            }
290
291            // Manage computation buffer to prevent memory growth
292            if self.computation_buffer.len() >= self.config.streaming_chunksize {
293                self.computation_buffer.pop_front();
294            }
295            self.computation_buffer.push_back(value);
296        }
297
298        Ok(())
299    }
300
301    /// Get current streaming statistics
302    pub fn get_statistics(&self) -> StatsResult<StreamingStatistics<F>> {
303        if self.count == 0 {
304            return Err(StatsError::InvalidArgument(
305                "No data processed yet".to_string(),
306            ));
307        }
308
309        let count_f = F::from(self.count).unwrap();
310        let mean = self.sum / count_f;
311
312        let variance = if self.count > 1 {
313            let count_minus_one = F::from(self.count - 1).unwrap();
314            (self.sum_squares - self.sum * self.sum / count_f) / count_minus_one
315        } else {
316            F::zero()
317        };
318
319        let std_dev = variance.sqrt();
320
321        Ok(StreamingStatistics {
322            count: self.count,
323            mean,
324            variance,
325            std_dev,
326            min: self.min_value.unwrap_or(F::zero()),
327            max: self.max_value.unwrap_or(F::zero()),
328            memory_efficiency: self.calculate_memory_efficiency(),
329        })
330    }
331
332    /// Calculate memory efficiency score
333    fn calculate_memory_efficiency(&self) -> f64 {
334        let theoretical_minimum = mem::size_of::<F>() * self.count;
335        let actual_usage = self.estimate_memory_usage();
336
337        if actual_usage > 0 {
338            (theoretical_minimum as f64 / actual_usage as f64 * 100.0).min(100.0)
339        } else {
340            100.0
341        }
342    }
343
344    /// Estimate current memory usage
345    fn estimate_memory_usage(&self) -> usize {
346        mem::size_of::<Self>() + self.computation_buffer.len() * mem::size_of::<F>()
347    }
348
349    /// Update memory profiling information
350    fn update_memory_profile(&mut self) {
351        if let Ok(mut profile) = self.memory_profile.lock() {
352            let current_usage = self.estimate_memory_usage();
353            profile.current_usage = current_usage;
354            if current_usage > profile.peak_usage {
355                profile.peak_usage = current_usage;
356            }
357            profile.allocation_count += 1;
358            profile.efficiency_score = self.calculate_memory_efficiency();
359        }
360    }
361}
362
363/// Result structure for streaming statistics
364#[derive(Debug, Clone)]
365#[allow(dead_code)]
366pub struct StreamingStatistics<F> {
367    pub count: usize,
368    pub mean: F,
369    pub variance: F,
370    pub std_dev: F,
371    pub min: F,
372    pub max: F,
373    pub memory_efficiency: f64,
374}
375
376impl<F> CacheOptimizedMatrix<F>
377where
378    F: Float + NumCast + Zero + One + Clone + 'static + std::fmt::Display,
379{
380    /// Create a cache-optimized matrix with specified layout
381    pub fn new(data: Array2<F>, layout: MatrixLayout, cache_linesize: usize) -> Self {
382        let optimal_blocksize =
383            Self::calculate_optimal_blocksize(data.nrows(), data.ncols(), cache_linesize);
384
385        let mut matrix = Self {
386            data,
387            blocksize: optimal_blocksize,
388            memory_layout: layout,
389            cache_linesize,
390        };
391
392        matrix.optimize_layout();
393        matrix
394    }
395
396    /// Perform cache-optimized matrix multiplication
397    pub fn multiply_optimized(
398        &self,
399        other: &CacheOptimizedMatrix<F>,
400    ) -> StatsResult<CacheOptimizedMatrix<F>> {
401        if self.data.ncols() != other.data.nrows() {
402            return Err(StatsError::DimensionMismatch(
403                "Matrix dimensions incompatible for multiplication".to_string(),
404            ));
405        }
406
407        let resultdata = match self.memory_layout {
408            MatrixLayout::BlockedRowMajor | MatrixLayout::BlockedColumnMajor => {
409                self.blocked_multiply(&other.data)?
