scirs2_stats/
intelligent_error_recovery.rs

1//! Intelligent error recovery with ML-powered suggestions
2//!
3//! This module provides advanced error recovery capabilities using pattern recognition
4//! and machine learning to suggest optimal recovery strategies based on historical
5//! error patterns and data characteristics.
6
7use crate::error::{StatsError, StatsResult};
8use crate::error_recovery_system::{
9    EnhancedStatsError, RecoveryAction, RecoverySuggestion, SuggestionType,
10};
11use scirs2_core::random::Rng;
12use std::collections::HashMap;
13
14/// Intelligent error recovery analyzer
15pub struct IntelligentErrorRecovery {
16    /// Historical error patterns
17    error_patterns: HashMap<String, ErrorPattern>,
18    /// Success rates for different recovery strategies
19    recovery_success_rates: HashMap<String, f64>,
20    /// Configuration
21    config: RecoveryConfig,
22}
23
24/// Error pattern for machine learning
25#[derive(Debug, Clone)]
26pub struct ErrorPattern {
27    /// Error type signature
28    pub error_signature: String,
29    /// Data characteristics when error occurred
30    pub data_features: Vec<f64>,
31    /// Successful recovery actions
32    pub successful_actions: Vec<RecoveryAction>,
33    /// Occurrence frequency
34    pub frequency: usize,
35    /// Average resolution time
36    pub avg_resolution_time: f64,
37}
38
39/// Recovery configuration
40#[derive(Debug, Clone)]
41pub struct RecoveryConfig {
42    /// Maximum number of suggestions to provide
43    pub max_suggestions: usize,
44    /// Minimum confidence threshold for suggestions
45    pub min_confidence: f64,
46    /// Enable ML-powered suggestions
47    pub enable_ml_suggestions: bool,
48    /// Enable automatic recovery attempts
49    pub enable_auto_recovery: bool,
50    /// Maximum auto-recovery attempts
51    pub max_auto_attempts: usize,
52}
53
54impl Default for RecoveryConfig {
55    fn default() -> Self {
56        Self {
57            max_suggestions: 5,
58            min_confidence: 0.6,
59            enable_ml_suggestions: true,
60            enable_auto_recovery: false,
61            max_auto_attempts: 3,
62        }
63    }
64}
65
66/// Recovery strategy with estimated success probability
67#[derive(Debug, Clone)]
68pub struct IntelligentRecoveryStrategy {
69    /// Recovery suggestion
70    pub suggestion: RecoverySuggestion,
71    /// Estimated success probability
72    pub success_probability: f64,
73    /// Estimated execution time
74    pub estimated_time: f64,
75    /// Resource requirements
76    pub resource_requirements: ResourceRequirements,
77    /// Risk assessment
78    pub risk_level: RiskLevel,
79}
80
81/// Resource requirements for recovery
82#[derive(Debug, Clone)]
83pub struct ResourceRequirements {
84    /// Memory requirement in MB
85    pub memory_mb: f64,
86    /// CPU cores needed
87    pub cpu_cores: usize,
88    /// Estimated wall-clock time
89    pub wall_time_seconds: f64,
90    /// Requires GPU acceleration
91    pub requires_gpu: bool,
92}
93
94/// Risk level for recovery strategies
95#[derive(Debug, Clone, PartialEq)]
96pub enum RiskLevel {
97    /// Low risk, unlikely to cause issues
98    Low,
99    /// Medium risk, may affect performance
100    Medium,
101    /// High risk, may cause data loss or corruption
102    High,
103    /// Critical risk, may crash the system
104    Critical,
105}
106
107impl IntelligentErrorRecovery {
108    /// Create new intelligent error recovery system
109    pub fn new(config: RecoveryConfig) -> Self {
110        Self {
111            error_patterns: HashMap::new(),
112            recovery_success_rates: HashMap::new(),
113            config,
114        }
115    }
116
117    /// Analyze error and provide intelligent recovery suggestions
118    pub fn analyze_and_suggest(
119        &mut self,
120        error: &EnhancedStatsError,
121    ) -> StatsResult<Vec<IntelligentRecoveryStrategy>> {
122        // Extract features from error context
123        let features = self.extract_error_features(error)?;
124
125        // Find similar error patterns
126        let similar_patterns = self.find_similar_patterns(&features);
127
128        // Generate recovery strategies
129        let mut strategies = Vec::new();
130
131        // Add pattern-based suggestions
132        strategies.extend(self.generate_patternbased_suggestions(&similar_patterns, error)?);
133
134        // Add heuristic-based suggestions
135        strategies.extend(self.generate_heuristic_suggestions(error)?);
136
137        // Add ML-powered suggestions if enabled
138        if self.config.enable_ml_suggestions {
139            strategies.extend(self.generate_ml_suggestions(&features, error)?);
140        }
141
142        // Rank and filter strategies
143        strategies.sort_by(|a, b| {
144            b.success_probability
145                .partial_cmp(&a.success_probability)
146                .unwrap()
147        });
148        strategies.truncate(self.config.max_suggestions);
149
150        // Filter by confidence threshold
151        strategies.retain(|s| s.success_probability >= self.config.min_confidence);
152
153        Ok(strategies)
154    }
155
156    /// Extract numerical features from error for ML analysis
157    fn extract_error_features(&self, error: &EnhancedStatsError) -> StatsResult<Vec<f64>> {
158        let mut features = Vec::new();
159
160        // Error type features
161        features.push(self.encode_error_type(&error.error));
162
163        // Data size features
164        if let Some(ref size_info) = error.context.data_characteristics.size_info {
165            features.push(size_info.n_elements as f64);
166            features.push(size_info.memory_usage_mb);
167            features.push(size_info.shape.len() as f64); // Dimensionality
168        } else {
169            features.extend_from_slice(&[0.0, 0.0, 0.0]);
170        }
171
172        // Data range features
173        if let Some(ref range_info) = error.context.data_characteristics.range_info {
174            features.push(range_info.max - range_info.min); // Range
175            features.push(if range_info.has_infinite { 1.0 } else { 0.0 });
176            features.push(if range_info.has_nan { 1.0 } else { 0.0 });
177            features.push(if range_info.has_zero { 1.0 } else { 0.0 });
178        } else {
179            features.extend_from_slice(&[0.0, 0.0, 0.0, 0.0]);
180        }
181
182        // System features
183        features.push(error.context.system_info.cpu_cores.unwrap_or(1) as f64);
184        features.push(
185            error
186                .context
187                .system_info
188                .available_memory_mb
189                .unwrap_or(1000.0),
190        );
191        features.push(if error.context.system_info.parallel_available {
192            1.0
193        } else {
194            0.0
195        });
196
197        // Algorithm features
198        features.push(self.encode_algorithm(&error.context.computation_state.algorithm));
199
200        // Convergence features
201        if let Some(ref conv_status) = error.context.computation_state.convergence_status {
202            features.push(self.encode_convergence_status(conv_status));
203        } else {
204            features.push(0.0);
205        }
206
207        Ok(features)
208    }
209
210    /// Encode error type as numerical feature
211    fn encode_error_type(&self, error: &StatsError) -> f64 {
212        match error {
213            StatsError::DimensionMismatch(_) => 1.0,
214            StatsError::InvalidArgument(_) => 2.0,
215            StatsError::ComputationError(_) => 3.0,
216            StatsError::ConvergenceError(_) => 4.0,
