1use crate::error::{StatsError, StatsResult};
8use crate::error_recovery_system::{
9 EnhancedStatsError, RecoveryAction, RecoverySuggestion, SuggestionType,
10};
11use scirs2_core::random::Rng;
12use std::collections::HashMap;
13
14pub struct IntelligentErrorRecovery {
16 error_patterns: HashMap<String, ErrorPattern>,
18 recovery_success_rates: HashMap<String, f64>,
20 config: RecoveryConfig,
22}
23
24#[derive(Debug, Clone)]
26pub struct ErrorPattern {
27 pub error_signature: String,
29 pub data_features: Vec<f64>,
31 pub successful_actions: Vec<RecoveryAction>,
33 pub frequency: usize,
35 pub avg_resolution_time: f64,
37}
38
39#[derive(Debug, Clone)]
41pub struct RecoveryConfig {
42 pub max_suggestions: usize,
44 pub min_confidence: f64,
46 pub enable_ml_suggestions: bool,
48 pub enable_auto_recovery: bool,
50 pub max_auto_attempts: usize,
52}
53
54impl Default for RecoveryConfig {
55 fn default() -> Self {
56 Self {
57 max_suggestions: 5,
58 min_confidence: 0.6,
59 enable_ml_suggestions: true,
60 enable_auto_recovery: false,
61 max_auto_attempts: 3,
62 }
63 }
64}
65
66#[derive(Debug, Clone)]
68pub struct IntelligentRecoveryStrategy {
69 pub suggestion: RecoverySuggestion,
71 pub success_probability: f64,
73 pub estimated_time: f64,
75 pub resource_requirements: ResourceRequirements,
77 pub risk_level: RiskLevel,
79}
80
81#[derive(Debug, Clone)]
83pub struct ResourceRequirements {
84 pub memory_mb: f64,
86 pub cpu_cores: usize,
88 pub wall_time_seconds: f64,
90 pub requires_gpu: bool,
92}
93
94#[derive(Debug, Clone, PartialEq)]
96pub enum RiskLevel {
97 Low,
99 Medium,
101 High,
103 Critical,
105}
106
107impl IntelligentErrorRecovery {
108 pub fn new(config: RecoveryConfig) -> Self {
110 Self {
111 error_patterns: HashMap::new(),
112 recovery_success_rates: HashMap::new(),
113 config,
114 }
115 }
116
117 pub fn analyze_and_suggest(
119 &mut self,
120 error: &EnhancedStatsError,
121 ) -> StatsResult<Vec<IntelligentRecoveryStrategy>> {
122 let features = self.extract_error_features(error)?;
124
125 let similar_patterns = self.find_similar_patterns(&features);
127
128 let mut strategies = Vec::new();
130
131 strategies.extend(self.generate_patternbased_suggestions(&similar_patterns, error)?);
133
134 strategies.extend(self.generate_heuristic_suggestions(error)?);
136
137 if self.config.enable_ml_suggestions {
139 strategies.extend(self.generate_ml_suggestions(&features, error)?);
140 }
141
142 strategies.sort_by(|a, b| {
144 b.success_probability
145 .partial_cmp(&a.success_probability)
146 .unwrap()
147 });
148 strategies.truncate(self.config.max_suggestions);
149
150 strategies.retain(|s| s.success_probability >= self.config.min_confidence);
152
153 Ok(strategies)
154 }
155
156 fn extract_error_features(&self, error: &EnhancedStatsError) -> StatsResult<Vec<f64>> {
158 let mut features = Vec::new();
159
160 features.push(self.encode_error_type(&error.error));
162
163 if let Some(ref size_info) = error.context.data_characteristics.size_info {
165 features.push(size_info.n_elements as f64);
166 features.push(size_info.memory_usage_mb);
167 features.push(size_info.shape.len() as f64); } else {
169 features.extend_from_slice(&[0.0, 0.0, 0.0]);
170 }
171
172 if let Some(ref range_info) = error.context.data_characteristics.range_info {
174 features.push(range_info.max - range_info.min); features.push(if range_info.has_infinite { 1.0 } else { 0.0 });
176 features.push(if range_info.has_nan { 1.0 } else { 0.0 });
177 features.push(if range_info.has_zero { 1.0 } else { 0.0 });
178 } else {
179 features.extend_from_slice(&[0.0, 0.0, 0.0, 0.0]);
180 }
181
182 features.push(error.context.system_info.cpu_cores.unwrap_or(1) as f64);
184 features.push(
185 error
186 .context
187 .system_info
188 .available_memory_mb
189 .unwrap_or(1000.0),
190 );
191 features.push(if error.context.system_info.parallel_available {
192 1.0
193 } else {
194 0.0
195 });
196
197 features.push(self.encode_algorithm(&error.context.computation_state.algorithm));
199
200 if let Some(ref conv_status) = error.context.computation_state.convergence_status {
202 features.push(self.encode_convergence_status(conv_status));
203 } else {
204 features.push(0.0);
205 }
206
207 Ok(features)
208 }
209
210 fn encode_error_type(&self, error: &StatsError) -> f64 {
212 match error {
213 StatsError::DimensionMismatch(_) => 1.0,
214 StatsError::InvalidArgument(_) => 2.0,
215 StatsError::ComputationError(_) => 3.0,
216 StatsError::ConvergenceError(_) => 4.0,
217 StatsError::InsufficientData(_) => 5.0,
218 _ => 0.0,
219 }
220 }
221
222 fn encode_algorithm(&self, algorithm: &str) -> f64 {
224 match algorithm.to_lowercase().as_str() {
225 algo if algo.contains("linear") => 1.0,
226 algo if algo.contains("nonlinear") => 2.0,
227 algo if algo.contains("iterative") => 3.0,
228 algo if algo.contains("mcmc") => 4.0,
229 algo if algo.contains("optimization") => 5.0,
230 _ => 0.0,
231 }
232 }
233
234 fn encode_convergence_status(
236 &self,
237 status: &crate::error_recovery_system::ConvergenceStatus,
238 ) -> f64 {
239 use crate::error_recovery_system::ConvergenceStatus;
240 match status {
241 ConvergenceStatus::NotStarted => 0.0,
242 ConvergenceStatus::InProgress => 1.0,
243 ConvergenceStatus::Converged => 2.0,
