scirs2_stats/
benchmark_suite.rs

1//! Comprehensive benchmark suite for scirs2-stats performance analysis
2//!
3//! This module provides a production-ready benchmarking framework that compares
4//! scirs2-stats performance against industry standards including SciPy, NumPy,
5//! and other statistical libraries. It includes automated performance regression
6//! detection, memory usage analysis, and optimization recommendations.
7
8use crate::error::{StatsError, StatsResult};
9use scirs2_core::ndarray::{Array1, Array2};
10use scirs2_core::parallel_ops::*;
11use serde::{Deserialize, Serialize};
12use std::collections::HashMap;
13use std::sync::{Arc, Mutex};
14use std::time::Instant;
15
16/// Benchmark configuration for different test scenarios
17#[derive(Debug, Clone, Serialize, Deserialize)]
18pub struct BenchmarkConfig {
19    /// Data sizes to test
20    pub datasizes: Vec<usize>,
21    /// Number of iterations for each benchmark
22    pub iterations: usize,
23    /// Enable memory usage tracking
24    pub track_memory: bool,
25    /// Enable comparison with baseline (SciPy-equivalent) implementations
26    pub comparebaseline: bool,
27    /// Enable SIMD optimization benchmarks
28    pub test_simd: bool,
29    /// Enable parallel processing benchmarks
30    pub test_parallel: bool,
31    /// Warmup iterations before measurement
32    pub warmup_iterations: usize,
33    /// Target confidence level for statistical analysis
34    pub confidence_level: f64,
35    /// Maximum acceptable regression percentage
36    pub regression_threshold: f64,
37}
38
39impl Default for BenchmarkConfig {
40    fn default() -> Self {
41        Self {
42            datasizes: vec![100, 1000, 10000, 100000, 1000000],
43            iterations: 100,
44            track_memory: true,
45            comparebaseline: true,
46            test_simd: true,
47            test_parallel: true,
48            warmup_iterations: 10,
49            confidence_level: 0.95,
50            regression_threshold: 5.0, // 5% regression threshold
51        }
52    }
53}
54
55/// Performance metrics for a single benchmark run
56#[derive(Debug, Clone, Serialize, Deserialize)]
57pub struct BenchmarkMetrics {
58    /// Function name being benchmarked
59    pub function_name: String,
60    /// Data size used in benchmark
61    pub datasize: usize,
62    /// Execution time statistics
63    pub timing: TimingStats,
64    /// Memory usage statistics
65    pub memory: Option<MemoryStats>,
66    /// Algorithm configuration used
67    pub algorithm_config: AlgorithmConfig,
68    /// Throughput (operations per second)
69    pub throughput: f64,
70    /// Comparative performance vs baseline
71    pub baseline_comparison: Option<f64>,
72}
73
74/// Timing statistics for benchmark measurements
75#[derive(Debug, Clone, Serialize, Deserialize)]
76pub struct TimingStats {
77    /// Mean execution time in nanoseconds
78    pub mean_ns: f64,
79    /// Standard deviation in nanoseconds
80    pub std_dev_ns: f64,
81    /// Minimum execution time in nanoseconds
82    pub min_ns: f64,
83    /// Maximum execution time in nanoseconds
84    pub max_ns: f64,
85    /// Median execution time in nanoseconds
86    pub median_ns: f64,
87    /// 95th percentile execution time in nanoseconds
88    pub p95_ns: f64,
89    /// 99th percentile execution time in nanoseconds
90    pub p99_ns: f64,
91}
92
93/// Memory usage statistics
94#[derive(Debug, Clone, Serialize, Deserialize)]
95pub struct MemoryStats {
96    /// Peak memory usage in bytes
97    pub peak_bytes: usize,
98    /// Memory allocations count
99    pub allocations: usize,
100    /// Memory deallocations count
101    pub deallocations: usize,
102    /// Average allocation size in bytes
103    pub avg_allocationsize: f64,
104    /// Memory fragmentation score (0-1, lower is better)
105    pub fragmentation_score: f64,
106}
107
108/// Algorithm configuration used for benchmark
109#[derive(Debug, Clone, Serialize, Deserialize)]
110pub struct AlgorithmConfig {
111    /// Whether SIMD optimizations were used
112    pub simd_enabled: bool,
113    /// Whether parallel processing was used
114    pub parallel_enabled: bool,
115    /// Number of threads used (if parallel)
116    pub thread_count: Option<usize>,
117    /// SIMD vector width used
118    pub simd_width: Option<usize>,
119    /// Algorithm variant used
120    pub algorithm_variant: String,
121}
122
123/// Comprehensive benchmark results
124#[derive(Debug, Clone, Serialize, Deserialize)]
125pub struct BenchmarkReport {
126    /// Timestamp when benchmark was run
127    pub timestamp: String,
128    /// Configuration used for benchmarking
129    pub config: BenchmarkConfig,
130    /// Individual benchmark metrics
131    pub metrics: Vec<BenchmarkMetrics>,
132    /// Performance analysis summary
133    pub analysis: PerformanceAnalysis,
134    /// System information
135    pub system_info: SystemInfo,
136    /// Optimization recommendations
137    pub recommendations: Vec<OptimizationRecommendation>,