217            StatsError::InsufficientData(_) => 5.0,
218            _ => 0.0,
219        }
220    }
221
222    /// Encode algorithm as numerical feature
223    fn encode_algorithm(&self, algorithm: &str) -> f64 {
224        match algorithm.to_lowercase().as_str() {
225            algo if algo.contains("linear") => 1.0,
226            algo if algo.contains("nonlinear") => 2.0,
227            algo if algo.contains("iterative") => 3.0,
228            algo if algo.contains("mcmc") => 4.0,
229            algo if algo.contains("optimization") => 5.0,
230            _ => 0.0,
231        }
232    }
233
234    /// Encode convergence status as numerical feature
235    fn encode_convergence_status(
236        &self,
237        status: &crate::error_recovery_system::ConvergenceStatus,
238    ) -> f64 {
239        use crate::error_recovery_system::ConvergenceStatus;
240        match status {
241            ConvergenceStatus::NotStarted => 0.0,
242            ConvergenceStatus::InProgress => 1.0,
243            ConvergenceStatus::Converged => 2.0,
244            ConvergenceStatus::FailedToConverge => 3.0,
245            ConvergenceStatus::Diverged => 4.0,
246        }
247    }
248
249    /// Find similar error patterns using feature similarity
250    fn find_similar_patterns(&self, features: &[f64]) -> Vec<&ErrorPattern> {
251        let mut similarities: Vec<(&ErrorPattern, f64)> = self
252            .error_patterns
253            .values()
254            .map(|pattern| {
255                let similarity = self.compute_feature_similarity(features, &pattern.data_features);
256                (pattern, similarity)
257            })
258            .collect();
259
260        similarities.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
261        similarities.into_iter()
262            .take(5) // Top 5 similar patterns
263            .filter(|(_, sim)| *sim > 0.7) // Similarity threshold
264            .map(|(pattern, _)| pattern)
265            .collect()
266    }
267
268    /// Compute cosine similarity between feature vectors
269    fn compute_feature_similarity(&self, features1: &[f64], features2: &[f64]) -> f64 {
270        if features1.len() != features2.len() {
271            return 0.0;
272        }
273
274        let dot_product: f64 = features1
275            .iter()
276            .zip(features2.iter())
277            .map(|(a, b)| a * b)
278            .sum();
279        let norm1: f64 = features1.iter().map(|x| x * x).sum::<f64>().sqrt();
280        let norm2: f64 = features2.iter().map(|x| x * x).sum::<f64>().sqrt();
281
282        if norm1 == 0.0 || norm2 == 0.0 {
283            0.0
284        } else {
285            dot_product / (norm1 * norm2)
286        }
287    }
288
289    /// Generate suggestions based on similar error patterns
290    fn generate_patternbased_suggestions(
291        &self,
292        similar_patterns: &[&ErrorPattern],
293        error: &EnhancedStatsError,
294    ) -> StatsResult<Vec<IntelligentRecoveryStrategy>> {
295        let mut strategies = Vec::new();
296
297        for pattern in similar_patterns {
298            for action in &pattern.successful_actions {
299                let success_rate = self
300                    .recovery_success_rates
301                    .get(&format!("{:?}", action))
302                    .copied()
303                    .unwrap_or(0.5);
304
305                let suggestion = RecoverySuggestion {
306                    suggestion_type: self.action_to_suggestion_type(action),
307                    description: self.generate_action_description(action, error),
308                    action: action.clone(),
309                    expected_outcome: self.generate_expected_outcome(action),
310                    confidence: success_rate,
311                    prerequisites: self.generate_prerequisites(action),
312                };
313
314                let strategy = IntelligentRecoveryStrategy {
315                    suggestion,
316                    success_probability: success_rate * (pattern.frequency as f64 / 100.0).min(1.0),
317                    estimated_time: pattern.avg_resolution_time,
318                    resource_requirements: self.estimate_resource_requirements(action),
319                    risk_level: self.assess_risk_level(action),
320                };
321
322                strategies.push(strategy);
323            }
324        }
325
326        Ok(strategies)
327    }
328
329    /// Generate heuristic-based suggestions
330    fn generate_heuristic_suggestions(
331        &self,
332        error: &EnhancedStatsError,
333    ) -> StatsResult<Vec<IntelligentRecoveryStrategy>> {
334        let mut strategies = Vec::new();
335
336        match &error.error {
337            StatsError::DimensionMismatch(_) => {
338                strategies.push(self.create_dimension_fix_strategy(error)?);
339            }
340            StatsError::ComputationError(_) => {
341                strategies.extend(self.create_computation_fix_strategies(error)?);
342            }
343            StatsError::ConvergenceError(_) => {
344                strategies.extend(self.create_convergence_fix_strategies(error)?);
345            }
346            StatsError::InsufficientData(_) => {
347                strategies.push(self.createdata_augmentation_strategy(error)?);
348            }
349            _ => {
350                strategies.push(self.create_generic_strategy(error)?);
351            }
352        }
353
354        Ok(strategies)
355    }
356
357    /// Generate ML-powered suggestions
358    fn generate_ml_suggestions(
359        &self,
360        features: &[f64],
361        error: &EnhancedStatsError,
362    ) -> StatsResult<Vec<IntelligentRecoveryStrategy>> {
363        // Placeholder for actual ML model
364        // In a real implementation, this would use a trained model
365        let mut strategies = Vec::new();
366
367        // Simple rule-based ML simulation
368        if let Some(ref size_info) = error.context.data_characteristics.size_info {
369            if size_info.memory_usage_mb > 1000.0 {
370                strategies.push(self.create_memory_optimization_strategy(error)?);
371            }
372        }
373
374        if error.context.system_info.parallel_available {
375            strategies.push(self.create_parallelization_strategy(error)?);
376        }
377
378        Ok(strategies)
379    }
380
381    /// Create dimension mismatch fix strategy
382    fn create_dimension_fix_strategy(
383        &self,
384        error: &EnhancedStatsError,
385    ) -> StatsResult<IntelligentRecoveryStrategy> {
386        let suggestion = RecoverySuggestion {
387            suggestion_type: SuggestionType::InputValidation,
388            description: "Check and reshape input arrays to match expected dimensions".to_string(),
389            action: RecoveryAction::ValidateInputs {
390                validation_checks: vec![],
391            },
392            expected_outcome: "Arrays will have compatible dimensions for computation".to_string(),
393            confidence: 0.9,
394            prerequisites: vec!["Access to input data".to_string()],
395        };
396
397        Ok(IntelligentRecoveryStrategy {
398            suggestion,
399            success_probability: 0.9,
400            estimated_time: 0.1, // Very fast fix
401            resource_requirements: ResourceRequirements {
402                memory_mb: 1.0,
403                cpu_cores: 1,
404                wall_time_seconds: 0.1,
405                requires_gpu: false,
406            },
407            risk_level: RiskLevel::Low,
408        })
409    }
410
411    /// Create computation error fix strategies