244 ConvergenceStatus::FailedToConverge => 3.0,
245 ConvergenceStatus::Diverged => 4.0,
246 }
247 }
248
249 fn find_similar_patterns(&self, features: &[f64]) -> Vec<&ErrorPattern> {
251 let mut similarities: Vec<(&ErrorPattern, f64)> = self
252 .error_patterns
253 .values()
254 .map(|pattern| {
255 let similarity = self.compute_feature_similarity(features, &pattern.data_features);
256 (pattern, similarity)
257 })
258 .collect();
259
260 similarities.sort_by(|a, b| b.1.partial_cmp(&a.1).unwrap());
261 similarities.into_iter()
262 .take(5) .filter(|(_, sim)| *sim > 0.7) .map(|(pattern, _)| pattern)
265 .collect()
266 }
267
268 fn compute_feature_similarity(&self, features1: &[f64], features2: &[f64]) -> f64 {
270 if features1.len() != features2.len() {
271 return 0.0;
272 }
273
274 let dot_product: f64 = features1
275 .iter()
276 .zip(features2.iter())
277 .map(|(a, b)| a * b)
278 .sum();
279 let norm1: f64 = features1.iter().map(|x| x * x).sum::<f64>().sqrt();
280 let norm2: f64 = features2.iter().map(|x| x * x).sum::<f64>().sqrt();
281
282 if norm1 == 0.0 || norm2 == 0.0 {
283 0.0
284 } else {
285 dot_product / (norm1 * norm2)
286 }
287 }
288
289 fn generate_patternbased_suggestions(
291 &self,
292 similar_patterns: &[&ErrorPattern],
293 error: &EnhancedStatsError,
294 ) -> StatsResult<Vec<IntelligentRecoveryStrategy>> {
295 let mut strategies = Vec::new();
296
297 for pattern in similar_patterns {
298 for action in &pattern.successful_actions {
299 let success_rate = self
300 .recovery_success_rates
301 .get(&format!("{:?}", action))
302 .copied()
303 .unwrap_or(0.5);
304
305 let suggestion = RecoverySuggestion {
306 suggestion_type: self.action_to_suggestion_type(action),
307 description: self.generate_action_description(action, error),
308 action: action.clone(),
309 expected_outcome: self.generate_expected_outcome(action),
310 confidence: success_rate,
311 prerequisites: self.generate_prerequisites(action),
312 };
313
314 let strategy = IntelligentRecoveryStrategy {
315 suggestion,
316 success_probability: success_rate * (pattern.frequency as f64 / 100.0).min(1.0),
317 estimated_time: pattern.avg_resolution_time,
318 resource_requirements: self.estimate_resource_requirements(action),
319 risk_level: self.assess_risk_level(action),
320 };
321
322 strategies.push(strategy);
323 }
324 }
325
326 Ok(strategies)
327 }
328
329 fn generate_heuristic_suggestions(
331 &self,
332 error: &EnhancedStatsError,
333 ) -> StatsResult<Vec<IntelligentRecoveryStrategy>> {
334 let mut strategies = Vec::new();
335
336 match &error.error {
337 StatsError::DimensionMismatch(_) => {
338 strategies.push(self.create_dimension_fix_strategy(error)?);
339 }
340 StatsError::ComputationError(_) => {
341 strategies.extend(self.create_computation_fix_strategies(error)?);
342 }
343 StatsError::ConvergenceError(_) => {
344 strategies.extend(self.create_convergence_fix_strategies(error)?);
345 }
346 StatsError::InsufficientData(_) => {
347 strategies.push(self.createdata_augmentation_strategy(error)?);
348 }
349 _ => {
350 strategies.push(self.create_generic_strategy(error)?);
351 }
352 }
353
354 Ok(strategies)
355 }
356
357 fn generate_ml_suggestions(
359 &self,
360 features: &[f64],
361 error: &EnhancedStatsError,
362 ) -> StatsResult<Vec<IntelligentRecoveryStrategy>> {
363 let mut strategies = Vec::new();
366
367 if let Some(ref size_info) = error.context.data_characteristics.size_info {
369 if size_info.memory_usage_mb > 1000.0 {
370 strategies.push(self.create_memory_optimization_strategy(error)?);
371 }
372 }
373
374 if error.context.system_info.parallel_available {
375 strategies.push(self.create_parallelization_strategy(error)?);
376 }
377
378 Ok(strategies)
379 }
380
381 fn create_dimension_fix_strategy(
383 &self,
384 error: &EnhancedStatsError,
385 ) -> StatsResult<IntelligentRecoveryStrategy> {
386 let suggestion = RecoverySuggestion {
387 suggestion_type: SuggestionType::InputValidation,
388 description: "Check and reshape input arrays to match expected dimensions".to_string(),
389 action: RecoveryAction::ValidateInputs {
390 validation_checks: vec![],
391 },
392 expected_outcome: "Arrays will have compatible dimensions for computation".to_string(),
393 confidence: 0.9,
394 prerequisites: vec!["Access to input data".to_string()],
395 };
396
397 Ok(IntelligentRecoveryStrategy {
398 suggestion,
399 success_probability: 0.9,
400 estimated_time: 0.1, resource_requirements: ResourceRequirements {
402 memory_mb: 1.0,
403 cpu_cores: 1,
404 wall_time_seconds: 0.1,
405 requires_gpu: false,
406 },
407 risk_level: RiskLevel::Low,
408 })
409 }
410
411 fn create_computation_fix_strategies(
413 &self,
414 error: &EnhancedStatsError,
415 ) -> StatsResult<Vec<IntelligentRecoveryStrategy>> {
416 let mut strategies = Vec::new();
417
418 let numerical_strategy = IntelligentRecoveryStrategy {
420 suggestion: RecoverySuggestion {
421 suggestion_type: SuggestionType::ParameterAdjustment,
422 description: "Increase numerical precision and add regularization".to_string(),
423 action: RecoveryAction::AdjustTolerance {
424 new_tolerance: 1e-12,
425 },
426 expected_outcome: "Improved numerical stability and convergence".to_string(),
427 confidence: 0.75,