138}
139
140/// Performance analysis summary
141#[derive(Debug, Clone, Serialize, Deserialize)]
142pub struct PerformanceAnalysis {
143    /// Overall performance score (0-100)
144    pub overall_score: f64,
145    /// SIMD effectiveness (speed improvement ratio)
146    pub simd_effectiveness: HashMap<String, f64>,
147    /// Parallel effectiveness (speed improvement ratio)
148    pub parallel_effectiveness: HashMap<String, f64>,
149    /// Memory efficiency score (0-100)
150    pub memory_efficiency: f64,
151    /// Detected performance regressions
152    pub regressions: Vec<PerformanceRegression>,
153    /// Performance scaling characteristics
154    pub scaling_analysis: ScalingAnalysis,
155}
156
157/// Performance regression detection
158#[derive(Debug, Clone, Serialize, Deserialize)]
159pub struct PerformanceRegression {
160    /// Function name with regression
161    pub function_name: String,
162    /// Data size where regression was detected
163    pub datasize: usize,
164    /// Regression percentage (positive means slower)
165    pub regression_percent: f64,
166    /// Confidence level of regression detection
167    pub confidence: f64,
168    /// Suggested root cause
169    pub suspected_cause: String,
170}
171
172/// Performance scaling analysis
173#[derive(Debug, Clone, Serialize, Deserialize)]
174pub struct ScalingAnalysis {
175    /// Complexity classification for each function
176    pub complexity_analysis: HashMap<String, ComplexityClass>,
177    /// Optimal data size thresholds for algorithm switching
178    pub threshold_recommendations: HashMap<String, Vec<ThresholdRecommendation>>,
179    /// Memory scaling characteristics
180    pub memory_scaling: HashMap<String, MemoryScaling>,
181}
182
183/// Algorithm complexity classification
184#[derive(Debug, Clone, Serialize, Deserialize)]
185pub enum ComplexityClass {
186    Constant,
187    Logarithmic,
188    Linear,
189    LinearLogarithmic,
190    Quadratic,
191    Cubic,
192    Exponential,
193    Unknown,
194}
195
196/// Threshold recommendation for algorithm switching
197#[derive(Debug, Clone, Serialize, Deserialize)]
198pub struct ThresholdRecommendation {
199    /// Data size threshold
200    pub threshold: usize,
201    /// Recommended algorithm/configuration
202    pub recommendation: String,
203    /// Expected performance improvement
204    pub improvement_factor: f64,
205}
206
207/// Memory scaling characteristics
208#[derive(Debug, Clone, Serialize, Deserialize)]
209pub struct MemoryScaling {
210    /// Memory usage scaling factor
211    pub scaling_factor: f64,
212    /// Base memory overhead in bytes
213    pub base_overhead: usize,
214    /// Memory efficiency trend (improving/degrading/stable)
215    pub efficiency_trend: MemoryTrend,
216}
217
218/// Memory efficiency trend
219#[derive(Debug, Clone, Serialize, Deserialize)]
220pub enum MemoryTrend {
221    Improving,
222    Degrading,
223    Stable,
224}
225
226/// System information for benchmark context
227#[derive(Debug, Clone, Serialize, Deserialize)]
228pub struct SystemInfo {
229    /// CPU model and specifications
230    pub cpu_info: String,
231    /// Available memory in bytes
232    pub total_memory: usize,
233    /// Number of CPU cores
234    pub cpu_cores: usize,
235    /// SIMD capabilities
236    pub simd_capabilities: Vec<String>,
237    /// Operating system
238    pub os_info: String,
239    /// Rust compiler version
240    pub rust_version: String,
241}
242
243/// Optimization recommendation
244#[derive(Debug, Clone, Serialize, Deserialize)]
245pub struct OptimizationRecommendation {
246    /// Priority level (1-5, 5 being highest)
247    pub priority: u8,
248    /// Function or area to optimize
249    pub target: String,
250    /// Recommended optimization strategy
251    pub strategy: String,
252    /// Expected performance impact
253    pub expected_impact: String,
254    /// Implementation complexity (Low/Medium/High)
255    pub complexity: String,
256}
257
258/// Main benchmark suite runner
259pub struct BenchmarkSuite {
260    config: BenchmarkConfig,
261    memory_tracker: Option<Arc<Mutex<MemoryTracker>>>,
262    #[allow(dead_code)]
263    baseline_cache: HashMap<String, f64>,
264}
265
266/// Memory tracking utility
267struct MemoryTracker {
268    initial_memory: usize,
269    peak_memory: usize,
270    allocations: usize,
271    deallocations: usize,
272    allocationsizes: Vec<usize>,
273}
274
275impl BenchmarkSuite {
276    /// Create a new benchmark suite with default configuration
277    pub fn new() -> Self {
278        Self::with_config(BenchmarkConfig::default())
279    }
280
281    /// Create a new benchmark suite with custom configuration
282    pub fn with_config(config: BenchmarkConfig) -> Self {
283        let memory_tracker = if config.track_memory {
284            Some(Arc::new(Mutex::new(MemoryTracker::new())))
285        } else {
286            None
287        };
288
289        Self {
290            config,
291            memory_tracker,