410            }
411            _ => self.standard_multiply(&other.data)?,
412        };
413
414        Ok(CacheOptimizedMatrix::new(
415            resultdata,
416            self.memory_layout,
417            self.cache_linesize,
418        ))
419    }
420
421    /// Cache-optimized correlation computation
422    pub fn correlation_matrix(&self) -> StatsResult<CacheOptimizedMatrix<F>> {
423        let (_n_samples_, n_features) = self.data.dim();
424
425        // Compute means using cache-friendly access patterns
426        let means = self.compute_column_means_optimized()?;
427
428        // Compute correlation matrix using blocked algorithm
429        let mut correlation = Array2::zeros((n_features, n_features));
430
431        let blocksize = self.blocksize;
432        for i_block in (0..n_features).step_by(blocksize) {
433            for j_block in (0..n_features).step_by(blocksize) {
434                let i_end = (i_block + blocksize).min(n_features);
435                let j_end = (j_block + blocksize).min(n_features);
436
437                for i in i_block..i_end {
438                    for j in j_block..j_end {
439                        let correlation_value = self.compute_correlation_pair(i, j, &means)?;
440                        correlation[[i, j]] = correlation_value;
441                    }
442                }
443            }
444        }
445
446        Ok(CacheOptimizedMatrix::new(
447            correlation,
448            MatrixLayout::BlockedRowMajor,
449            self.cache_linesize,
450        ))
451    }
452
453    /// Calculate optimal block size for cache efficiency
454    fn calculate_optimal_blocksize(_rows: usize, cols: usize, cache_linesize: usize) -> usize {
455        let elementsize = mem::size_of::<F>();
456        let elements_per_cache_line = cache_linesize / elementsize;
457
458        // Find block size that maximizes cache utilization
459        let target_block_elements = (32 * 1024) / elementsize; // Target 32KB blocks
460        let max_dimension = _rows.max(cols);
461
462        ((target_block_elements as f64).sqrt() as usize)
463            .min(max_dimension)
464            .max(elements_per_cache_line)
465    }
466
467    /// Optimize matrix layout for cache performance
468    fn optimize_layout(&mut self) {
469        match self.memory_layout {
470            MatrixLayout::ZOrderCurve => {
471                self.data = self.convert_to_z_order();
472            }
473            MatrixLayout::BlockedRowMajor => {
474                self.data = self.convert_to_blocked_layout(true);
475            }
476            MatrixLayout::BlockedColumnMajor => {
477                self.data = self.convert_to_blocked_layout(false);
478            }
479            _ => {
480                // No layout conversion needed
481            }
482        }
483    }
484
485    /// Convert matrix to Z-order (Morton order) layout
486    fn convert_to_z_order(&self) -> Array2<F> {
487        // Simplified Z-order conversion
488        // In practice, this would implement proper Morton encoding
489        self.data.clone() // Placeholder implementation
490    }
491
492    /// Convert matrix to blocked layout
493    fn convert_to_blocked_layout(&self, rowmajor: bool) -> Array2<F> {
494        // Simplified blocked layout conversion
495        self.data.clone() // Placeholder implementation
496    }
497
498    /// Blocked matrix multiplication optimized for cache
499    fn blocked_multiply(&self, other: &Array2<F>) -> StatsResult<Array2<F>> {
500        let (m, k) = self.data.dim();
501        let (k2, n) = other.dim();
502
503        if k != k2 {
504            return Err(StatsError::DimensionMismatch(
505                "Matrix dimensions incompatible".to_string(),
506            ));
507        }
508
509        let mut result = Array2::zeros((m, n));
510        let blocksize = self.blocksize;
511
512        // Blocked multiplication to improve cache locality
513        for i_block in (0..m).step_by(blocksize) {
514            for j_block in (0..n).step_by(blocksize) {
515                for k_block in (0..k).step_by(blocksize) {
516                    let i_end = (i_block + blocksize).min(m);
517                    let j_end = (j_block + blocksize).min(n);
518                    let k_end = (k_block + blocksize).min(k);
519
520                    for i in i_block..i_end {
521                        for j in j_block..j_end {
522                            let mut sum = F::zero();