428 prerequisites: vec!["Iterative algorithm".to_string()],
429 },
430 success_probability: 0.75,
431 estimated_time: 1.0,
432 resource_requirements: ResourceRequirements {
433 memory_mb: 10.0,
434 cpu_cores: 1,
435 wall_time_seconds: 1.0,
436 requires_gpu: false,
437 },
438 risk_level: RiskLevel::Low,
439 };
440 strategies.push(numerical_strategy);
441
442 let algorithm_strategy = IntelligentRecoveryStrategy {
444 suggestion: RecoverySuggestion {
445 suggestion_type: SuggestionType::AlgorithmChange,
446 description: "Switch to a more robust numerical algorithm".to_string(),
447 action: RecoveryAction::SwitchAlgorithm {
448 new_algorithm: "robust_svd".to_string(),
449 },
450 expected_outcome: "More stable computation with better _error handling".to_string(),
451 confidence: 0.8,
452 prerequisites: vec!["Alternative algorithm available".to_string()],
453 },
454 success_probability: 0.8,
455 estimated_time: 2.0,
456 resource_requirements: ResourceRequirements {
457 memory_mb: 50.0,
458 cpu_cores: 1,
459 wall_time_seconds: 2.0,
460 requires_gpu: false,
461 },
462 risk_level: RiskLevel::Medium,
463 };
464 strategies.push(algorithm_strategy);
465
466 Ok(strategies)
467 }
468
469 fn create_convergence_fix_strategies(
471 &self,
472 error: &EnhancedStatsError,
473 ) -> StatsResult<Vec<IntelligentRecoveryStrategy>> {
474 let mut strategies = Vec::new();
475
476 strategies.push(IntelligentRecoveryStrategy {
478 suggestion: RecoverySuggestion {
479 suggestion_type: SuggestionType::ParameterAdjustment,
480 description: "Increase maximum iterations and adjust convergence criteria"
481 .to_string(),
482 action: RecoveryAction::IncreaseIterations { factor: 2.0 },
483 expected_outcome: "Algorithm will have more time to converge".to_string(),
484 confidence: 0.7,
485 prerequisites: vec!["Iterative algorithm".to_string()],
486 },
487 success_probability: 0.7,
488 estimated_time: 10.0,
489 resource_requirements: ResourceRequirements {
490 memory_mb: 20.0,
491 cpu_cores: 1,
492 wall_time_seconds: 10.0,
493 requires_gpu: false,
494 },
495 risk_level: RiskLevel::Low,
496 });
497
498 Ok(strategies)
499 }
500
501 fn createdata_augmentation_strategy(
503 &self,
504 error: &EnhancedStatsError,
505 ) -> StatsResult<IntelligentRecoveryStrategy> {
506 Ok(IntelligentRecoveryStrategy {
507 suggestion: RecoverySuggestion {
508 suggestion_type: SuggestionType::DataPreprocessing,
509 description: "Apply data augmentation or use regularization techniques".to_string(),
510 action: RecoveryAction::SimplePreprocessData,
511 expected_outcome: "Sufficient data for reliable statistical analysis".to_string(),
512 confidence: 0.6,
513 prerequisites: vec![
514 "Access to additional data or regularization methods".to_string()
515 ],
516 },
517 success_probability: 0.6,
518 estimated_time: 5.0,
519 resource_requirements: ResourceRequirements {
520 memory_mb: 100.0,
521 cpu_cores: 1,
522 wall_time_seconds: 5.0,
523 requires_gpu: false,
524 },
525 risk_level: RiskLevel::Medium,
526 })
527 }
528
529 fn create_memory_optimization_strategy(
531 &self,
532 error: &EnhancedStatsError,
533 ) -> StatsResult<IntelligentRecoveryStrategy> {
534 Ok(IntelligentRecoveryStrategy {
535 suggestion: RecoverySuggestion {
536 suggestion_type: SuggestionType::ResourceIncrease,
537 description: "Use memory-efficient algorithms and chunked processing".to_string(),
538 action: RecoveryAction::UseChunkedProcessing { chunksize: 1000 },
539 expected_outcome: "Reduced memory usage while maintaining accuracy".to_string(),
540 confidence: 0.85,
541 prerequisites: vec!["Large dataset".to_string()],
542 },
543 success_probability: 0.85,
544 estimated_time: 20.0,
545 resource_requirements: ResourceRequirements {
546 memory_mb: 500.0, cpu_cores: 1,
548 wall_time_seconds: 20.0,
549 requires_gpu: false,
550 },
551 risk_level: RiskLevel::Low,
552 })
553 }
554
555 fn create_parallelization_strategy(
557 &self,
558 error: &EnhancedStatsError,
559 ) -> StatsResult<IntelligentRecoveryStrategy> {
560 let cores = error.context.system_info.cpu_cores.unwrap_or(1);
561
562 Ok(IntelligentRecoveryStrategy {
563 suggestion: RecoverySuggestion {
564 suggestion_type: SuggestionType::ResourceIncrease,
565 description: format!("Enable parallel processing using {} CPU cores", cores),
566 action: RecoveryAction::EnableParallelProcessing { num_threads: cores },
567 expected_outcome: "Faster computation with improved scalability".to_string(),
568 confidence: 0.8,
569 prerequisites: vec!["Multi-core system".to_string()],
570 },
571 success_probability: 0.8,
572 estimated_time: 2.0,
573 resource_requirements: ResourceRequirements {
574 memory_mb: 50.0,
575 cpu_cores: cores,
576 wall_time_seconds: 2.0,
577 requires_gpu: false,
578 },
579 risk_level: RiskLevel::Low,
580 })
581 }
582
583 fn create_generic_strategy(
585 &self,
586 error: &EnhancedStatsError,
587 ) -> StatsResult<IntelligentRecoveryStrategy> {
588 Ok(IntelligentRecoveryStrategy {
589 suggestion: RecoverySuggestion {
590 suggestion_type: SuggestionType::InputValidation,
591 description: "Review input parameters and data quality".to_string(),
592 action: RecoveryAction::SimpleValidateInputs,
593 expected_outcome: "Identification and correction of input issues".to_string(),
594 confidence: 0.5,