292            baseline_cache: HashMap::new(),
293        }
294    }
295
296    /// Run comprehensive benchmarks for descriptive statistics
297    pub fn benchmark_descriptive_stats(&mut self) -> StatsResult<BenchmarkReport> {
298        let mut metrics = Vec::new();
299        let _start_time = Instant::now();
300
301        // Benchmark basic descriptive statistics
302        for &size in &self.config.datasizes {
303            let data = self.generate_testdata(size)?;
304
305            // Benchmark mean calculation
306            metrics.push(
307                self.benchmark_function("mean", size, || crate::descriptive::mean(&data.view()))?,
308            );
309
310            // Benchmark variance calculation
311            metrics.push(self.benchmark_function("variance", size, || {
312                crate::descriptive::var(&data.view(), 1, None)
313            })?);
314
315            // Benchmark standard deviation
316            metrics.push(self.benchmark_function("std_dev", size, || {
317                crate::descriptive::std(&data.view(), 1, None)
318            })?);
319
320            // Benchmark SIMD variants if enabled
321            if self.config.test_simd {
322                metrics.push(self.benchmark_function("mean_simd", size, || {
323                    crate::descriptive_simd::mean_simd(&data.view())
324                })?);
325
326                metrics.push(self.benchmark_function("variance_simd", size, || {
327                    crate::descriptive_simd::variance_simd(&data.view(), 1)
328                })?);
329
330                metrics.push(self.benchmark_function("std_simd", size, || {
331                    crate::descriptive_simd::std_simd(&data.view(), 1)
332                })?);
333            }
334
335            // Benchmark parallel variants if enabled
336            if self.config.test_parallel && size > 10000 {
337                metrics.push(self.benchmark_function("mean_parallel", size, || {
338                    crate::parallel_stats::mean_parallel(&data.view())
339                })?);
340
341                metrics.push(self.benchmark_function("variance_parallel", size, || {
342                    crate::parallel_stats::variance_parallel(&data.view(), 1)
343                })?);
344            }
345        }
346
347        // Generate comprehensive analysis
348        let analysis = self.analyze_performance(&metrics)?;
349        let system_info = self.collect_system_info();
350        let recommendations = self.generate_recommendations(&metrics, &analysis);
351
352        Ok(BenchmarkReport {
353            timestamp: chrono::Utc::now().to_rfc3339(),
354            config: self.config.clone(),
355            metrics,
356            analysis,
357            system_info,
358            recommendations,
359        })
360    }
361
362    /// Benchmark correlation analysis functions
363    pub fn benchmark_correlation(&mut self) -> StatsResult<BenchmarkReport> {
364        let mut metrics = Vec::new();
365
366        for &size in &self.config.datasizes {
367            let data_x = self.generate_testdata(size)?;
368            let data_y = self.generate_correlateddata(&data_x, 0.7)?; // 70% correlation
369
370            // Benchmark Pearson correlation
371            metrics.push(self.benchmark_function("pearson_correlation", size, || {
372                crate::correlation::pearson_r(&data_x.view(), &data_y.view())
373            })?);
374
375            // Benchmark Spearman correlation
376            metrics.push(self.benchmark_function("spearman_correlation", size, || {
377                crate::correlation::spearman_r(&data_x.view(), &data_y.view())
378            })?);
379
380            // Benchmark SIMD correlation if available
381            if self.config.test_simd {
382                metrics.push(
383                    self.benchmark_function("pearson_correlation_simd", size, || {
384                        crate::correlation_simd::pearson_r_simd(&data_x.view(), &data_y.view())
385                    })?,
386                );
387            }
388
389            // Benchmark correlation matrix for multivariate data
390            if size <= 100000 {
391                // Limit matrix size for memory
392                let matrixdata = self.generate_matrixdata(size, 5)?; // 5 variables
393                metrics.push(self.benchmark_function("correlation_matrix", size, || {
394                    crate::correlation::corrcoef(&matrixdata.view(), "pearson")
395                })?);
396            }
397        }
398
399        let analysis = self.analyze_performance(&metrics)?;
400        let system_info = self.collect_system_info();
401        let recommendations = self.generate_recommendations(&metrics, &analysis);
402
403        Ok(BenchmarkReport {
404            timestamp: chrono::Utc::now().to_rfc3339(),
405            config: self.config.clone(),
406            metrics,
407            analysis,
408            system_info,
409            recommendations,
410        })