523                            for k_idx in k_block..k_end {
524                                sum = sum + self.data[[i, k_idx]] * other[[k_idx, j]];
525                            }
526                            result[[i, j]] = result[[i, j]] + sum;
527                        }
528                    }
529                }
530            }
531        }
532
533        Ok(result)
534    }
535
536    /// Standard matrix multiplication
537    fn standard_multiply(&self, other: &Array2<F>) -> StatsResult<Array2<F>> {
538        let result = self.data.dot(other);
539        Ok(result)
540    }
541
542    /// Compute column means with cache-optimized access
543    fn compute_column_means_optimized(&self) -> StatsResult<Array1<F>> {
544        let n_features = self.data.ncols();
545        let n_samples_f = F::from(self.data.nrows()).unwrap();
546        let mut means = Array1::zeros(n_features);
547
548        // Process columns in blocks to improve cache locality
549        let blocksize = self.blocksize;
550        for col_block in (0..n_features).step_by(blocksize) {
551            let col_end = (col_block + blocksize).min(n_features);
552
553            for col in col_block..col_end {
554                let column_sum = self.data.column(col).sum();
555                means[col] = column_sum / n_samples_f;
556            }
557        }
558
559        Ok(means)
560    }
561
562    /// Compute correlation between two columns
563    fn compute_correlation_pair(
564        &self,
565        col_i: usize,
566        col_j: usize,
567        means: &Array1<F>,
568    ) -> StatsResult<F> {
569        if col_i == col_j {
570            return Ok(F::one());
571        }
572
573        let n_samples_ = self.data.nrows();
574        let _n_samples_f = F::from(n_samples_).unwrap();
575
576        let mean_i = means[col_i];
577        let mean_j = means[col_j];
578
579        let mut numerator = F::zero();
580        let mut sum_sq_i = F::zero();
581        let mut sum_sq_j = F::zero();
582
583        // Single pass through the data for cache efficiency
584        for row in 0..n_samples_ {
585            let val_i = self.data[[row, col_i]] - mean_i;
586            let val_j = self.data[[row, col_j]] - mean_j;
587
588            numerator = numerator + val_i * val_j;
589            sum_sq_i = sum_sq_i + val_i * val_i;
590            sum_sq_j = sum_sq_j + val_j * val_j;
591        }
592
593        let denominator = (sum_sq_i * sum_sq_j).sqrt();
594        if denominator > F::epsilon() {
595            Ok(numerator / denominator)
596        } else {
597            Ok(F::zero())
598        }
599    }
600}
601
602impl AdaptiveStatsAllocator {
603    /// Create a new adaptive allocator
604    pub fn new(config: MemoryOptimizationConfig) -> Self {
605        let mut allocator = Self {
606            config: config.clone(),
607            memory_pools: HashMap::new(),
608            allocation_patterns: Arc::new(RwLock::new(AllocationPatternAnalyzer::new())),
609            global_stats: Arc::new(Mutex::new(MemoryProfile::new())),
610        };
611
612        // Initialize default memory pools
613        let _ = allocator.create_memory_pool("float_arrays", config.memory_poolsize / 4);
614        let _ = allocator.create_memory_pool("matrix_operations", config.memory_poolsize / 2);
615        let _ = allocator.create_memory_pool("temporary_buffers", config.memory_poolsize / 4);
616
617        allocator
618    }
619
620    /// Create a specialized memory pool
621    pub fn create_memory_pool(&mut self, poolid: &str, size: usize) -> StatsResult<()> {
622        let pool = Arc::new(Mutex::new(MemoryPool::new(poolid, size)?));
623        self.memory_pools.insert(poolid.to_string(), pool);
624        Ok(())
625    }
626
627    /// Allocate memory with pattern analysis
628    pub fn allocate_optimized(
629        &self,
630        size: usize,
631        alignment: usize,
632        operation_type: &str,
633    ) -> StatsResult<*mut u8> {
634        // Analyze allocation patterns to predict optimal pool
635        let predicted_pool = self.predict_optimal_pool(size, alignment, operation_type);
636
637        // Try to allocate from predicted pool first
638        if let Some(pool) = self.memory_pools.get(&predicted_pool) {
639            if let Ok(mut pool_guard) = pool.lock() {
640                if let Ok(ptr) = pool_guard.allocate(size, alignment) {
641                    self.record_allocation_event(size, alignment, operation_type);