595 prerequisites: vec!["Access to input validation tools".to_string()],
596 },
597 success_probability: 0.5,
598 estimated_time: 1.0,
599 resource_requirements: ResourceRequirements {
600 memory_mb: 5.0,
601 cpu_cores: 1,
602 wall_time_seconds: 1.0,
603 requires_gpu: false,
604 },
605 risk_level: RiskLevel::Low,
606 })
607 }
608
609 fn action_to_suggestion_type(&self, action: &RecoveryAction) -> SuggestionType {
611 match action {
612 RecoveryAction::AdjustTolerance { .. } => SuggestionType::ParameterAdjustment,
613 RecoveryAction::IncreaseIterations { .. } => SuggestionType::ParameterAdjustment,
614 RecoveryAction::SwitchAlgorithm { .. } => SuggestionType::AlgorithmChange,
615 RecoveryAction::SimplePreprocessData => SuggestionType::DataPreprocessing,
616 RecoveryAction::SimpleValidateInputs => SuggestionType::InputValidation,
617 RecoveryAction::UseChunkedProcessing { .. } => SuggestionType::ResourceIncrease,
618 RecoveryAction::EnableParallelProcessing { .. } => SuggestionType::ResourceIncrease,
619 RecoveryAction::ApplyRegularization { .. } => SuggestionType::ParameterAdjustment,
620 RecoveryAction::UseApproximation { .. } => SuggestionType::Approximation,
621 _ => SuggestionType::InputValidation,
622 }
623 }
624
625 fn generate_action_description(
627 &self,
628 action: &RecoveryAction,
629 error: &EnhancedStatsError,
630 ) -> String {
631 match action {
632 RecoveryAction::AdjustTolerance { new_tolerance } => {
633 format!("Adjust convergence tolerance to {}", new_tolerance)
634 }
635 RecoveryAction::IncreaseIterations { factor } => {
636 format!("Increase maximum iterations by factor of {}", factor)
637 }
638 RecoveryAction::SwitchAlgorithm { new_algorithm } => {
639 format!("Switch to {} algorithm", new_algorithm)
640 }
641 _ => "Apply recovery action".to_string(),
642 }
643 }
644
645 fn generate_expected_outcome(&self, action: &RecoveryAction) -> String {
647 match action {
648 RecoveryAction::AdjustTolerance { .. } => "Improved numerical stability".to_string(),
649 RecoveryAction::IncreaseIterations { .. } => "Better convergence".to_string(),
650 RecoveryAction::SwitchAlgorithm { .. } => "More robust computation".to_string(),
651 _ => "Resolved error condition".to_string(),
652 }
653 }
654
655 fn generate_prerequisites(&self, action: &RecoveryAction) -> Vec<String> {
657 match action {
658 RecoveryAction::SwitchAlgorithm { .. } => {
659 vec!["Alternative algorithm available".to_string()]
660 }
661 RecoveryAction::EnableParallelProcessing { .. } => {
662 vec!["Multi-core system".to_string()]
663 }
664 _ => vec![],
665 }
666 }
667
668 fn estimate_resource_requirements(&self, action: &RecoveryAction) -> ResourceRequirements {
670 match action {
671 RecoveryAction::IncreaseIterations { factor } => ResourceRequirements {
672 memory_mb: 10.0,
673 cpu_cores: 1,
674 wall_time_seconds: 5.0 * factor,
675 requires_gpu: false,
676 },
677 RecoveryAction::EnableParallelProcessing { num_threads } => ResourceRequirements {
678 memory_mb: 50.0,
679 cpu_cores: *num_threads,
680 wall_time_seconds: 2.0,
681 requires_gpu: false,
682 },
683 _ => ResourceRequirements {
684 memory_mb: 5.0,
685 cpu_cores: 1,
686 wall_time_seconds: 1.0,
687 requires_gpu: false,
688 },
689 }
690 }
691
692 fn assess_risk_level(&self, action: &RecoveryAction) -> RiskLevel {
694 match action {
695 RecoveryAction::SwitchAlgorithm { .. } => RiskLevel::Medium,
696 RecoveryAction::IncreaseIterations { .. } => RiskLevel::Low,
697 _ => RiskLevel::Low,
698 }
699 }
700
701 pub fn record_successful_recovery(&mut self, action: &RecoveryAction) {
703 let key = format!("{:?}", action);
704 let current_rate = self
705 .recovery_success_rates
706 .get(&key)
707 .copied()
708 .unwrap_or(0.5);
709 let new_rate = 0.9 * current_rate + 0.1 * 1.0;
711 self.recovery_success_rates.insert(key, new_rate);
712 }
713
714 pub fn record_failed_recovery(&mut self, action: &RecoveryAction) {
716 let key = format!("{:?}", action);
717 let current_rate = self
718 .recovery_success_rates
719 .get(&key)
720 .copied()
721 .unwrap_or(0.5);
722 let new_rate = 0.9 * current_rate + 0.1 * 0.0;
724 self.recovery_success_rates.insert(key, new_rate);
725 }
726}
727
728#[allow(dead_code)]
730pub fn create_intelligent_recovery() -> IntelligentErrorRecovery {
731 IntelligentErrorRecovery::new(RecoveryConfig::default())
732}
733
734#[allow(dead_code)]
736pub fn get_intelligent_suggestions(
737 error: &EnhancedStatsError,
738) -> StatsResult<Vec<IntelligentRecoveryStrategy>> {
739 let mut recovery = create_intelligent_recovery();
740 recovery.analyze_and_suggest(error)
741}
742
743pub struct NeuralErrorClassifier {
745 weights: Vec<Vec<f64>>,
747 biases: Vec<f64>,
749 trainingdata: Vec<(Vec<f64>, usize)>, learning_rate: f64,
753}
754
755impl Default for NeuralErrorClassifier {
756 fn default() -> Self {
757 Self::new()
758 }
759}
760
761impl NeuralErrorClassifier {
762 pub fn new() -> Self {
764 let mut rng = scirs2_core::random::thread_rng();
766 let mut weights = Vec::new();
767 let inputsize = 12; let hiddensize = 8;
769 let outputsize = 5; let mut layer1 = Vec::new();
773 for _ in 0..hiddensize {
774 let mut neuron_weights = Vec::new();
775 for _ in 0..inputsize {
776 neuron_weights.push((rng.random::<f64>() - 0.5) * 0.1);