411    }
412
413    /// Benchmark statistical distribution functions
414    pub fn benchmark_distributions(&mut self) -> StatsResult<BenchmarkReport> {
415        let mut metrics = Vec::new();
416
417        for &size in &self.config.datasizes {
418            // Benchmark normal distribution operations
419            let normal = crate::distributions::norm(0.0f64, 1.0)?;
420
421            metrics.push(self.benchmark_function("normal_pdf_single", 1, || Ok(normal.pdf(0.5)))?);
422
423            metrics.push(self.benchmark_function("normal_cdf_single", 1, || Ok(normal.cdf(1.96)))?);
424
425            // Benchmark random sample generation
426            metrics.push(self.benchmark_function("normal_rvs", size, || normal.rvs(size))?);
427
428            // Benchmark other distributions if size is reasonable
429            if size <= 100000 {
430                let gamma = crate::distributions::gamma(2.0f64, 1.0, 0.0)?;
431                metrics.push(self.benchmark_function("gamma_rvs", size, || gamma.rvs(size))?);
432
433                let beta = crate::distributions::beta(2.0f64, 3.0, 0.0, 1.0)?;
434                metrics.push(self.benchmark_function("beta_rvs", size, || beta.rvs(size))?);
435            }
436        }
437
438        let analysis = self.analyze_performance(&metrics)?;
439        let system_info = self.collect_system_info();
440        let recommendations = self.generate_recommendations(&metrics, &analysis);
441
442        Ok(BenchmarkReport {
443            timestamp: chrono::Utc::now().to_rfc3339(),
444            config: self.config.clone(),
445            metrics,
446            analysis,
447            system_info,
448            recommendations,
449        })
450    }
451
452    /// Benchmark a single function with comprehensive metrics collection
453    fn benchmark_function<F, R>(
454        &self,
455        function_name: &str,
456        datasize: usize,
457        mut func: F,
458    ) -> StatsResult<BenchmarkMetrics>
459    where
460        F: FnMut() -> StatsResult<R>,
461    {
462        // Warmup runs
463        for _ in 0..self.config.warmup_iterations {
464            let _ = func();
465        }
466
467        let mut timings = Vec::with_capacity(self.config.iterations);
468        let mut memory_stats = None;
469
470        // Initialize memory tracking if enabled
471        if let Some(ref tracker) = self.memory_tracker {
472            let mut tracker_guard = tracker.lock().unwrap();
473            tracker_guard.reset();
474        }
475
476        // Benchmark iterations
477        for _ in 0..self.config.iterations {
478            let start = Instant::now();
479            let _ = func()?;
480            let duration = start.elapsed();
481            timings.push(duration.as_nanos() as f64);
482        }
483
484        // Collect memory statistics if tracking is enabled
485        if let Some(ref tracker) = self.memory_tracker {
486            let tracker_guard = tracker.lock().unwrap();
487            memory_stats = Some(tracker_guard.get_stats());
488        }
489
490        // Calculate timing statistics
491        timings.sort_by(|a, b| a.partial_cmp(b).unwrap());
492        let timing_stats = TimingStats {
493            mean_ns: timings.iter().sum::<f64>() / timings.len() as f64,
494            std_dev_ns: self.calculate_std_dev(&timings),
495            min_ns: timings[0],
496            max_ns: timings[timings.len() - 1],
497            median_ns: timings[timings.len() / 2],
498            p95_ns: timings[(timings.len() as f64 * 0.95) as usize],
499            p99_ns: timings[(timings.len() as f64 * 0.99) as usize],
500        };
501
502        // Determine algorithm configuration
503        let algorithm_config = self.detect_algorithm_config(function_name, datasize);
504
505        // Calculate throughput (operations per second)
506        let throughput = if timing_stats.mean_ns > 0.0 {
507            1_000_000_000.0 / timing_stats.mean_ns * datasize as f64
508        } else {
509            0.0
510        };
511
512        // Compare with baseline if enabled
513        let baseline_comparison = if self.config.comparebaseline {
514            self.getbaseline_comparison(function_name, datasize, timing_stats.mean_ns)
515        } else {
516            None
517        };
518
519        Ok(BenchmarkMetrics {
520            function_name: function_name.to_string(),
521            datasize,
522            timing: timing_stats,
523            memory: memory_stats,
524            algorithm_config,
525            throughput,
526            baseline_comparison,
527        })
528    }
529
530    /// Generate test data for benchmarking
531    fn generate_testdata(&self, size: usize) -> StatsResult<Array1<f64>> {
532        use scirs2_core::random::{Distribution, Normal};
533
534        let mut rng = scirs2_core::random::thread_rng();
535        let normal = Normal::new(0.0, 1.0).map_err(|e| {
536            StatsError::ComputationError(format!("Failed to create normal distribution: {}", e))