412    fn create_computation_fix_strategies(
413        &self,
414        error: &EnhancedStatsError,
415    ) -> StatsResult<Vec<IntelligentRecoveryStrategy>> {
416        let mut strategies = Vec::new();
417
418        // Numerical stability strategy
419        let numerical_strategy = IntelligentRecoveryStrategy {
420            suggestion: RecoverySuggestion {
421                suggestion_type: SuggestionType::ParameterAdjustment,
422                description: "Increase numerical precision and add regularization".to_string(),
423                action: RecoveryAction::AdjustTolerance {
424                    new_tolerance: 1e-12,
425                },
426                expected_outcome: "Improved numerical stability and convergence".to_string(),
427                confidence: 0.75,
428                prerequisites: vec!["Iterative algorithm".to_string()],
429            },
430            success_probability: 0.75,
431            estimated_time: 1.0,
432            resource_requirements: ResourceRequirements {
433                memory_mb: 10.0,
434                cpu_cores: 1,
435                wall_time_seconds: 1.0,
436                requires_gpu: false,
437            },
438            risk_level: RiskLevel::Low,
439        };
440        strategies.push(numerical_strategy);
441
442        // Algorithm switch strategy
443        let algorithm_strategy = IntelligentRecoveryStrategy {
444            suggestion: RecoverySuggestion {
445                suggestion_type: SuggestionType::AlgorithmChange,
446                description: "Switch to a more robust numerical algorithm".to_string(),
447                action: RecoveryAction::SwitchAlgorithm {
448                    new_algorithm: "robust_svd".to_string(),
449                },
450                expected_outcome: "More stable computation with better _error handling".to_string(),
451                confidence: 0.8,
452                prerequisites: vec!["Alternative algorithm available".to_string()],
453            },
454            success_probability: 0.8,
455            estimated_time: 2.0,
456            resource_requirements: ResourceRequirements {
457                memory_mb: 50.0,
458                cpu_cores: 1,
459                wall_time_seconds: 2.0,
460                requires_gpu: false,
461            },
462            risk_level: RiskLevel::Medium,
463        };
464        strategies.push(algorithm_strategy);
465
466        Ok(strategies)
467    }
468
469    /// Create convergence fix strategies
470    fn create_convergence_fix_strategies(
471        &self,
472        error: &EnhancedStatsError,
473    ) -> StatsResult<Vec<IntelligentRecoveryStrategy>> {
474        let mut strategies = Vec::new();
475
476        // Increase iterations strategy
477        strategies.push(IntelligentRecoveryStrategy {
478            suggestion: RecoverySuggestion {
479                suggestion_type: SuggestionType::ParameterAdjustment,
480                description: "Increase maximum iterations and adjust convergence criteria"
481                    .to_string(),
482                action: RecoveryAction::IncreaseIterations { factor: 2.0 },
483                expected_outcome: "Algorithm will have more time to converge".to_string(),
484                confidence: 0.7,
485                prerequisites: vec!["Iterative algorithm".to_string()],
486            },
487            success_probability: 0.7,
488            estimated_time: 10.0,
489            resource_requirements: ResourceRequirements {
490                memory_mb: 20.0,
491                cpu_cores: 1,
492                wall_time_seconds: 10.0,
493                requires_gpu: false,
494            },
495            risk_level: RiskLevel::Low,
496        });
497
498        Ok(strategies)
499    }
500
501    /// Create data augmentation strategy
502    fn createdata_augmentation_strategy(
503        &self,
504        error: &EnhancedStatsError,
505    ) -> StatsResult<IntelligentRecoveryStrategy> {
506        Ok(IntelligentRecoveryStrategy {
507            suggestion: RecoverySuggestion {
508                suggestion_type: SuggestionType::DataPreprocessing,
509                description: "Apply data augmentation or use regularization techniques".to_string(),
510                action: RecoveryAction::SimplePreprocessData,
511                expected_outcome: "Sufficient data for reliable statistical analysis".to_string(),
512                confidence: 0.6,
513                prerequisites: vec![
514                    "Access to additional data or regularization methods".to_string()
515                ],
516            },
517            success_probability: 0.6,
518            estimated_time: 5.0,
519            resource_requirements: ResourceRequirements {
520                memory_mb: 100.0,
521                cpu_cores: 1,
522                wall_time_seconds: 5.0,
523                requires_gpu: false,
524            },
525            risk_level: RiskLevel::Medium,
526        })
527    }
528
529    /// Create memory optimization strategy
530    fn create_memory_optimization_strategy(
531        &self,
532        error: &EnhancedStatsError,
533    ) -> StatsResult<IntelligentRecoveryStrategy> {
534        Ok(IntelligentRecoveryStrategy {
535            suggestion: RecoverySuggestion {
536                suggestion_type: SuggestionType::ResourceIncrease,
537                description: "Use memory-efficient algorithms and chunked processing".to_string(),
538                action: RecoveryAction::UseChunkedProcessing { chunksize: 1000 },
539                expected_outcome: "Reduced memory usage while maintaining accuracy".to_string(),
540                confidence: 0.85,
541                prerequisites: vec!["Large dataset".to_string()],
542            },
543            success_probability: 0.85,
544            estimated_time: 20.0,
545            resource_requirements: ResourceRequirements {
546                memory_mb: 500.0, // Reduced from original
547                cpu_cores: 1,
548                wall_time_seconds: 20.0,
549                requires_gpu: false,
550            },
551            risk_level: RiskLevel::Low,
552        })
553    }
554
555    /// Create parallelization strategy
556    fn create_parallelization_strategy(
557        &self,
558        error: &EnhancedStatsError,
559    ) -> StatsResult<IntelligentRecoveryStrategy> {
560        let cores = error.context.system_info.cpu_cores.unwrap_or(1);
561
562        Ok(IntelligentRecoveryStrategy {
563            suggestion: RecoverySuggestion {
564                suggestion_type: SuggestionType::ResourceIncrease,
565                description: format!("Enable parallel processing using {} CPU cores", cores),
566                action: RecoveryAction::EnableParallelProcessing { num_threads: cores },
567                expected_outcome: "Faster computation with improved scalability".to_string(),
568                confidence: 0.8,
569                prerequisites: vec!["Multi-core system".to_string()],
570            },
571            success_probability: 0.8,
572            estimated_time: 2.0,
573            resource_requirements: ResourceRequirements {
574                memory_mb: 50.0,
575                cpu_cores: cores,
576                wall_time_seconds: 2.0,
577                requires_gpu: false,
578            },
579            risk_level: RiskLevel::Low,
580        })
581    }
582
583    /// Create generic recovery strategy
584    fn create_generic_strategy(
585        &self,
586        error: &EnhancedStatsError,
587    ) -> StatsResult<IntelligentRecoveryStrategy> {
588        Ok(IntelligentRecoveryStrategy {