777 }
778 layer1.push(neuron_weights);
779 }
780 weights.push(layer1.into_iter().flatten().collect());
781
782 let mut layer2 = Vec::new();
784 for _ in 0..outputsize {
785 let mut neuron_weights = Vec::new();
786 for _ in 0..hiddensize {
787 neuron_weights.push((rng.random::<f64>() - 0.5) * 0.1);
788 }
789 layer2.push(neuron_weights);
790 }
791 weights.push(layer2.into_iter().flatten().collect());
792
793 Self {
794 weights,
795 biases: vec![0.0; hiddensize + outputsize],
796 trainingdata: Vec::new(),
797 learning_rate: 0.01,
798 }
799 }
800
801 pub fn classify_error_pattern(&self, features: &[f64]) -> (usize, f64) {
803 let output = self.forward_pass(features);
804 let (best_class, confidence) = output
805 .iter()
806 .enumerate()
807 .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap())
808 .map(|(i, &conf)| (i, conf))
809 .unwrap_or((0, 0.0));
810
811 (best_class, confidence)
812 }
813
814 fn forward_pass(&self, features: &[f64]) -> Vec<f64> {
816 let hiddensize = 8;
817 let outputsize = 5;
818
819 let mut hidden = vec![0.0; hiddensize];
821 for i in 0..hiddensize {
822 let mut sum = self.biases[i];
823 for j in 0..features.len().min(12) {
824 sum += self.weights[0][i * 12 + j] * features[j];
825 }
826 hidden[i] = Self::relu(sum);
827 }
828
829 let mut output = vec![0.0; outputsize];
831 for i in 0..outputsize {
832 let mut sum = self.biases[hiddensize + i];
833 for j in 0..hiddensize {
834 if self.weights.len() > 1 && i * hiddensize + j < self.weights[1].len() {
835 sum += self.weights[1][i * hiddensize + j] * hidden[j];
836 }
837 }
838 output[i] = Self::sigmoid(sum);
839 }
840
841 output
842 }
843
844 fn relu(x: f64) -> f64 {
846 x.max(0.0)
847 }
848
849 fn sigmoid(x: f64) -> f64 {
851 1.0 / (1.0 + (-x).exp())
852 }
853
854 pub fn update_from_feedback(&mut self, features: &[f64], correctclass: usize, success: bool) {
856 self.trainingdata.push((features.to_vec(), correctclass));
857
858 if success {
859 self.reinforce_prediction(features, correctclass, 1.0);
861 } else {
862 self.reinforce_prediction(features, correctclass, -0.5);
864 }
865
866 if self.trainingdata.len() > 1000 {
868 self.trainingdata.drain(0..500);
869 }
870 }
871
872 fn reinforce_prediction(&mut self, features: &[f64], targetclass: usize, strength: f64) {
874 let prediction = self.forward_pass(features);
875 let error = strength
876 * (if targetclass < prediction.len() {
877 1.0 - prediction[targetclass]
878 } else {
879 1.0
880 });
881
882 let update_magnitude = self.learning_rate * error;
884
885 if targetclass < self.biases.len() {
887 self.biases[targetclass] += update_magnitude;
888 }
889
890 for weight_layer in &mut self.weights {
892 for weight in weight_layer.iter_mut().take(10) {
893 *weight += update_magnitude * 0.1;
894 }
895 }
896 }
897}
898
899pub struct MLEnhancedErrorRecovery {
901 base_recovery: IntelligentErrorRecovery,
903 neural_classifier: NeuralErrorClassifier,
905 strategy_ensemble: RecoveryStrategyEnsemble,
907 ml_config: MLRecoveryConfig,
909}
910
911#[derive(Debug, Clone)]
913pub struct MLRecoveryConfig {
914 pub use_neural_classifier: bool,
916 pub use_strategy_ensemble: bool,
918 pub enable_online_learning: bool,
920 pub ml_confidence_threshold: f64,
922 pub ml_weight: f64,
924}
925
926impl Default for MLRecoveryConfig {
927 fn default() -> Self {
928 Self {
929 use_neural_classifier: true,
930 use_strategy_ensemble: true,
931 enable_online_learning: true,
932 ml_confidence_threshold: 0.7,
933 ml_weight: 0.6,
934 }
935 }
936}
937
938pub struct RecoveryStrategyEnsemble {
940 strategy_generators: Vec<Box<dyn StrategyGenerator>>,
942 generator_weights: Vec<f64>,
944 performance_history: HashMap<String, Vec<bool>>,
946}
947
948pub trait StrategyGenerator {
950 fn generate_strategies(
951 &self,
952 error: &EnhancedStatsError,
953 features: &[f64],
954 ) -> StatsResult<Vec<IntelligentRecoveryStrategy>>;
955 fn name(&self) -> &str;
956}
957
958pub struct SimilarityBasedGenerator {
960 historical_patterns: Vec<(Vec<f64>, IntelligentRecoveryStrategy)>,
961}
962
963impl StrategyGenerator for SimilarityBasedGenerator {
964 fn generate_strategies(
965 &self,
966 error: &EnhancedStatsError,
967 features: &[f64],
968 ) -> StatsResult<Vec<IntelligentRecoveryStrategy>> {
969 let mut strategies = Vec::new();
970
971 let mut similarities: Vec<(f64, &IntelligentRecoveryStrategy)> = self
973 .historical_patterns
974 .iter()
975 .map(|(hist_features, strategy)| {
976 let similarity = self.compute_similarity(features, hist_features);
977 (similarity, strategy)
978 })
979 .collect();
980
981 similarities.sort_by(|a, b| b.0.partial_cmp(&a.0).unwrap());
982
983 for (similarity, strategy) in similarities.into_iter().take(3) {
985 if similarity > 0.6 {
986 let mut adjusted_strategy = strategy.clone();
987 adjusted_strategy.success_probability *= similarity;
988 strategies.push(adjusted_strategy);
989 }
990 }
991
992 Ok(strategies)
993 }
994
995 fn name(&self) -> &str {
996 "SimilarityBased"
997 }
998}
999
1000impl Default for SimilarityBasedGenerator {
1001 fn default() -> Self {
1002 Self::new()
1003 }
1004}
1005
1006impl SimilarityBasedGenerator {
1007 pub fn new() -> Self {
1008 Self {
1009 historical_patterns: Vec::new(),
1010 }
1011 }
1012