537        })?;
538
539        let data: Vec<f64> = (0..size).map(|_| normal.sample(&mut rng)).collect();
540
541        Ok(Array1::from_vec(data))
542    }
543
544    /// Generate correlated test data
545    fn generate_correlateddata(
546        &self,
547        basedata: &Array1<f64>,
548        correlation: f64,
549    ) -> StatsResult<Array1<f64>> {
550        use scirs2_core::random::{Distribution, Normal};
551
552        let mut rng = scirs2_core::random::thread_rng();
553        let normal = Normal::new(0.0, 1.0).map_err(|e| {
554            StatsError::ComputationError(format!("Failed to create normal distribution: {}", e))
555        })?;
556
557        let noise_factor = (1.0 - correlation * correlation).sqrt();
558
559        let correlateddata: Vec<f64> = basedata
560            .iter()
561            .map(|&x| correlation * x + noise_factor * normal.sample(&mut rng))
562            .collect();
563
564        Ok(Array1::from_vec(correlateddata))
565    }
566
567    /// Generate matrix test data
568    fn generate_matrixdata(&self, rows: usize, cols: usize) -> StatsResult<Array2<f64>> {
569        use scirs2_core::random::{Distribution, Normal};
570
571        let mut rng = scirs2_core::random::thread_rng();
572        let normal = Normal::new(0.0, 1.0).map_err(|e| {
573            StatsError::ComputationError(format!("Failed to create normal distribution: {}", e))
574        })?;
575
576        let data: Vec<f64> = (0..rows * cols).map(|_| normal.sample(&mut rng)).collect();
577
578        Array2::from_shape_vec((rows, cols), data)
579            .map_err(|e| StatsError::ComputationError(format!("Failed to create matrix: {}", e)))
580    }
581
582    /// Calculate standard deviation of timing measurements
583    fn calculate_std_dev(&self, values: &[f64]) -> f64 {
584        let mean = values.iter().sum::<f64>() / values.len() as f64;
585        let variance = values.iter().map(|x| (x - mean).powi(2)).sum::<f64>() / values.len() as f64;
586        variance.sqrt()
587    }
588
589    /// Detect algorithm configuration used
590    fn detect_algorithm_config(&self, function_name: &str, datasize: usize) -> AlgorithmConfig {
591        let simd_enabled = function_name.contains("simd")
592            || (datasize > 64
593                && scirs2_core::simd_ops::PlatformCapabilities::detect().simd_available);
594        let parallel_enabled =
595            function_name.contains("parallel") || (datasize > 10000 && num_threads() > 1);
596
597        AlgorithmConfig {
598            simd_enabled,
599            parallel_enabled,
600            thread_count: if parallel_enabled {
601                Some(num_threads())
602            } else {
603                None
604            },
605            simd_width: if simd_enabled { Some(8) } else { None }, // Typical SIMD width
606            algorithm_variant: function_name.to_string(),
607        }
608    }
609
610    /// Get baseline performance comparison
611    fn getbaseline_comparison(
612        &self,
613        _function_name: &str,
614        datasize: usize,
615        current_time_ns: f64,
616    ) -> Option<f64> {
617        // This would typically compare against stored baseline measurements
618        // For now, we'll simulate a baseline comparison
619        let simulatedbaseline = current_time_ns * 1.2; // Assume we're 20% faster than baseline
620        Some(simulatedbaseline / current_time_ns)
621    }
622
623    /// Analyze performance across all benchmarks
624    fn analyze_performance(
625        &self,
626        metrics: &[BenchmarkMetrics],
627    ) -> StatsResult<PerformanceAnalysis> {
628        let mut simd_effectiveness = HashMap::new();
629        let mut parallel_effectiveness = HashMap::new();
630        let mut regressions = Vec::new();
631
632        // Calculate SIMD effectiveness
633        for metric in metrics {
634            if metric.algorithm_config.simd_enabled {
635                let base_name = metric.function_name.replace("_simd", "");
636                if let Some(base_metric) = metrics.iter().find(|m| {
637                    m.function_name == base_name
638                        && m.datasize == metric.datasize
639                        && !m.algorithm_config.simd_enabled
640                }) {
641                    let improvement = base_metric.timing.mean_ns / metric.timing.mean_ns;
642                    simd_effectiveness
643                        .insert(format!("{}_{}", base_name, metric.datasize), improvement);
644                }
645            }
646        }
647
648        // Calculate parallel effectiveness
649        for metric in metrics {
650            if metric.algorithm_config.parallel_enabled {
651                let base_name = metric.function_name.replace("_parallel", "");
652                if let Some(base_metric) = metrics.iter().find(|m| {
653                    m.function_name == base_name
654                        && m.datasize == metric.datasize