589            suggestion: RecoverySuggestion {
590                suggestion_type: SuggestionType::InputValidation,
591                description: "Review input parameters and data quality".to_string(),
592                action: RecoveryAction::SimpleValidateInputs,
593                expected_outcome: "Identification and correction of input issues".to_string(),
594                confidence: 0.5,
595                prerequisites: vec!["Access to input validation tools".to_string()],
596            },
597            success_probability: 0.5,
598            estimated_time: 1.0,
599            resource_requirements: ResourceRequirements {
600                memory_mb: 5.0,
601                cpu_cores: 1,
602                wall_time_seconds: 1.0,
603                requires_gpu: false,
604            },
605            risk_level: RiskLevel::Low,
606        })
607    }
608
609    /// Convert recovery action to suggestion type
610    fn action_to_suggestion_type(&self, action: &RecoveryAction) -> SuggestionType {
611        match action {
612            RecoveryAction::AdjustTolerance { .. } => SuggestionType::ParameterAdjustment,
613            RecoveryAction::IncreaseIterations { .. } => SuggestionType::ParameterAdjustment,
614            RecoveryAction::SwitchAlgorithm { .. } => SuggestionType::AlgorithmChange,
615            RecoveryAction::SimplePreprocessData => SuggestionType::DataPreprocessing,
616            RecoveryAction::SimpleValidateInputs => SuggestionType::InputValidation,
617            RecoveryAction::UseChunkedProcessing { .. } => SuggestionType::ResourceIncrease,
618            RecoveryAction::EnableParallelProcessing { .. } => SuggestionType::ResourceIncrease,
619            RecoveryAction::ApplyRegularization { .. } => SuggestionType::ParameterAdjustment,
620            RecoveryAction::UseApproximation { .. } => SuggestionType::Approximation,
621            _ => SuggestionType::InputValidation,
622        }
623    }
624
625    /// Generate action description
626    fn generate_action_description(
627        &self,
628        action: &RecoveryAction,
629        error: &EnhancedStatsError,
630    ) -> String {
631        match action {
632            RecoveryAction::AdjustTolerance { new_tolerance } => {
633                format!("Adjust convergence tolerance to {}", new_tolerance)
634            }
635            RecoveryAction::IncreaseIterations { factor } => {
636                format!("Increase maximum iterations by factor of {}", factor)
637            }
638            RecoveryAction::SwitchAlgorithm { new_algorithm } => {
639                format!("Switch to {} algorithm", new_algorithm)
640            }
641            _ => "Apply recovery action".to_string(),
642        }
643    }
644
645    /// Generate expected outcome
646    fn generate_expected_outcome(&self, action: &RecoveryAction) -> String {
647        match action {
648            RecoveryAction::AdjustTolerance { .. } => "Improved numerical stability".to_string(),
649            RecoveryAction::IncreaseIterations { .. } => "Better convergence".to_string(),
650            RecoveryAction::SwitchAlgorithm { .. } => "More robust computation".to_string(),
651            _ => "Resolved error condition".to_string(),
652        }
653    }
654
655    /// Generate prerequisites
656    fn generate_prerequisites(&self, action: &RecoveryAction) -> Vec<String> {
657        match action {
658            RecoveryAction::SwitchAlgorithm { .. } => {
659                vec!["Alternative algorithm available".to_string()]
660            }
661            RecoveryAction::EnableParallelProcessing { .. } => {
662                vec!["Multi-core system".to_string()]
663            }
664            _ => vec![],
665        }
666    }
667
668    /// Estimate resource requirements
669    fn estimate_resource_requirements(&self, action: &RecoveryAction) -> ResourceRequirements {
670        match action {
671            RecoveryAction::IncreaseIterations { factor } => ResourceRequirements {
672                memory_mb: 10.0,
673                cpu_cores: 1,
674                wall_time_seconds: 5.0 * factor,
675                requires_gpu: false,
676            },
677            RecoveryAction::EnableParallelProcessing { num_threads } => ResourceRequirements {
678                memory_mb: 50.0,
679                cpu_cores: *num_threads,
680                wall_time_seconds: 2.0,
681                requires_gpu: false,
682            },
683            _ => ResourceRequirements {
684                memory_mb: 5.0,
685                cpu_cores: 1,
686                wall_time_seconds: 1.0,
687                requires_gpu: false,
688            },
689        }
690    }
691
692    /// Assess risk level
693    fn assess_risk_level(&self, action: &RecoveryAction) -> RiskLevel {
694        match action {
695            RecoveryAction::SwitchAlgorithm { .. } => RiskLevel::Medium,
696            RecoveryAction::IncreaseIterations { .. } => RiskLevel::Low,
697            _ => RiskLevel::Low,
698        }
699    }
700
701    /// Record successful recovery for learning
702    pub fn record_successful_recovery(&mut self, action: &RecoveryAction) {
703        let key = format!("{:?}", action);
704        let current_rate = self
705            .recovery_success_rates
706            .get(&key)
707            .copied()
708            .unwrap_or(0.5);
709        // Simple exponential moving average update
710        let new_rate = 0.9 * current_rate + 0.1 * 1.0;
711        self.recovery_success_rates.insert(key, new_rate);
712    }
713
714    /// Record failed recovery for learning
715    pub fn record_failed_recovery(&mut self, action: &RecoveryAction) {
716        let key = format!("{:?}", action);
717        let current_rate = self
718            .recovery_success_rates
719            .get(&key)
720            .copied()
721            .unwrap_or(0.5);
722        // Simple exponential moving average update
723        let new_rate = 0.9 * current_rate + 0.1 * 0.0;
724        self.recovery_success_rates.insert(key, new_rate);
725    }
726}
727
728/// Convenience function to create enhanced error recovery system
729#[allow(dead_code)]
730pub fn create_intelligent_recovery() -> IntelligentErrorRecovery {
731    IntelligentErrorRecovery::new(RecoveryConfig::default())
732}
733
734/// Convenience function to analyze error and get recovery suggestions
735#[allow(dead_code)]
736pub fn get_intelligent_suggestions(
737    error: &EnhancedStatsError,
738) -> StatsResult<Vec<IntelligentRecoveryStrategy>> {
739    let mut recovery = create_intelligent_recovery();
740    recovery.analyze_and_suggest(error)
741}
742
743/// Advanced neural network-based error pattern recognition
744pub struct NeuralErrorClassifier {
745    /// Neural network weights (simplified representation)
746    weights: Vec<Vec<f64>>,
747    /// Bias terms
748    biases: Vec<f64>,
749    /// Training data for continuous learning
750    trainingdata: Vec<(Vec<f64>, usize)>, // (features, class)
751    /// Learning rate for online learning
752    learning_rate: f64,
753}
754
755impl Default for NeuralErrorClassifier {
756    fn default() -> Self {
757        Self::new()
758    }
759}
760
761impl NeuralErrorClassifier {
762    /// Create new neural classifier
763    pub fn new() -> Self {
764        // Initialize with small random weights
765        let mut rng = scirs2_core::random::thread_rng();
766        let mut weights = Vec::new();
767        let inputsize = 12; // Number of features
768        let hiddensize = 8;
769        let outputsize = 5; // Number of error classes
770
771        // Input to hidden layer
772        let mut layer1 = Vec::new();