1013 pub fn add_pattern(&mut self, features: Vec<f64>, strategy: IntelligentRecoveryStrategy) {
1014 self.historical_patterns.push((features, strategy));
1015
1016 if self.historical_patterns.len() > 500 {
1018 self.historical_patterns.drain(0..100);
1019 }
1020 }
1021
1022 fn compute_similarity(&self, features1: &[f64], features2: &[f64]) -> f64 {
1023 if features1.len() != features2.len() {
1024 return 0.0;
1025 }
1026
1027 let dot_product: f64 = features1
1028 .iter()
1029 .zip(features2.iter())
1030 .map(|(a, b)| a * b)
1031 .sum();
1032 let norm1: f64 = features1.iter().map(|x| x * x).sum::<f64>().sqrt();
1033 let norm2: f64 = features2.iter().map(|x| x * x).sum::<f64>().sqrt();
1034
1035 if norm1 == 0.0 || norm2 == 0.0 {
1036 0.0
1037 } else {
1038 dot_product / (norm1 * norm2)
1039 }
1040 }
1041}
1042
1043pub struct ClusteringBasedGenerator {
1045 error_clusters: Vec<ErrorCluster>,
1046}
1047
1048#[derive(Debug, Clone)]
1049pub struct ErrorCluster {
1050 center: Vec<f64>,
1051 strategies: Vec<IntelligentRecoveryStrategy>,
1052 radius: f64,
1053}
1054
1055impl StrategyGenerator for ClusteringBasedGenerator {
1056 fn generate_strategies(
1057 &self,
1058 error: &EnhancedStatsError,
1059 features: &[f64],
1060 ) -> StatsResult<Vec<IntelligentRecoveryStrategy>> {
1061 let mut strategies = Vec::new();
1062
1063 for cluster in &self.error_clusters {
1065 let distance = self.euclidean_distance(features, &cluster.center);
1066 if distance <= cluster.radius {
1067 for strategy in &cluster.strategies {
1069 let mut adjusted_strategy = strategy.clone();
1070 let proximity_factor = 1.0 - (distance / cluster.radius);
1072 adjusted_strategy.success_probability *= proximity_factor;
1073 strategies.push(adjusted_strategy);
1074 }
1075 }
1076 }
1077
1078 Ok(strategies)
1079 }
1080
1081 fn name(&self) -> &str {
1082 "ClusteringBased"
1083 }
1084}
1085
1086impl Default for ClusteringBasedGenerator {
1087 fn default() -> Self {
1088 Self::new()
1089 }
1090}
1091
1092impl ClusteringBasedGenerator {
1093 pub fn new() -> Self {
1094 Self {
1095 error_clusters: Vec::new(),
1096 }
1097 }
1098
1099 fn euclidean_distance(&self, features1: &[f64], features2: &[f64]) -> f64 {
1100 features1
1101 .iter()
1102 .zip(features2.iter())
1103 .map(|(a, b)| (a - b).powi(2))
1104 .sum::<f64>()
1105 .sqrt()
1106 }
1107}
1108
1109impl Default for RecoveryStrategyEnsemble {
1110 fn default() -> Self {
1111 Self::new()
1112 }
1113}
1114
1115impl RecoveryStrategyEnsemble {
1116 pub fn new() -> Self {
1117 let mut ensemble = Self {
1118 strategy_generators: Vec::new(),
1119 generator_weights: Vec::new(),
1120 performance_history: HashMap::new(),
1121 };
1122
1123 ensemble.add_generator(Box::new(SimilarityBasedGenerator::new()), 1.0);
1125 ensemble.add_generator(Box::new(ClusteringBasedGenerator::new()), 1.0);
1126
1127 ensemble
1128 }
1129
1130 pub fn add_generator(&mut self, generator: Box<dyn StrategyGenerator>, initialweight: f64) {
1131 self.strategy_generators.push(generator);
1132 self.generator_weights.push(initialweight);
1133 }
1134
1135 pub fn generate_ensemble_strategies(
1137 &self,
1138 error: &EnhancedStatsError,
1139 features: &[f64],
1140 ) -> StatsResult<Vec<IntelligentRecoveryStrategy>> {
1141 let mut all_strategies = Vec::new();
1142
1143 for (i, generator) in self.strategy_generators.iter().enumerate() {
1145 if let Ok(mut strategies) = generator.generate_strategies(error, features) {
1146 let weight = self.generator_weights[i];
1147
1148 for strategy in &mut strategies {
1150 strategy.success_probability *= weight;
1151 }
1152
1153 all_strategies.extend(strategies);
1154 }
1155 }
1156
1157 let merged_strategies = self.merge_similar_strategies(all_strategies);
1159
1160 Ok(merged_strategies)
1161 }
1162
1163 fn merge_similar_strategies(
1165 &self,
1166 strategies: Vec<IntelligentRecoveryStrategy>,
1167 ) -> Vec<IntelligentRecoveryStrategy> {
1168 let mut merged = Vec::new();
1169
1170 for strategy in strategies {
1171 let mut found_similar = false;
1172
1173 for existing in &mut merged {
1174 if self.strategies_similar(&strategy, existing) {
1175 existing.success_probability =
1177 (existing.success_probability + strategy.success_probability) / 2.0;
1178 found_similar = true;
1179 break;
1180 }
1181 }
1182
1183 if !found_similar {
1184 merged.push(strategy);
1185 }
1186 }
1187
1188 merged.sort_by(|a, b| {
1190 b.success_probability
1191 .partial_cmp(&a.success_probability)
1192 .unwrap()
1193 });
1194
1195 merged
1196 }
1197
1198 fn strategies_similar(
1200 &self,
1201 strategy1: &IntelligentRecoveryStrategy,
1202 strategy2: &IntelligentRecoveryStrategy,
1203 ) -> bool {
1204 strategy1.suggestion.suggestion_type == strategy2.suggestion.suggestion_type
1206 && std::mem::discriminant(&strategy1.suggestion.action)
1207 == std::mem::discriminant(&strategy2.suggestion.action)
1208 }
1209
1210 pub fn update_weights(&mut self, generatorname: &str, success: bool) {
1212 self.performance_history
1213 .entry(generatorname.to_string())
1214 .or_default()
1215 .push(success);
1216
1217 for (i, generator) in self.strategy_generators.iter().enumerate() {
1219 if generator.name() == generatorname {
1220 if let Some(history) = self.performance_history.get(generatorname) {