642                    return Ok(ptr);
643                }
644            }
645        }
646
647        // Fallback to system allocator
648        let layout = Layout::from_size_align(size, alignment)
649            .map_err(|e| StatsError::ComputationError(format!("Invalid layout: {}", e)))?;
650
651        let ptr = unsafe { System.alloc(layout) };
652        if ptr.is_null() {
653            return Err(StatsError::ComputationError(
654                "Memory allocation failed".to_string(),
655            ));
656        }
657
658        self.record_allocation_event(size, alignment, operation_type);
659        Ok(ptr)
660    }
661
662    /// Predict optimal memory pool for allocation
663    fn predict_optimal_pool(&self, size: usize, alignment: usize, operationtype: &str) -> String {
664        if let Ok(analyzer) = self.allocation_patterns.read() {
665            if let Some(pattern) = analyzer.get_pattern(operationtype) {
666                // Use pattern analysis to select optimal pool
667                if pattern.typicalsize <= 1024 {
668                    return "temporary_buffers".to_string();
669                } else if pattern.typicalsize <= 64 * 1024 {
670                    return "float_arrays".to_string();
671                } else {
672                    return "matrix_operations".to_string();
673                }
674            }
675        }
676
677        // Default pool selection based on size
678        if size <= 1024 {
679            "temporary_buffers".to_string()
680        } else if size <= 64 * 1024 {
681            "float_arrays".to_string()
682        } else {
683            "matrix_operations".to_string()
684        }
685    }
686
687    /// Record allocation event for pattern analysis
688    fn record_allocation_event(&self, size: usize, alignment: usize, operationtype: &str) {
689        if let Ok(mut analyzer) = self.allocation_patterns.write() {
690            analyzer.record_allocation(size, alignment, operationtype);
691        }
692
693        if let Ok(mut stats) = self.global_stats.lock() {
694            stats.allocation_count += 1;
695            stats.current_usage += size;
696            if stats.current_usage > stats.peak_usage {
697                stats.peak_usage = stats.current_usage;
698            }
699        }
700    }
701
702    /// Get current memory profile
703    pub fn get_memory_profile(&self) -> MemoryProfile {
704        if let Ok(profile) = self.global_stats.lock() {
705            profile.clone()
706        } else {
707            MemoryProfile::new()
708        }
709    }
710
711    /// Optimize memory pools based on usage patterns
712    pub fn optimize_pools(&mut self) -> StatsResult<()> {
713        // Collect the data first to avoid borrow checker issues
714        let pools_to_create: Vec<(String, usize)> = {
715            if let Ok(analyzer) = self.allocation_patterns.read() {
716                analyzer
717                    .pattern_cache
718                    .iter()
719                    .filter(|(_, pattern)| pattern.confidence > 0.8)
720                    .map(|(operation_type, pattern)| {
721                        let pool_name = format!("specialized_{}", operation_type);
722                        let optimalsize = (pattern.typicalsize * 100).max(64 * 1024);
723                        (pool_name, optimalsize)
724                    })
725                    .collect()
726            } else {
727                Vec::new()
728            }
729        };
730
731        // Now create the pools
732        for (pool_name, optimalsize) in pools_to_create {
733            self.create_memory_pool(&pool_name, optimalsize)?;
734        }
735        Ok(())
736    }
737}
738
739impl MemoryPool {
740    /// Create a new memory pool
741    fn new(poolid: &str, size: usize) -> StatsResult<Self> {
742        let layout = Layout::from_size_align(size, 64) // 64-byte alignment for cache lines
743            .map_err(|e| StatsError::ComputationError(format!("Invalid layout: {}", e)))?;
744
745        let base_ptr = unsafe { System.alloc(layout) };
746        if base_ptr.is_null() {
747            return Err(StatsError::ComputationError(
748                "Memory pool allocation failed".to_string(),
749            ));
750        }
751
752        Ok(Self {
753            pool_id: poolid.to_string(),
754            base_ptr,
755            poolsize: size,
756            usedsize: 0,