773        for _ in 0..hiddensize {
774            let mut neuron_weights = Vec::new();
775            for _ in 0..inputsize {
776                neuron_weights.push((rng.random::<f64>() - 0.5) * 0.1);
777            }
778            layer1.push(neuron_weights);
779        }
780        weights.push(layer1.into_iter().flatten().collect());
781
782        // Hidden to output layer
783        let mut layer2 = Vec::new();
784        for _ in 0..outputsize {
785            let mut neuron_weights = Vec::new();
786            for _ in 0..hiddensize {
787                neuron_weights.push((rng.random::<f64>() - 0.5) * 0.1);
788            }
789            layer2.push(neuron_weights);
790        }
791        weights.push(layer2.into_iter().flatten().collect());
792
793        Self {
794            weights,
795            biases: vec![0.0; hiddensize + outputsize],
796            trainingdata: Vec::new(),
797            learning_rate: 0.01,
798        }
799    }
800
801    /// Classify error pattern and predict best recovery strategy
802    pub fn classify_error_pattern(&self, features: &[f64]) -> (usize, f64) {
803        let output = self.forward_pass(features);
804        let (best_class, confidence) = output
805            .iter()
806            .enumerate()
807            .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
808            .map(|(i, &conf)| (i, conf))
809            .unwrap_or((0, 0.0));
810
811        (best_class, confidence)
812    }
813
814    /// Forward pass through the neural network
815    fn forward_pass(&self, features: &[f64]) -> Vec<f64> {
816        let hiddensize = 8;
817        let outputsize = 5;
818
819        // Input to hidden layer
820        let mut hidden = vec![0.0; hiddensize];
821        for i in 0..hiddensize {
822            let mut sum = self.biases[i];
823            for j in 0..features.len().min(12) {
824                sum += self.weights[0][i * 12 + j] * features[j];
825            }
826            hidden[i] = Self::relu(sum);
827        }
828
829        // Hidden to output layer
830        let mut output = vec![0.0; outputsize];
831        for i in 0..outputsize {
832            let mut sum = self.biases[hiddensize + i];
833            for j in 0..hiddensize {
834                if self.weights.len() > 1 && i * hiddensize + j < self.weights[1].len() {
835                    sum += self.weights[1][i * hiddensize + j] * hidden[j];
836                }
837            }
838            output[i] = Self::sigmoid(sum);
839        }
840
841        output
842    }
843
844    /// ReLU activation function
845    fn relu(x: f64) -> f64 {
846        x.max(0.0)
847    }
848
849    /// Sigmoid activation function
850    fn sigmoid(x: f64) -> f64 {
851        1.0 / (1.0 + (-x).exp())
852    }
853
854    /// Online learning update
855    pub fn update_from_feedback(&mut self, features: &[f64], correctclass: usize, success: bool) {
856        self.trainingdata.push((features.to_vec(), correctclass));
857
858        if success {
859            // Positive reinforcement - strengthen this prediction
860            self.reinforce_prediction(features, correctclass, 1.0);
861        } else {
862            // Negative reinforcement - weaken this prediction
863            self.reinforce_prediction(features, correctclass, -0.5);
864        }
865
866        // Trim training data to prevent memory overflow
867        if self.trainingdata.len() > 1000 {
868            self.trainingdata.drain(0..500);
869        }
870    }
871
872    /// Reinforce or weaken prediction
873    fn reinforce_prediction(&mut self, features: &[f64], targetclass: usize, strength: f64) {
874        let prediction = self.forward_pass(features);
875        let error = strength
876            * (if targetclass < prediction.len() {
877                1.0 - prediction[targetclass]
878            } else {
879                1.0
880            });
881
882        // Simple gradient-like update (simplified backpropagation)
883        let update_magnitude = self.learning_rate * error;
884
885        // Update biases
886        if targetclass < self.biases.len() {
887            self.biases[targetclass] += update_magnitude;
888        }
889
890        // Update some weights (simplified)
891        for weight_layer in &mut self.weights {
892            for weight in weight_layer.iter_mut().take(10) {
893                *weight += update_magnitude * 0.1;
894            }
895        }
896    }
897}
898
899/// Enhanced machine learning error recovery system
900pub struct MLEnhancedErrorRecovery {
901    /// Base intelligent recovery system
902    base_recovery: IntelligentErrorRecovery,
903    /// Neural classifier for pattern recognition
904    neural_classifier: NeuralErrorClassifier,
905    /// Ensemble of recovery strategies
906    strategy_ensemble: RecoveryStrategyEnsemble,
907    /// Adaptive learning configuration
908    ml_config: MLRecoveryConfig,
909}
910
911/// Configuration for ML-enhanced recovery
912#[derive(Debug, Clone)]
913pub struct MLRecoveryConfig {
914    /// Enable neural network predictions
915    pub use_neural_classifier: bool,
916    /// Enable ensemble methods
917    pub use_strategy_ensemble: bool,
918    /// Enable adaptive learning
919    pub enable_online_learning: bool,
920    /// Minimum confidence for ML suggestions
921    pub ml_confidence_threshold: f64,
922    /// Weight for ML vs heuristic suggestions
923    pub ml_weight: f64,
924}
925
926impl Default for MLRecoveryConfig {
927    fn default() -> Self {
928        Self {
929            use_neural_classifier: true,
930            use_strategy_ensemble: true,
931            enable_online_learning: true,
932            ml_confidence_threshold: 0.7,
933            ml_weight: 0.6,
934        }
935    }
936}
937
938/// Ensemble of recovery strategies with voting
939pub struct RecoveryStrategyEnsemble {
940    /// Individual strategy generators
941    strategy_generators: Vec<Box<dyn StrategyGenerator>>,
942    /// Voting weights for each generator
943    generator_weights: Vec<f64>,
944    /// Performance history for adaptive weighting
945    performance_history: HashMap<String, Vec<bool>>,
946}
947
948/// Trait for strategy generation
949pub trait StrategyGenerator {
950    fn generate_strategies(
951        &self,
952        error: &EnhancedStatsError,
953        features: &[f64],
954    ) -> StatsResult<Vec<IntelligentRecoveryStrategy>>;
955    fn name(&self) -> &str;
956}
957
958/// Similarity-based strategy generator
959pub struct SimilarityBasedGenerator {
960    historical_patterns: Vec<(Vec<f64>, IntelligentRecoveryStrategy)>,
961}
962
963impl StrategyGenerator for SimilarityBasedGenerator {
964    fn generate_strategies(
965        &self,
966        error: &EnhancedStatsError,
967        features: &[f64],
968    ) -> StatsResult<Vec<IntelligentRecoveryStrategy>> {
969        let mut strategies = Vec::new();
970
971        // Find most similar historical patterns
972        let mut similarities: Vec<(f64, &IntelligentRecoveryStrategy)> = self
973            .historical_patterns
974            .iter()
975            .map(|(hist_features, strategy)| {
976                let similarity = self.compute_similarity(features, hist_features);
977                (similarity, strategy)
978            })
979            .collect();
980
981        similarities.sort_by(|a, b| b.0.partial_cmp(&a.0).unwrap());
982
983        // Return top 3 most similar strategies
984        for (similarity, strategy) in similarities.into_iter().take(3) {
985            if similarity > 0.6 {
986                let mut adjusted_strategy = strategy.clone();
987                adjusted_strategy.success_probability *= similarity;