1221 let recent_success_rate = history.iter()
1222 .rev()
1223 .take(20) .map(|&s| if s { 1.0 } else { 0.0 })
1225 .sum::<f64>()
1226 / history.len().min(20) as f64;
1227
1228 self.generator_weights[i] = 0.5 + recent_success_rate;
1230 }
1231 }
1232 }
1233 }
1234}
1235
1236impl MLEnhancedErrorRecovery {
1237 pub fn new(config: MLRecoveryConfig) -> Self {
1239 Self {
1240 base_recovery: IntelligentErrorRecovery::new(RecoveryConfig::default()),
1241 neural_classifier: NeuralErrorClassifier::new(),
1242 strategy_ensemble: RecoveryStrategyEnsemble::new(),
1243 ml_config: config,
1244 }
1245 }
1246
1247 pub fn analyze_with_ml(
1249 &mut self,
1250 error: &EnhancedStatsError,
1251 ) -> StatsResult<Vec<IntelligentRecoveryStrategy>> {
1252 let mut all_strategies = Vec::new();
1253
1254 let base_strategies = self.base_recovery.analyze_and_suggest(error)?;
1256
1257 let features = self.extract_enhanced_features(error)?;
1259
1260 if self.ml_config.use_neural_classifier {
1262 let (predicted_class, confidence) =
1263 self.neural_classifier.classify_error_pattern(&features);
1264
1265 if confidence >= self.ml_config.ml_confidence_threshold {
1266 let ml_strategies =
1267 self.generate_neural_strategies(predicted_class, confidence, error)?;
1268 all_strategies.extend(ml_strategies);
1269 }
1270 }
1271
1272 if self.ml_config.use_strategy_ensemble {
1274 let ensemble_strategies = self
1275 .strategy_ensemble
1276 .generate_ensemble_strategies(error, &features)?;
1277 all_strategies.extend(ensemble_strategies);
1278 }
1279
1280 let combined_strategies = self.combine_strategies(base_strategies, all_strategies);
1282
1283 Ok(combined_strategies)
1284 }
1285
1286 fn extract_enhanced_features(&self, error: &EnhancedStatsError) -> StatsResult<Vec<f64>> {
1288 let mut features = Vec::new();
1289
1290 let base_features = self.base_recovery.extract_error_features(error)?;
1292 features.extend(base_features);
1293
1294 features.push(
1296 std::time::SystemTime::now()
1297 .duration_since(std::time::UNIX_EPOCH)
1298 .unwrap()
1299 .as_secs() as f64
1300 % 86400.0,
1301 ); features.push(1.0); features.push(0.5); features.push(0.3); Ok(features)
1311 }
1312
1313 fn generate_neural_strategies(
1315 &self,
1316 predicted_class: usize,
1317 confidence: f64,
1318 error: &EnhancedStatsError,
1319 ) -> StatsResult<Vec<IntelligentRecoveryStrategy>> {
1320 let mut strategies = Vec::new();
1321
1322 let strategy = match predicted_class {
1324 0 => self.createdata_preprocessing_strategy(error, confidence)?,
1325 1 => self.create_algorithm_optimization_strategy(error, confidence)?,
1326 2 => self.create_numerical_stability_strategy(error, confidence)?,
1327 3 => self.create_resource_scaling_strategy(error, confidence)?,
1328 4 => self.create_approximation_strategy(error, confidence)?,
1329 _ => self.create_adaptive_strategy(error, confidence)?,
1330 };
1331
1332 strategies.push(strategy);
1333 Ok(strategies)
1334 }
1335
1336 fn createdata_preprocessing_strategy(
1338 &self,
1339 error: &EnhancedStatsError,
1340 confidence: f64,
1341 ) -> StatsResult<IntelligentRecoveryStrategy> {
1342 Ok(IntelligentRecoveryStrategy {
1343 suggestion: RecoverySuggestion {
1344 suggestion_type: SuggestionType::DataPreprocessing,
1345 description: "Apply ML-suggested data preprocessing pipeline".to_string(),
1346 action: RecoveryAction::SimplePreprocessData,
1347 expected_outcome: "Improved data quality and computational stability".to_string(),
1348 confidence,
1349 prerequisites: vec!["Raw data access".to_string()],
1350 },
1351 success_probability: confidence,
1352 estimated_time: 3.0,
1353 resource_requirements: ResourceRequirements {
1354 memory_mb: 100.0,
1355 cpu_cores: 2,
1356 wall_time_seconds: 3.0,
1357 requires_gpu: false,
1358 },
1359 risk_level: RiskLevel::Low,
1360 })
1361 }
1362
1363 fn create_algorithm_optimization_strategy(
1365 &self,
1366 error: &EnhancedStatsError,
1367 confidence: f64,
1368 ) -> StatsResult<IntelligentRecoveryStrategy> {
1369 Ok(IntelligentRecoveryStrategy {
1370 suggestion: RecoverySuggestion {
1371 suggestion_type: SuggestionType::AlgorithmChange,
1372 description: "Switch to ML-optimized algorithm variant".to_string(),
1373 action: RecoveryAction::SwitchAlgorithm {
1374 new_algorithm: "ml_optimized".to_string(),
1375 },
1376 expected_outcome: "Better performance and numerical stability".to_string(),
1377 confidence,
1378 prerequisites: vec!["Alternative algorithm implementation".to_string()],
1379 },
1380 success_probability: confidence,
1381 estimated_time: 2.0,
1382 resource_requirements: ResourceRequirements {
1383 memory_mb: 50.0,
1384 cpu_cores: 1,
1385 wall_time_seconds: 2.0,
1386 requires_gpu: false,
1387 },
1388 risk_level: RiskLevel::Medium,
1389 })
1390 }
1391
1392 fn create_numerical_stability_strategy(
1394 &self,
1395 error: &EnhancedStatsError,
1396 confidence: f64,
1397 ) -> StatsResult<IntelligentRecoveryStrategy> {
1398 Ok(IntelligentRecoveryStrategy {
1399 suggestion: RecoverySuggestion {
1400 suggestion_type: SuggestionType::ParameterAdjustment,
1401 description: "Apply ML-tuned numerical stability parameters".to_string(),
1402 action: RecoveryAction::AdjustTolerance {
1403 new_tolerance: 1e-10,
1404 },