757            free_blocks: vec![MemoryBlock {
758                offset: 0,
759                size,
760                alignment: 64,
761                allocation_time: std::time::Instant::now(),
762            }],
763            used_blocks: Vec::new(),
764            allocation_count: 0,
765        })
766    }
767
768    /// Allocate memory from the pool
769    fn allocate(&mut self, size: usize, alignment: usize) -> StatsResult<*mut u8> {
770        // Find suitable free block
771        for (index, block) in self.free_blocks.iter().enumerate() {
772            let aligned_offset = self.align_offset(block.offset, alignment);
773            let totalsize = aligned_offset - block.offset + size;
774
775            if totalsize <= block.size {
776                // Split the block if necessary
777                let used_block = MemoryBlock {
778                    offset: aligned_offset,
779                    size,
780                    alignment,
781                    allocation_time: std::time::Instant::now(),
782                };
783
784                let remainingsize = block.size - totalsize;
785                if remainingsize > 0 {
786                    let remaining_block = MemoryBlock {
787                        offset: aligned_offset + size,
788                        size: remainingsize,
789                        alignment: 1,
790                        allocation_time: std::time::Instant::now(),
791                    };
792                    self.free_blocks[index] = remaining_block;
793                } else {
794                    self.free_blocks.remove(index);
795                }
796
797                self.used_blocks.push(used_block);
798                self.usedsize += size;
799                self.allocation_count += 1;
800
801                let ptr = unsafe { self.base_ptr.add(aligned_offset) };
802                return Ok(ptr);
803            }
804        }
805
806        Err(StatsError::ComputationError(
807            "No suitable block available in pool".to_string(),
808        ))
809    }
810
811    /// Align offset to specified alignment
812    fn align_offset(&self, offset: usize, alignment: usize) -> usize {
813        (offset + alignment - 1) & !(alignment - 1)
814    }
815}
816
817impl AllocationPatternAnalyzer {
818    fn new() -> Self {
819        Self {
820            allocation_history: VecDeque::with_capacity(10000),
821            pattern_cache: HashMap::new(),
822            prediction_accuracy: 0.0,
823        }
824    }
825
826    fn record_allocation(&mut self, size: usize, alignment: usize, operationtype: &str) {
827        let event = AllocationEvent {
828            size,
829            alignment,
830            lifetime: std::time::Duration::from_secs(0), // Will be updated on deallocation
831            operation_type: operationtype.to_string(),
832            timestamp: std::time::Instant::now(),
833        };
834
835        self.allocation_history.push_back(event);
836
837        // Maintain reasonable history size
838        if self.allocation_history.len() > 10000 {
839            self.allocation_history.pop_front();
840        }
841
842        // Update patterns periodically
843        if self.allocation_history.len().is_multiple_of(100) {
844            self.update_patterns();
845        }
846    }
847
848    fn update_patterns(&mut self) {
849        let mut operation_groups: HashMap<String, Vec<&AllocationEvent>> = HashMap::new();
850
851        for event in &self.allocation_history {
852            operation_groups
853                .entry(event.operation_type.clone())
854                .or_default()
855                .push(event);
856        }
857
858        for (operation_type, events) in operation_groups {
859            if events.len() >= 10 {
860                // Minimum sample size for pattern
861                let pattern = self.analyze_allocation_pattern(&events);
862                self.pattern_cache.insert(operation_type, pattern);
863            }
864        }
865    }
866
867    fn analyze_allocation_pattern(&self, events: &[&AllocationEvent]) -> AllocationPattern {
868        let sizes: Vec<usize> = events.iter().map(|e| e.size).collect();
869        let alignments: Vec<usize> = events.iter().map(|e| e.alignment).collect();
870
871        let typicalsize = self.calculate_median(&sizes);
872        let typical_alignment = self.calculate_mode(&alignments);
873        let frequency = events.len() as f64 / self.allocation_history.len() as f64;