988                strategies.push(adjusted_strategy);
989            }
990        }
991
992        Ok(strategies)
993    }
994
995    fn name(&self) -> &str {
996        "SimilarityBased"
997    }
998}
999
1000impl Default for SimilarityBasedGenerator {
1001    fn default() -> Self {
1002        Self::new()
1003    }
1004}
1005
1006impl SimilarityBasedGenerator {
1007    pub fn new() -> Self {
1008        Self {
1009            historical_patterns: Vec::new(),
1010        }
1011    }
1012
1013    pub fn add_pattern(&mut self, features: Vec<f64>, strategy: IntelligentRecoveryStrategy) {
1014        self.historical_patterns.push((features, strategy));
1015
1016        // Limit size to prevent memory issues
1017        if self.historical_patterns.len() > 500 {
1018            self.historical_patterns.drain(0..100);
1019        }
1020    }
1021
1022    fn compute_similarity(&self, features1: &[f64], features2: &[f64]) -> f64 {
1023        if features1.len() != features2.len() {
1024            return 0.0;
1025        }
1026
1027        let dot_product: f64 = features1
1028            .iter()
1029            .zip(features2.iter())
1030            .map(|(a, b)| a * b)
1031            .sum();
1032        let norm1: f64 = features1.iter().map(|x| x * x).sum::<f64>().sqrt();
1033        let norm2: f64 = features2.iter().map(|x| x * x).sum::<f64>().sqrt();
1034
1035        if norm1 == 0.0 || norm2 == 0.0 {
1036            0.0
1037        } else {
1038            dot_product / (norm1 * norm2)
1039        }
1040    }
1041}
1042
1043/// Clustering-based strategy generator
1044pub struct ClusteringBasedGenerator {
1045    error_clusters: Vec<ErrorCluster>,
1046}
1047
1048#[derive(Debug, Clone)]
1049pub struct ErrorCluster {
1050    center: Vec<f64>,
1051    strategies: Vec<IntelligentRecoveryStrategy>,
1052    radius: f64,
1053}
1054
1055impl StrategyGenerator for ClusteringBasedGenerator {
1056    fn generate_strategies(
1057        &self,
1058        error: &EnhancedStatsError,
1059        features: &[f64],
1060    ) -> StatsResult<Vec<IntelligentRecoveryStrategy>> {
1061        let mut strategies = Vec::new();
1062
1063        // Find closest cluster
1064        for cluster in &self.error_clusters {
1065            let distance = self.euclidean_distance(features, &cluster.center);
1066            if distance <= cluster.radius {
1067                // Add strategies from this cluster
1068                for strategy in &cluster.strategies {
1069                    let mut adjusted_strategy = strategy.clone();
1070                    // Adjust confidence based on distance to cluster center
1071                    let proximity_factor = 1.0 - (distance / cluster.radius);
1072                    adjusted_strategy.success_probability *= proximity_factor;
1073                    strategies.push(adjusted_strategy);
1074                }
1075            }
1076        }
1077
1078        Ok(strategies)
1079    }
1080
1081    fn name(&self) -> &str {
1082        "ClusteringBased"
1083    }
1084}
1085
1086impl Default for ClusteringBasedGenerator {
1087    fn default() -> Self {
1088        Self::new()
1089    }
1090}
1091
1092impl ClusteringBasedGenerator {
1093    pub fn new() -> Self {
1094        Self {
1095            error_clusters: Vec::new(),
1096        }
1097    }
1098
1099    fn euclidean_distance(&self, features1: &[f64], features2: &[f64]) -> f64 {
1100        features1
1101            .iter()
1102            .zip(features2.iter())
1103            .map(|(a, b)| (a - b).powi(2))
1104            .sum::<f64>()
1105            .sqrt()
1106    }
1107}
1108
1109impl Default for RecoveryStrategyEnsemble {
1110    fn default() -> Self {
1111        Self::new()
1112    }
1113}
1114
1115impl RecoveryStrategyEnsemble {
1116    pub fn new() -> Self {
1117        let mut ensemble = Self {
1118            strategy_generators: Vec::new(),
1119            generator_weights: Vec::new(),
1120            performance_history: HashMap::new(),
1121        };
1122
1123        // Add default generators
1124        ensemble.add_generator(Box::new(SimilarityBasedGenerator::new()), 1.0);
1125        ensemble.add_generator(Box::new(ClusteringBasedGenerator::new()), 1.0);
1126
1127        ensemble
1128    }
1129
1130    pub fn add_generator(&mut self, generator: Box<dyn StrategyGenerator>, initialweight: f64) {
1131        self.strategy_generators.push(generator);
1132        self.generator_weights.push(initialweight);
1133    }
1134
1135    /// Generate ensemble strategies with voting
1136    pub fn generate_ensemble_strategies(
1137        &self,
1138        error: &EnhancedStatsError,
1139        features: &[f64],
1140    ) -> StatsResult<Vec<IntelligentRecoveryStrategy>> {
1141        let mut all_strategies = Vec::new();
1142
1143        // Collect strategies from all generators
1144        for (i, generator) in self.strategy_generators.iter().enumerate() {
1145            if let Ok(mut strategies) = generator.generate_strategies(error, features) {
1146                let weight = self.generator_weights[i];
1147
1148                // Apply generator weight to strategy confidence
1149                for strategy in &mut strategies {
1150                    strategy.success_probability *= weight;
1151                }
1152
1153                all_strategies.extend(strategies);
1154            }
1155        }
1156
1157        // Merge similar strategies and rank by weighted confidence
1158        let merged_strategies = self.merge_similar_strategies(all_strategies);
1159
1160        Ok(merged_strategies)
1161    }
1162
1163    /// Merge similar strategies to avoid redundancy
1164    fn merge_similar_strategies(
1165        &self,
1166        strategies: Vec<IntelligentRecoveryStrategy>,
1167    ) -> Vec<IntelligentRecoveryStrategy> {
1168        let mut merged = Vec::new();
1169
1170        for strategy in strategies {
1171            let mut found_similar = false;
1172
1173            for existing in &mut merged {
1174                if self.strategies_similar(&strategy, existing) {
1175                    // Merge strategies by averaging probabilities
1176                    existing.success_probability =
1177                        (existing.success_probability + strategy.success_probability) / 2.0;
1178                    found_similar = true;
1179                    break;
1180                }
1181            }
1182
1183            if !found_similar {
1184                merged.push(strategy);
1185            }
1186        }
1187
1188        // Sort by success probability
1189        merged.sort_by(|a, b| {
1190            b.success_probability
1191                .partial_cmp(&a.success_probability)
1192                .unwrap()
1193        });
1194
1195        merged
1196    }
1197
1198    /// Check if two strategies are similar
1199    fn strategies_similar(
1200        &self,
1201        strategy1: &IntelligentRecoveryStrategy,
1202        strategy2: &IntelligentRecoveryStrategy,
1203    ) -> bool {
1204        // Simple similarity check based on suggestion type and action
1205        strategy1.suggestion.suggestion_type == strategy2.suggestion.suggestion_type
1206            && std::mem::discriminant(&strategy1.suggestion.action)
1207                == std::mem::discriminant(&strategy2.suggestion.action)
1208    }
1209
1210    /// Update generator weights based on performance feedback
1211    pub fn update_weights(&mut self, generatorname: &str, success: bool) {
1212        self.performance_history
1213            .entry(generatorname.to_string())
1214            .or_default()
1215            .push(success);
1216
1217        // Update weights based on recent performance