1405 expected_outcome: "Enhanced numerical precision and stability".to_string(),
1406 confidence,
1407 prerequisites: vec!["Iterative computation".to_string()],
1408 },
1409 success_probability: confidence,
1410 estimated_time: 1.5,
1411 resource_requirements: ResourceRequirements {
1412 memory_mb: 20.0,
1413 cpu_cores: 1,
1414 wall_time_seconds: 1.5,
1415 requires_gpu: false,
1416 },
1417 risk_level: RiskLevel::Low,
1418 })
1419 }
1420
1421 fn create_resource_scaling_strategy(
1423 &self,
1424 error: &EnhancedStatsError,
1425 confidence: f64,
1426 ) -> StatsResult<IntelligentRecoveryStrategy> {
1427 let cores = error.context.system_info.cpu_cores.unwrap_or(1);
1428
1429 Ok(IntelligentRecoveryStrategy {
1430 suggestion: RecoverySuggestion {
1431 suggestion_type: SuggestionType::ResourceIncrease,
1432 description: "Apply ML-optimized resource scaling".to_string(),
1433 action: RecoveryAction::EnableParallelProcessing { num_threads: cores },
1434 expected_outcome: "Optimal resource utilization and performance".to_string(),
1435 confidence,
1436 prerequisites: vec!["Multi-core system".to_string()],
1437 },
1438 success_probability: confidence,
1439 estimated_time: 1.0,
1440 resource_requirements: ResourceRequirements {
1441 memory_mb: 75.0,
1442 cpu_cores: cores,
1443 wall_time_seconds: 1.0,
1444 requires_gpu: false,
1445 },
1446 risk_level: RiskLevel::Low,
1447 })
1448 }
1449
1450 fn create_approximation_strategy(
1452 &self,
1453 error: &EnhancedStatsError,
1454 confidence: f64,
1455 ) -> StatsResult<IntelligentRecoveryStrategy> {
1456 Ok(IntelligentRecoveryStrategy {
1457 suggestion: RecoverySuggestion {
1458 suggestion_type: SuggestionType::Approximation,
1459 description: "Use ML-guided approximation methods".to_string(),
1460 action: RecoveryAction::UseApproximation {
1461 approximation_method: "neural_approximation".to_string(),
1462 },
1463 expected_outcome: "Fast approximate solution with controlled _error".to_string(),
1464 confidence,
1465 prerequisites: vec!["Approximation tolerance defined".to_string()],
1466 },
1467 success_probability: confidence,
1468 estimated_time: 0.5,
1469 resource_requirements: ResourceRequirements {
1470 memory_mb: 30.0,
1471 cpu_cores: 1,
1472 wall_time_seconds: 0.5,
1473 requires_gpu: false,
1474 },
1475 risk_level: RiskLevel::Medium,
1476 })
1477 }
1478
1479 fn create_adaptive_strategy(
1481 &self,
1482 error: &EnhancedStatsError,
1483 confidence: f64,
1484 ) -> StatsResult<IntelligentRecoveryStrategy> {
1485 Ok(IntelligentRecoveryStrategy {
1486 suggestion: RecoverySuggestion {
1487 suggestion_type: SuggestionType::InputValidation,
1488 description: "Apply adaptive ML-learned recovery approach".to_string(),
1489 action: RecoveryAction::SimpleValidateInputs,
1490 expected_outcome: "Context-aware _error resolution".to_string(),
1491 confidence,
1492 prerequisites: vec!["Input data available".to_string()],
1493 },
1494 success_probability: confidence,
1495 estimated_time: 2.0,
1496 resource_requirements: ResourceRequirements {
1497 memory_mb: 40.0,
1498 cpu_cores: 1,
1499 wall_time_seconds: 2.0,
1500 requires_gpu: false,
1501 },
1502 risk_level: RiskLevel::Low,
1503 })
1504 }
1505
1506 fn combine_strategies(
1508 &self,
1509 base_strategies: Vec<IntelligentRecoveryStrategy>,
1510 ml_strategies: Vec<IntelligentRecoveryStrategy>,
1511 ) -> Vec<IntelligentRecoveryStrategy> {
1512 let mut combined = Vec::new();
1513
1514 for mut strategy in base_strategies {
1516 strategy.success_probability *= 1.0 - self.ml_config.ml_weight;
1517 combined.push(strategy);
1518 }
1519
1520 for mut strategy in ml_strategies {
1522 strategy.success_probability *= self.ml_config.ml_weight;
1523 combined.push(strategy);
1524 }
1525
1526 combined.sort_by(|a, b| {
1528 b.success_probability
1529 .partial_cmp(&a.success_probability)
1530 .unwrap()
1531 });
1532
1533 combined.truncate(8);
1535 combined
1536 }
1537
1538 pub fn provide_feedback(
1540 &mut self,
1541 error: &EnhancedStatsError,
1542 strategy_used: &IntelligentRecoveryStrategy,
1543 success: bool,
1544 ) -> StatsResult<()> {
1545 if self.ml_config.enable_online_learning {
1547 let features = self.extract_enhanced_features(error)?;
1548 let strategy_class = self.strategy_to_class(strategy_used);
1549 self.neural_classifier
1550 .update_from_feedback(&features, strategy_class, success);
1551 }
1552
1553 let generator_name = "ensemble"; self.strategy_ensemble
1556 .update_weights(generator_name, success);
1557
1558 if success {
1560 self.base_recovery
1561 .record_successful_recovery(&strategy_used.suggestion.action);
1562 } else {
1563 self.base_recovery
1564 .record_failed_recovery(&strategy_used.suggestion.action);
1565 }
1566
1567 Ok(())
1568 }
1569
1570 fn strategy_to_class(&self, strategy: &IntelligentRecoveryStrategy) -> usize {
1572 match strategy.suggestion.suggestion_type {
1573 SuggestionType::DataPreprocessing => 0,
1574 SuggestionType::AlgorithmChange => 1,
1575 SuggestionType::ParameterAdjustment => 2,
1576 SuggestionType::ResourceIncrease => 3,
1577 SuggestionType::Approximation => 4,
1578 _ => 5,
1579 }
1580 }
1581}
1582
1583#[allow(dead_code)]
1585pub fn create_ml_enhanced_recovery() -> MLEnhancedErrorRecovery {
1586 MLEnhancedErrorRecovery::new(MLRecoveryConfig::default())
1587}