874
875        // Simple confidence based on consistency
876        let size_variance = self.calculate_variance(&sizes);
877        let confidence = 1.0 / (1.0 + size_variance / typicalsize as f64);
878
879        AllocationPattern {
880            typicalsize,
881            typical_alignment,
882            expected_lifetime: std::time::Duration::from_millis(100), // Placeholder
883            frequency,
884            confidence,
885        }
886    }
887
888    fn calculate_median(&self, values: &[usize]) -> usize {
889        let mut sorted = values.to_vec();
890        sorted.sort_unstable();
891        sorted[sorted.len() / 2]
892    }
893
894    fn calculate_mode(&self, values: &[usize]) -> usize {
895        let mut counts = HashMap::new();
896        for &value in values {
897            *counts.entry(value).or_insert(0) += 1;
898        }
899
900        counts
901            .into_iter()
902            .max_by_key(|(_, count)| *count)
903            .map(|(_, value)| value)
904            .unwrap_or(64) // Default alignment
905    }
906
907    fn calculate_variance(&self, values: &[usize]) -> f64 {
908        let mean = values.iter().sum::<usize>() as f64 / values.len() as f64;
909        let variance = values
910            .iter()
911            .map(|&x| (x as f64 - mean).powi(2))
912            .sum::<f64>()
913            / values.len() as f64;
914        variance
915    }
916
917    fn get_pattern(&self, operationtype: &str) -> Option<&AllocationPattern> {
918        self.pattern_cache.get(operationtype)
919    }
920}
921
922impl MemoryProfile {
923    fn new() -> Self {
924        Self {
925            current_usage: 0,
926            peak_usage: 0,
927            allocation_count: 0,
928            deallocation_count: 0,
929            fragmentation_ratio: 0.0,
930            cache_hit_ratio: 0.0,
931            efficiency_score: 100.0,
932            active_pools: Vec::new(),
933        }
934    }
935}
936
937/// High-level memory optimization utilities
938pub struct MemoryOptimizationSuite {
939    config: MemoryOptimizationConfig,
940    allocator: AdaptiveStatsAllocator,
941    cache_manager: CacheManager,
942}
943
944impl MemoryOptimizationSuite {
945    /// Create a new memory optimization suite
946    pub fn new(config: MemoryOptimizationConfig) -> Self {
947        let allocator = AdaptiveStatsAllocator::new(config.clone());
948        let cache_manager = CacheManager::new(config.memory_poolsize / 8); // Use 1/8 of pool for cache
949
950        Self {
951            config,
952            allocator,
953            cache_manager,
954        }
955    }
956
957    /// Optimize correlation computation for large matrices
958    pub fn optimized_correlation_matrix<F>(&mut self, data: ArrayView2<F>) -> StatsResult<Array2<F>>
959    where
960        F: Float + NumCast + Zero + One + Clone + Send + Sync + 'static + std::fmt::Display,
961    {
962        let (n_samples_, n_features) = data.dim();
963        let datasize = n_samples_ * n_features * mem::size_of::<F>();
964
965        if datasize > self.config.memory_limit {
966            // Use streaming algorithm for large datasets
967            self.streaming_correlation_matrix(data)
968        } else {
969            // Use cache-optimized algorithm for smaller datasets
970            let cache_optimized = CacheOptimizedMatrix::new(
971                data.to_owned(),
972                MatrixLayout::BlockedRowMajor,
973                self.config.cache_linesize,
974            );
975
976            let result = cache_optimized.correlation_matrix()?;
977            Ok(result.data)
978        }
979    }
980
981    /// Streaming correlation matrix computation for large datasets
982    fn streaming_correlation_matrix<F>(&mut self, data: ArrayView2<F>) -> StatsResult<Array2<F>>
983    where
984        F: Float + NumCast + Zero + One + Clone + 'static + std::fmt::Display,
985    {
986        let (n_samples_, n_features) = data.dim();
987        let chunksize = self.config.streaming_chunksize;
988
989        // Initialize streaming calculators for each feature pair
990        let mut means = vec![F::zero(); n_features];
991        let _variances = vec![F::zero(); n_features];
992
993        // First pass: compute means
994        for chunk_start in (0..n_samples_).step_by(chunksize) {
995            let chunk_end = (chunk_start + chunksize).min(n_samples_);