1218        for (i, generator) in self.strategy_generators.iter().enumerate() {
1219            if generator.name() == generatorname {
1220                if let Some(history) = self.performance_history.get(generatorname) {
1221                    let recent_success_rate = history.iter()
1222                        .rev()
1223                        .take(20) // Last 20 outcomes
1224                        .map(|&s| if s { 1.0 } else { 0.0 })
1225                        .sum::<f64>()
1226                        / history.len().min(20) as f64;
1227
1228                    // Adaptive weight update
1229                    self.generator_weights[i] = 0.5 + recent_success_rate;
1230                }
1231            }
1232        }
1233    }
1234}
1235
1236impl MLEnhancedErrorRecovery {
1237    /// Create new ML-enhanced error recovery system
1238    pub fn new(config: MLRecoveryConfig) -> Self {
1239        Self {
1240            base_recovery: IntelligentErrorRecovery::new(RecoveryConfig::default()),
1241            neural_classifier: NeuralErrorClassifier::new(),
1242            strategy_ensemble: RecoveryStrategyEnsemble::new(),
1243            ml_config: config,
1244        }
1245    }
1246
1247    /// Analyze error with ML enhancement
1248    pub fn analyze_with_ml(
1249        &mut self,
1250        error: &EnhancedStatsError,
1251    ) -> StatsResult<Vec<IntelligentRecoveryStrategy>> {
1252        let mut all_strategies = Vec::new();
1253
1254        // Get base strategies
1255        let base_strategies = self.base_recovery.analyze_and_suggest(error)?;
1256
1257        // Extract features for ML
1258        let features = self.extract_enhanced_features(error)?;
1259
1260        // Neural network predictions
1261        if self.ml_config.use_neural_classifier {
1262            let (predicted_class, confidence) =
1263                self.neural_classifier.classify_error_pattern(&features);
1264
1265            if confidence >= self.ml_config.ml_confidence_threshold {
1266                let ml_strategies =
1267                    self.generate_neural_strategies(predicted_class, confidence, error)?;
1268                all_strategies.extend(ml_strategies);
1269            }
1270        }
1271
1272        // Ensemble strategies
1273        if self.ml_config.use_strategy_ensemble {
1274            let ensemble_strategies = self
1275                .strategy_ensemble
1276                .generate_ensemble_strategies(error, &features)?;
1277            all_strategies.extend(ensemble_strategies);
1278        }
1279
1280        // Combine base and ML strategies with weighting
1281        let combined_strategies = self.combine_strategies(base_strategies, all_strategies);
1282
1283        Ok(combined_strategies)
1284    }
1285
1286    /// Extract enhanced features for ML
1287    fn extract_enhanced_features(&self, error: &EnhancedStatsError) -> StatsResult<Vec<f64>> {
1288        let mut features = Vec::new();
1289
1290        // Add base features
1291        let base_features = self.base_recovery.extract_error_features(error)?;
1292        features.extend(base_features);
1293
1294        // Add time-based features
1295        features.push(
1296            std::time::SystemTime::now()
1297                .duration_since(std::time::UNIX_EPOCH)
1298                .unwrap()
1299                .as_secs() as f64
1300                % 86400.0,
1301        ); // Time of day
1302
1303        // Add error frequency features (if available)
1304        features.push(1.0); // Placeholder for error frequency
1305
1306        // Add system load features (simplified)
1307        features.push(0.5); // Placeholder for CPU load
1308        features.push(0.3); // Placeholder for memory usage
1309
1310        Ok(features)
1311    }
1312
1313    /// Generate strategies based on neural network predictions
1314    fn generate_neural_strategies(
1315        &self,
1316        predicted_class: usize,
1317        confidence: f64,
1318        error: &EnhancedStatsError,
1319    ) -> StatsResult<Vec<IntelligentRecoveryStrategy>> {
1320        let mut strategies = Vec::new();
1321
1322        // Map neural network classes to recovery strategies
1323        let strategy = match predicted_class {
1324            0 => self.createdata_preprocessing_strategy(error, confidence)?,
1325            1 => self.create_algorithm_optimization_strategy(error, confidence)?,
1326            2 => self.create_numerical_stability_strategy(error, confidence)?,
1327            3 => self.create_resource_scaling_strategy(error, confidence)?,
1328            4 => self.create_approximation_strategy(error, confidence)?,
1329            _ => self.create_adaptive_strategy(error, confidence)?,
1330        };
1331
1332        strategies.push(strategy);
1333        Ok(strategies)
1334    }
1335
1336    /// Create data preprocessing strategy
1337    fn createdata_preprocessing_strategy(
1338        &self,
1339        error: &EnhancedStatsError,
1340        confidence: f64,
1341    ) -> StatsResult<IntelligentRecoveryStrategy> {
1342        Ok(IntelligentRecoveryStrategy {
1343            suggestion: RecoverySuggestion {
1344                suggestion_type: SuggestionType::DataPreprocessing,
1345                description: "Apply ML-suggested data preprocessing pipeline".to_string(),
1346                action: RecoveryAction::SimplePreprocessData,
1347                expected_outcome: "Improved data quality and computational stability".to_string(),
1348                confidence,
1349                prerequisites: vec!["Raw data access".to_string()],
1350            },
1351            success_probability: confidence,
1352            estimated_time: 3.0,
1353            resource_requirements: ResourceRequirements {
1354                memory_mb: 100.0,
1355                cpu_cores: 2,
1356                wall_time_seconds: 3.0,
1357                requires_gpu: false,
1358            },
1359            risk_level: RiskLevel::Low,
1360        })
1361    }
1362
1363    /// Create algorithm optimization strategy
1364    fn create_algorithm_optimization_strategy(
1365        &self,
1366        error: &EnhancedStatsError,
1367        confidence: f64,
1368    ) -> StatsResult<IntelligentRecoveryStrategy> {
1369        Ok(IntelligentRecoveryStrategy {
1370            suggestion: RecoverySuggestion {
1371                suggestion_type: SuggestionType::AlgorithmChange,
1372                description: "Switch to ML-optimized algorithm variant".to_string(),
1373                action: RecoveryAction::SwitchAlgorithm {
1374                    new_algorithm: "ml_optimized".to_string(),
1375                },
1376                expected_outcome: "Better performance and numerical stability".to_string(),
1377                confidence,
1378                prerequisites: vec!["Alternative algorithm implementation".to_string()],
1379            },
1380            success_probability: confidence,
1381            estimated_time: 2.0,
1382            resource_requirements: ResourceRequirements {
1383                memory_mb: 50.0,
1384                cpu_cores: 1,
1385                wall_time_seconds: 2.0,
1386                requires_gpu: false,
1387            },
1388            risk_level: RiskLevel::Medium,
1389        })
1390    }
1391
1392    /// Create numerical stability strategy
1393    fn create_numerical_stability_strategy(
1394        &self,
1395        error: &EnhancedStatsError,
1396        confidence: f64,
1397    ) -> StatsResult<IntelligentRecoveryStrategy> {
1398        Ok(IntelligentRecoveryStrategy {
1399            suggestion: RecoverySuggestion {