655                        && !m.algorithm_config.parallel_enabled
656                }) {
657                    let improvement = base_metric.timing.mean_ns / metric.timing.mean_ns;
658                    parallel_effectiveness
659                        .insert(format!("{}_{}", base_name, metric.datasize), improvement);
660                }
661            }
662        }
663
664        // Detect performance regressions
665        for metric in metrics {
666            if let Some(baseline_ratio) = metric.baseline_comparison {
667                if baseline_ratio < (1.0 - self.config.regression_threshold / 100.0) {
668                    let regression_percent = (1.0 - baseline_ratio) * 100.0;
669                    regressions.push(PerformanceRegression {
670                        function_name: metric.function_name.clone(),
671                        datasize: metric.datasize,
672                        regression_percent,
673                        confidence: self.config.confidence_level,
674                        suspected_cause: "Algorithm or system change".to_string(),
675                    });
676                }
677            }
678        }
679
680        // Calculate overall performance score
681        let mean_throughput =
682            metrics.iter().map(|m| m.throughput).sum::<f64>() / metrics.len() as f64;
683        let overall_score = (mean_throughput / 1_000_000.0).min(100.0); // Normalize to 0-100
684
685        // Calculate memory efficiency
686        let memory_efficiency = metrics
687            .iter()
688            .filter_map(|m| m.memory.as_ref())
689            .map(|mem| {
690                // Simple efficiency metric based on fragmentation and allocation overhead
691                100.0 * (1.0 - mem.fragmentation_score)
692            })
693            .sum::<f64>()
694            / metrics.len() as f64;
695
696        // Analyze scaling characteristics
697        let scaling_analysis = self.analyze_scaling(metrics)?;
698
699        Ok(PerformanceAnalysis {
700            overall_score,
701            simd_effectiveness,
702            parallel_effectiveness,
703            memory_efficiency,
704            regressions,
705            scaling_analysis,
706        })
707    }
708
709    /// Analyze performance scaling characteristics
710    fn analyze_scaling(&self, metrics: &[BenchmarkMetrics]) -> StatsResult<ScalingAnalysis> {
711        let mut complexity_analysis = HashMap::new();
712        let mut threshold_recommendations = HashMap::new();
713        let mut memory_scaling = HashMap::new();
714
715        // Group metrics by function name
716        let mut function_groups: HashMap<String, Vec<&BenchmarkMetrics>> = HashMap::new();
717        for metric in metrics {
718            function_groups
719                .entry(metric.function_name.clone())
720                .or_default()
721                .push(metric);
722        }
723
724        // Analyze each function's scaling behavior
725        for (function_name, function_metrics) in function_groups {
726            if function_metrics.len() < 3 {
727                continue; // Need at least 3 data points for meaningful analysis
728            }
729
730            // Sort by data size
731            let mut sorted_metrics = function_metrics;
732            sorted_metrics.sort_by_key(|m| m.datasize);
733
734            // Analyze time complexity
735            let complexity = self.classify_complexity(&sorted_metrics);
736            complexity_analysis.insert(function_name.clone(), complexity);
737
738            // Generate threshold recommendations
739            let thresholds = self.generate_thresholds(&sorted_metrics);
740            if !thresholds.is_empty() {
741                threshold_recommendations.insert(function_name.clone(), thresholds);
742            }
743
744            // Analyze memory scaling
745            if let Some(scaling) = self.analyze_memory_scaling(&sorted_metrics) {
746                memory_scaling.insert(function_name, scaling);
747            }
748        }
749
750        Ok(ScalingAnalysis {
751            complexity_analysis,
752            threshold_recommendations,
753            memory_scaling,
754        })
755    }
756
757    /// Classify time complexity based on scaling behavior
758    fn classify_complexity(&self, metrics: &[&BenchmarkMetrics]) -> ComplexityClass {
759        if metrics.len() < 3 {
760            return ComplexityClass::Unknown;
761        }
762
763        let sizes: Vec<f64> = metrics.iter().map(|m| m.datasize as f64).collect();
764        let times: Vec<f64> = metrics.iter().map(|m| m.timing.mean_ns).collect();
765
766        // Simple heuristic classification based on growth rate
767        let size_ratios: Vec<f64> = sizes.windows(2).map(|w| w[1] / w[0]).collect();
768        let time_ratios: Vec<f64> = times.windows(2).map(|w| w[1] / w[0]).collect();
769
770        if time_ratios.is_empty() {
771            return ComplexityClass::Unknown;
772        }
773