996            let chunk = data.slice(scirs2_core::ndarray::s![chunk_start..chunk_end, ..]);
997
998            for (feature_idx, column) in chunk.axis_iter(Axis(1)).enumerate() {
999                for &value in column.iter() {
1000                    means[feature_idx] = means[feature_idx] + value;
1001                }
1002            }
1003        }
1004
1005        let n_samples_f = F::from(n_samples_).unwrap();
1006        for mean in &mut means {
1007            *mean = *mean / n_samples_f;
1008        }
1009
1010        // Second pass: compute correlations
1011        let mut correlation_matrix = Array2::zeros((n_features, n_features));
1012
1013        for i in 0..n_features {
1014            for j in i..n_features {
1015                correlation_matrix[[i, j]] =
1016                    self.compute_streaming_correlation(&data, i, j, means[i], means[j])?;
1017                correlation_matrix[[j, i]] = correlation_matrix[[i, j]];
1018            }
1019        }
1020
1021        Ok(correlation_matrix)
1022    }
1023
1024    /// Compute correlation between two features using streaming approach
1025    fn compute_streaming_correlation<F>(
1026        &self,
1027        data: &ArrayView2<F>,
1028        feature_i: usize,
1029        feature_j: usize,
1030        mean_i: F,
1031        mean_j: F,
1032    ) -> StatsResult<F>
1033    where
1034        F: Float + NumCast + Zero + One + std::fmt::Display,
1035    {
1036        if feature_i == feature_j {
1037            return Ok(F::one());
1038        }
1039
1040        let mut numerator = F::zero();
1041        let mut sum_sq_i = F::zero();
1042        let mut sum_sq_j = F::zero();
1043
1044        let chunksize = self.config.streaming_chunksize;
1045        let n_samples_ = data.nrows();
1046
1047        for chunk_start in (0..n_samples_).step_by(chunksize) {
1048            let chunk_end = (chunk_start + chunksize).min(n_samples_);
1049
1050            for row in chunk_start..chunk_end {
1051                let val_i = data[[row, feature_i]] - mean_i;
1052                let val_j = data[[row, feature_j]] - mean_j;
1053
1054                numerator = numerator + val_i * val_j;
1055                sum_sq_i = sum_sq_i + val_i * val_i;
1056                sum_sq_j = sum_sq_j + val_j * val_j;
1057            }
1058        }
1059
1060        let denominator = (sum_sq_i * sum_sq_j).sqrt();
1061        if denominator > F::epsilon() {
1062            Ok(numerator / denominator)
1063        } else {
1064            Ok(F::zero())
1065        }
1066    }
1067
1068    /// Get comprehensive memory optimization report
1069    pub fn get_optimization_report(&self) -> MemoryOptimizationReport {
1070        let memory_profile = self.allocator.get_memory_profile();
1071        let cache_stats = self.cache_manager.get_statistics();
1072
1073        MemoryOptimizationReport {
1074            config: self.config.clone(),
1075            memory_profile,
1076            cache_statistics: cache_stats,
1077            optimization_recommendations: self.generate_optimization_recommendations(),
1078        }
1079    }
1080
1081    /// Generate optimization recommendations based on usage patterns
1082    fn generate_optimization_recommendations(&self) -> Vec<MemoryOptimizationRecommendation> {
1083        let mut recommendations = Vec::new();
1084        let profile = self.allocator.get_memory_profile();
1085
1086        // Memory efficiency recommendations
1087        if profile.efficiency_score < 70.0 {
1088            recommendations.push(MemoryOptimizationRecommendation {
1089                priority: 5,
1090                category: "Memory Efficiency".to_string(),
1091                description: "Low memory efficiency detected".to_string(),
1092                suggestion: "Consider using streaming algorithms for large datasets".to_string(),
1093                expected_impact: "20-50% memory reduction".to_string(),
1094            });
1095        }
1096
1097        // Cache performance recommendations
1098        if profile.cache_hit_ratio < 0.8 {
1099            recommendations.push(MemoryOptimizationRecommendation {
1100                priority: 4,
1101                category: "Cache Performance".to_string(),
1102                description: "Low cache hit ratio detected".to_string(),
1103                suggestion: "Use cache-optimized matrix layouts".to_string(),
1104                expected_impact: "10-30% performance improvement".to_string(),
1105            });
1106        }