1400                suggestion_type: SuggestionType::ParameterAdjustment,
1401                description: "Apply ML-tuned numerical stability parameters".to_string(),
1402                action: RecoveryAction::AdjustTolerance {
1403                    new_tolerance: 1e-10,
1404                },
1405                expected_outcome: "Enhanced numerical precision and stability".to_string(),
1406                confidence,
1407                prerequisites: vec!["Iterative computation".to_string()],
1408            },
1409            success_probability: confidence,
1410            estimated_time: 1.5,
1411            resource_requirements: ResourceRequirements {
1412                memory_mb: 20.0,
1413                cpu_cores: 1,
1414                wall_time_seconds: 1.5,
1415                requires_gpu: false,
1416            },
1417            risk_level: RiskLevel::Low,
1418        })
1419    }
1420
1421    /// Create resource scaling strategy
1422    fn create_resource_scaling_strategy(
1423        &self,
1424        error: &EnhancedStatsError,
1425        confidence: f64,
1426    ) -> StatsResult<IntelligentRecoveryStrategy> {
1427        let cores = error.context.system_info.cpu_cores.unwrap_or(1);
1428
1429        Ok(IntelligentRecoveryStrategy {
1430            suggestion: RecoverySuggestion {
1431                suggestion_type: SuggestionType::ResourceIncrease,
1432                description: "Apply ML-optimized resource scaling".to_string(),
1433                action: RecoveryAction::EnableParallelProcessing { num_threads: cores },
1434                expected_outcome: "Optimal resource utilization and performance".to_string(),
1435                confidence,
1436                prerequisites: vec!["Multi-core system".to_string()],
1437            },
1438            success_probability: confidence,
1439            estimated_time: 1.0,
1440            resource_requirements: ResourceRequirements {
1441                memory_mb: 75.0,
1442                cpu_cores: cores,
1443                wall_time_seconds: 1.0,
1444                requires_gpu: false,
1445            },
1446            risk_level: RiskLevel::Low,
1447        })
1448    }
1449
1450    /// Create approximation strategy
1451    fn create_approximation_strategy(
1452        &self,
1453        error: &EnhancedStatsError,
1454        confidence: f64,
1455    ) -> StatsResult<IntelligentRecoveryStrategy> {
1456        Ok(IntelligentRecoveryStrategy {
1457            suggestion: RecoverySuggestion {
1458                suggestion_type: SuggestionType::Approximation,
1459                description: "Use ML-guided approximation methods".to_string(),
1460                action: RecoveryAction::UseApproximation {
1461                    approximation_method: "neural_approximation".to_string(),
1462                },
1463                expected_outcome: "Fast approximate solution with controlled _error".to_string(),
1464                confidence,
1465                prerequisites: vec!["Approximation tolerance defined".to_string()],
1466            },
1467            success_probability: confidence,
1468            estimated_time: 0.5,
1469            resource_requirements: ResourceRequirements {
1470                memory_mb: 30.0,
1471                cpu_cores: 1,
1472                wall_time_seconds: 0.5,
1473                requires_gpu: false,
1474            },
1475            risk_level: RiskLevel::Medium,
1476        })
1477    }
1478
1479    /// Create adaptive strategy
1480    fn create_adaptive_strategy(
1481        &self,
1482        error: &EnhancedStatsError,
1483        confidence: f64,
1484    ) -> StatsResult<IntelligentRecoveryStrategy> {
1485        Ok(IntelligentRecoveryStrategy {
1486            suggestion: RecoverySuggestion {
1487                suggestion_type: SuggestionType::InputValidation,
1488                description: "Apply adaptive ML-learned recovery approach".to_string(),
1489                action: RecoveryAction::SimpleValidateInputs,
1490                expected_outcome: "Context-aware _error resolution".to_string(),
1491                confidence,
1492                prerequisites: vec!["Input data available".to_string()],
1493            },
1494            success_probability: confidence,
1495            estimated_time: 2.0,
1496            resource_requirements: ResourceRequirements {
1497                memory_mb: 40.0,
1498                cpu_cores: 1,
1499                wall_time_seconds: 2.0,
1500                requires_gpu: false,
1501            },
1502            risk_level: RiskLevel::Low,
1503        })
1504    }
1505
1506    /// Combine base and ML strategies with intelligent weighting
1507    fn combine_strategies(
1508        &self,
1509        base_strategies: Vec<IntelligentRecoveryStrategy>,
1510        ml_strategies: Vec<IntelligentRecoveryStrategy>,
1511    ) -> Vec<IntelligentRecoveryStrategy> {
1512        let mut combined = Vec::new();
1513
1514        // Weight base _strategies
1515        for mut strategy in base_strategies {
1516            strategy.success_probability *= 1.0 - self.ml_config.ml_weight;
1517            combined.push(strategy);
1518        }
1519
1520        // Weight ML _strategies
1521        for mut strategy in ml_strategies {
1522            strategy.success_probability *= self.ml_config.ml_weight;
1523            combined.push(strategy);
1524        }
1525
1526        // Sort by success probability
1527        combined.sort_by(|a, b| {
1528            b.success_probability
1529                .partial_cmp(&a.success_probability)
1530                .unwrap()
1531        });
1532
1533        // Remove duplicates and limit results
1534        combined.truncate(8);
1535        combined
1536    }
1537
1538    /// Provide feedback for online learning
1539    pub fn provide_feedback(
1540        &mut self,
1541        error: &EnhancedStatsError,
1542        strategy_used: &IntelligentRecoveryStrategy,
1543        success: bool,
1544    ) -> StatsResult<()> {
1545        // Update neural classifier
1546        if self.ml_config.enable_online_learning {
1547            let features = self.extract_enhanced_features(error)?;
1548            let strategy_class = self.strategy_to_class(strategy_used);
1549            self.neural_classifier
1550                .update_from_feedback(&features, strategy_class, success);
1551        }
1552
1553        // Update ensemble weights
1554        let generator_name = "ensemble"; // Simplified
1555        self.strategy_ensemble
1556            .update_weights(generator_name, success);
1557
1558        // Update base recovery system
1559        if success {
1560            self.base_recovery
1561                .record_successful_recovery(&strategy_used.suggestion.action);
1562        } else {
1563            self.base_recovery
1564                .record_failed_recovery(&strategy_used.suggestion.action);
1565        }
1566
1567        Ok(())
1568    }
1569
1570    /// Map strategy to neural network class
1571    fn strategy_to_class(&self, strategy: &IntelligentRecoveryStrategy) -> usize {
1572        match strategy.suggestion.suggestion_type {
1573            SuggestionType::DataPreprocessing => 0,
1574            SuggestionType::AlgorithmChange => 1,
1575            SuggestionType::ParameterAdjustment => 2,
1576            SuggestionType::ResourceIncrease => 3,
1577            SuggestionType::Approximation => 4,
1578            _ => 5,
1579        }
1580    }
1581}
1582
1583/// Advanced error recovery with ML capabilities
1584#[allow(dead_code)]
1585pub fn create_ml_enhanced_recovery() -> MLEnhancedErrorRecovery {
1586    MLEnhancedErrorRecovery::new(MLRecoveryConfig::default())
1587}