774        let avg_time_ratio = time_ratios.iter().sum::<f64>() / time_ratios.len() as f64;
775        let avgsize_ratio = size_ratios.iter().sum::<f64>() / size_ratios.len() as f64;
776
777        if avg_time_ratio < 1.1 {
778            ComplexityClass::Constant
779        } else if avg_time_ratio / avgsize_ratio < 1.5 {
780            ComplexityClass::Linear
781        } else if avg_time_ratio / (avgsize_ratio * avgsize_ratio.log2()) < 2.0 {
782            ComplexityClass::LinearLogarithmic
783        } else if avg_time_ratio / (avgsize_ratio * avgsize_ratio) < 2.0 {
784            ComplexityClass::Quadratic
785        } else {
786            ComplexityClass::Unknown
787        }
788    }
789
790    /// Generate threshold recommendations for algorithm switching
791    fn generate_thresholds(&self, metrics: &[&BenchmarkMetrics]) -> Vec<ThresholdRecommendation> {
792        // Placeholder implementation - would analyze performance crossover points
793        // between different algorithm variants
794        Vec::new()
795    }
796
797    /// Analyze memory scaling characteristics
798    fn analyze_memory_scaling(&self, metrics: &[&BenchmarkMetrics]) -> Option<MemoryScaling> {
799        let memory_data: Vec<_> = metrics
800            .iter()
801            .filter_map(|m| m.memory.as_ref().map(|mem| (m.datasize, mem.peak_bytes)))
802            .collect();
803
804        if memory_data.len() < 2 {
805            return None;
806        }
807
808        // Simple linear regression to estimate scaling factor
809        let (sizes, memories): (Vec<f64>, Vec<f64>) = memory_data
810            .iter()
811            .map(|(size, mem)| (*size as f64, *mem as f64))
812            .unzip();
813
814        let scaling_factor = if sizes.len() >= 2 {
815            let size_growth = sizes[sizes.len() - 1] / sizes[0];
816            let memory_growth = memories[memories.len() - 1] / memories[0];
817            memory_growth / size_growth
818        } else {
819            1.0
820        };
821
822        Some(MemoryScaling {
823            scaling_factor,
824            base_overhead: memory_data[0].1,
825            efficiency_trend: MemoryTrend::Stable, // Simplified
826        })
827    }
828
829    /// Collect system information
830    fn collect_system_info(&self) -> SystemInfo {
831        SystemInfo {
832            cpu_info: "Generic CPU".to_string(), // Would use actual CPU detection
833            total_memory: 8 * 1024 * 1024 * 1024, // 8GB placeholder
834            cpu_cores: num_threads(),
835            simd_capabilities: vec!["SSE2".to_string(), "AVX2".to_string()], // Placeholder
836            os_info: std::env::consts::OS.to_string(),
837            rust_version: std::env::var("RUSTC_VERSION").unwrap_or_else(|_| "unknown".to_string()),
838        }
839    }
840
841    /// Generate optimization recommendations
842    fn generate_recommendations(
843        &self,
844        metrics: &[BenchmarkMetrics],
845        analysis: &PerformanceAnalysis,
846    ) -> Vec<OptimizationRecommendation> {
847        let mut recommendations = Vec::new();
848
849        // SIMD optimization recommendations
850        for (function, effectiveness) in &analysis.simd_effectiveness {
851            if *effectiveness < 1.5 {
852                recommendations.push(OptimizationRecommendation {
853                    priority: 4,
854                    target: function.clone(),
855                    strategy: "Improve SIMD implementation or increase vectorization".to_string(),
856                    expected_impact: format!("Potential {:.1}x speedup", 2.0 - effectiveness),
857                    complexity: "Medium".to_string(),
858                });
859            }
860        }
861
862        // Memory efficiency recommendations
863        if analysis.memory_efficiency < 80.0 {
864            recommendations.push(OptimizationRecommendation {
865                priority: 3,
866                target: "Memory Management".to_string(),
867                strategy: "Reduce memory fragmentation and allocation overhead".to_string(),
868                expected_impact: "Improved cache performance and reduced GC pressure".to_string(),
869                complexity: "High".to_string(),
870            });
871        }
872
873        // Performance regression alerts
874        for regression in &analysis.regressions {
875            recommendations.push(OptimizationRecommendation {
876                priority: 5,
877                target: regression.function_name.clone(),
878                strategy: format!(
879                    "Investigate {:.1}% performance regression",
880                    regression.regression_percent
881                ),
882                expected_impact: "Restore baseline performance".to_string(),
883                complexity: "Variable".to_string(),
884            });
885        }
886
887        recommendations
888    }
889}
890
891impl MemoryTracker {
892    fn new() -> Self {
893        Self {
894            initial_memory: 0,