1107
1108        // Fragmentation recommendations
1109        if profile.fragmentation_ratio > 0.3 {
1110            recommendations.push(MemoryOptimizationRecommendation {
1111                priority: 3,
1112                category: "Memory Fragmentation".to_string(),
1113                description: "High memory fragmentation detected".to_string(),
1114                suggestion: "Enable memory pool optimization".to_string(),
1115                expected_impact: "Reduced allocation overhead".to_string(),
1116            });
1117        }
1118
1119        recommendations
1120    }
1121}
1122
1123impl CacheManager {
1124    fn new(cachesize: usize) -> Self {
1125        Self {
1126            cachesize,
1127            cache_entries: HashMap::new(),
1128            access_order: VecDeque::new(),
1129            hit_count: 0,
1130            miss_count: 0,
1131        }
1132    }
1133
1134    fn get_statistics(&self) -> CacheStatistics {
1135        let total_accesses = self.hit_count + self.miss_count;
1136        let hit_ratio = if total_accesses > 0 {
1137            self.hit_count as f64 / total_accesses as f64
1138        } else {
1139            0.0
1140        };
1141
1142        CacheStatistics {
1143            hit_ratio,
1144            total_entries: self.cache_entries.len(),
1145            totalsize: self.cache_entries.values().map(|e| e.size).sum(),
1146            total_accesses,
1147        }
1148    }
1149}
1150
1151/// Memory optimization report
1152#[derive(Debug, Clone, Serialize, Deserialize)]
1153#[allow(dead_code)]
1154pub struct MemoryOptimizationReport {
1155    pub config: MemoryOptimizationConfig,
1156    pub memory_profile: MemoryProfile,
1157    pub cache_statistics: CacheStatistics,
1158    pub optimization_recommendations: Vec<MemoryOptimizationRecommendation>,
1159}
1160
1161/// Cache statistics
1162#[derive(Debug, Clone, Serialize, Deserialize)]
1163#[allow(dead_code)]
1164pub struct CacheStatistics {
1165    pub hit_ratio: f64,
1166    pub total_entries: usize,
1167    pub totalsize: usize,
1168    pub total_accesses: usize,
1169}
1170
1171/// Memory optimization recommendation
1172#[derive(Debug, Clone, Serialize, Deserialize)]
1173#[allow(dead_code)]
1174pub struct MemoryOptimizationRecommendation {
1175    pub priority: u8,
1176    pub category: String,
1177    pub description: String,
1178    pub suggestion: String,
1179    pub expected_impact: String,
1180}
1181
1182#[cfg(test)]
1183mod tests {
1184    use super::*;
1185    use scirs2_core::ndarray::array;
1186
1187    #[test]
1188    fn test_streaming_stats_calculator() {
1189        let config = MemoryOptimizationConfig::default();
1190        let mut calculator = StreamingStatsCalculator::new(config);
1191
1192        let chunk1 = array![1.0, 2.0, 3.0];
1193        let chunk2 = array![4.0, 5.0, 6.0];
1194
1195        calculator.process_chunk(chunk1.view()).unwrap();
1196        calculator.process_chunk(chunk2.view()).unwrap();
1197
1198        let stats = calculator.get_statistics().unwrap();
1199        assert_eq!(stats.count, 6);
1200        assert!((stats.mean - 3.5).abs() < 1e-10);
1201    }
1202
1203    #[test]
1204    fn test_cache_optimized_matrix() {
1205        let data = array![[1.0, 2.0], [3.0, 4.0]];
1206        let matrix = CacheOptimizedMatrix::new(data, MatrixLayout::BlockedRowMajor, 64);
1207
1208        assert_eq!(matrix.data.nrows(), 2);
1209        assert_eq!(matrix.data.ncols(), 2);
1210    }
1211
1212    #[test]
1213    fn test_adaptive_allocator() {
1214        let config = MemoryOptimizationConfig::default();
1215        let allocator = AdaptiveStatsAllocator::new(config);
1216
1217        let ptr = allocator
1218            .allocate_optimized(1024, 8, "test_operation")
1219            .unwrap();
1220        assert!(!ptr.is_null());
1221    }
1222
1223    #[test]
1224    fn test_memory_optimization_suite() {
1225        let config = MemoryOptimizationConfig::default();
1226        let mut suite = MemoryOptimizationSuite::new(config);
1227
1228        let data = array![[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]];
1229        let correlation = suite.optimized_correlation_matrix(data.view()).unwrap();
1230
1231        assert_eq!(correlation.nrows(), 3);
1232        assert_eq!(correlation.ncols(), 3);
1233
1234        // Diagonal should be 1.0
1235        for i in 0..3 {
1236            assert!((correlation[[i, i]] - 1.0).abs() < 1e-10);
1237        }
1238    }
1239}