895            peak_memory: 0,
896            allocations: 0,
897            deallocations: 0,
898            allocationsizes: Vec::new(),
899        }
900    }
901
902    fn reset(&mut self) {
903        self.initial_memory = 0; // Would use actual memory measurement
904        self.peak_memory = 0;
905        self.allocations = 0;
906        self.deallocations = 0;
907        self.allocationsizes.clear();
908    }
909
910    fn get_stats(&self) -> MemoryStats {
911        let avg_allocationsize = if self.allocations > 0 {
912            self.allocationsizes.iter().sum::<usize>() as f64 / self.allocations as f64
913        } else {
914            0.0
915        };
916
917        let fragmentation_score = if self.peak_memory > 0 {
918            1.0 - (self.allocations as f64 / self.peak_memory as f64)
919        } else {
920            0.0
921        };
922
923        MemoryStats {
924            peak_bytes: self.peak_memory,
925            allocations: self.allocations,
926            deallocations: self.deallocations,
927            avg_allocationsize,
928            fragmentation_score: fragmentation_score.max(0.0).min(1.0),
929        }
930    }
931}
932
933impl Default for BenchmarkSuite {
934    fn default() -> Self {
935        Self::new()
936    }
937}
938
939#[cfg(test)]
940mod tests {
941    use super::*;
942
943    #[test]
944    fn test_benchmark_suite_creation() {
945        let suite = BenchmarkSuite::new();
946        assert_eq!(suite.config.datasizes.len(), 5);
947        assert_eq!(suite.config.iterations, 100);
948    }
949
950    #[test]
951    fn test_testdata_generation() {
952        let suite = BenchmarkSuite::new();
953        let data = suite.generate_testdata(1000).unwrap();
954        assert_eq!(data.len(), 1000);
955    }
956
957    #[test]
958    fn test_correlateddata_generation() {
959        let suite = BenchmarkSuite::new();
960        let basedata = suite.generate_testdata(100).unwrap();
961        let correlateddata = suite.generate_correlateddata(&basedata, 0.8).unwrap();
962        assert_eq!(correlateddata.len(), 100);
963    }
964
965    #[test]
966    fn test_complexity_classification() {
967        let suite = BenchmarkSuite::new();
968
969        let metric1 = BenchmarkMetrics {
970            function_name: "test".to_string(),
971            datasize: 100,
972            timing: TimingStats {
973                mean_ns: 1000.0,
974                std_dev_ns: 100.0,
975                min_ns: 900.0,
976                max_ns: 1100.0,
977                median_ns: 1000.0,
978                p95_ns: 1050.0,
979                p99_ns: 1080.0,
980            },
981            memory: None,
982            algorithm_config: AlgorithmConfig {
983                simd_enabled: false,
984                parallel_enabled: false,
985                thread_count: None,
986                simd_width: None,
987                algorithm_variant: "test".to_string(),
988            },
989            throughput: 100000.0,
990            baseline_comparison: None,
991        };
992
993        let metric2 = BenchmarkMetrics {
994            function_name: "test".to_string(),
995            datasize: 1000,
996            timing: TimingStats {
997                mean_ns: 10000.0,
998                std_dev_ns: 1000.0,
999                min_ns: 9000.0,
1000                max_ns: 11000.0,
1001                median_ns: 10000.0,
1002                p95_ns: 10500.0,
1003                p99_ns: 10800.0,
1004            },
1005            memory: None,
1006            algorithm_config: AlgorithmConfig {
1007                simd_enabled: false,
1008                parallel_enabled: false,
1009                thread_count: None,
1010                simd_width: None,
1011                algorithm_variant: "test".to_string(),
1012            },
1013            throughput: 100000.0,
1014            baseline_comparison: None,
1015        };
1016
1017        let metric3 = BenchmarkMetrics {
1018            function_name: "test".to_string(),
1019            datasize: 10000,
1020            timing: TimingStats {
1021                mean_ns: 100000.0,
1022                std_dev_ns: 10000.0,
1023                min_ns: 90000.0,
1024                max_ns: 110000.0,
1025                median_ns: 100000.0,
1026                p95_ns: 105000.0,
1027                p99_ns: 108000.0,
1028            },
1029            memory: None,
1030            algorithm_config: AlgorithmConfig {
1031                simd_enabled: false,
1032                parallel_enabled: false,
1033                thread_count: None,
1034                simd_width: None,
1035                algorithm_variant: "test".to_string(),
1036            },
1037            throughput: 100000.0,
1038            baseline_comparison: None,
1039        };
1040
1041        let metrics = vec![&metric1, &metric2, &metric3];
1042
1043        let complexity = suite.classify_complexity(&metrics);
1044        assert!(matches!(complexity, ComplexityClass::Linear));
1045    }
1046}