scirs2_stats/
adaptive_simd_optimization.rs

1//! Adaptive SIMD optimization framework for scirs2-stats v1.0.0
2//!
3//! This module provides an intelligent SIMD optimization system that automatically
4//! selects the best SIMD strategy based on data characteristics, hardware capabilities,
5//! and performance requirements. It builds on the existing SIMD infrastructure
6//! to provide optimal performance across different scenarios.
7
8use crate::error::StatsResult;
9use scirs2_core::ndarray::{ArrayView1, ArrayView2};
10use scirs2_core::numeric::{Float, NumCast};
11use scirs2_core::simd_ops::SimdUnifiedOps;
12use serde::{Deserialize, Serialize};
13use std::collections::HashMap;
14use std::sync::{Arc, Mutex};
15use std::time::{Duration, Instant};
16
17/// Configuration for adaptive SIMD optimization
18#[derive(Debug, Clone, Serialize, Deserialize)]
19pub struct AdaptiveSimdConfig {
20    /// Enable automatic hardware detection
21    pub auto_detect_hardware: bool,
22    /// Enable performance profiling for optimization selection
23    pub enable_profiling: bool,
24    /// Minimum data size for SIMD optimization
25    pub min_simdsize: usize,
26    /// Performance cache size
27    pub cachesize: usize,
28    /// Benchmarking sample size for algorithm selection
29    pub benchmark_samples: usize,
30    /// Enable hybrid CPU-GPU processing
31    pub enable_hybrid_processing: bool,
32    /// SIMD alignment requirements
33    pub alignment_requirements: SimdAlignment,
34    /// Optimization level
35    pub optimization_level: OptimizationLevel,
36    /// Enable adaptive vectorization
37    pub adaptive_vectorization: bool,
38    /// Memory bandwidth optimization
39    pub memory_bandwidth_optimization: bool,
40}
41
42impl Default for AdaptiveSimdConfig {
43    fn default() -> Self {
44        Self {
45            auto_detect_hardware: true,
46            enable_profiling: true,
47            min_simdsize: 64,
48            cachesize: 1000,
49            benchmark_samples: 10,
50            enable_hybrid_processing: false,
51            alignment_requirements: SimdAlignment::Optimal,
52            optimization_level: OptimizationLevel::Aggressive,
53            adaptive_vectorization: true,
54            memory_bandwidth_optimization: true,
55        }
56    }
57}
58
59/// SIMD alignment strategies
60#[derive(Debug, Clone, Serialize, Deserialize)]
61pub enum SimdAlignment {
62    /// No special alignment requirements
63    None,
64    /// Basic alignment (16-byte)
65    Basic,
66    /// Optimal alignment for current hardware
67    Optimal,
68    /// Custom alignment requirement
69    Custom(usize),
70}
71
72/// Optimization level settings
73#[derive(Debug, Clone, Serialize, Deserialize)]
74pub enum OptimizationLevel {
75    /// Conservative optimization (focus on correctness)
76    Conservative,
77    /// Balanced optimization (good performance with safety)
78    Balanced,
79    /// Aggressive optimization (maximum performance)
80    Aggressive,
81    /// Extreme optimization (experimental features)
82    Extreme,
83}
84
85/// Hardware capability detection results
86#[derive(Debug, Clone, Serialize, Deserialize)]
87pub struct HardwareCapabilities {
88    /// Available SIMD instruction sets
89    pub simd_instructions: Vec<SimdInstructionSet>,
90    /// Vector register width
91    pub vector_width: usize,
92    /// Number of SIMD execution units
93    pub simd_units: usize,
94    /// Cache hierarchy information
95    pub cache_info: CacheHierarchy,
96    /// Memory bandwidth (GB/s)
97    pub memory_bandwidth: f64,
98    /// CPU architecture
99    pub cpu_architecture: CpuArchitecture,
100    /// GPU availability
101    pub gpu_available: bool,
102    /// GPU compute capabilities
103    pub gpu_capabilities: Option<GpuCapabilities>,
104}
105
106/// SIMD instruction sets
107#[derive(Debug, Clone, PartialEq, Eq, Serialize, Deserialize)]
108pub enum SimdInstructionSet {
109    /// SSE (128-bit)
110    SSE,
111    /// SSE2 (128-bit)
112    SSE2,
113    /// SSE3 (128-bit)
114    SSE3,
115    /// SSE4.1 (128-bit)
116    SSE41,
117    /// SSE4.2 (128-bit)
118    SSE42,
119    /// AVX (256-bit)
120    AVX,
121    /// AVX2 (256-bit)
122    AVX2,
123    /// AVX-512 (512-bit)
124    AVX512,
125    /// ARM NEON
126    NEON,
127    /// ARM SVE
128    SVE,
129}
130
131/// Cache hierarchy information
132#[derive(Debug, Clone, Serialize, Deserialize)]
133pub struct CacheHierarchy {
134    /// L1 cache size (bytes)
135    pub l1size: usize,
136    /// L2 cache size (bytes)
137    pub l2size: usize,
138    /// L3 cache size (bytes)
139    pub l3size: usize,
140    /// Cache line size (bytes)
141    pub cache_linesize: usize,
142    /// Cache associativity
143    pub associativity: Vec<usize>,
144}
145
146/// CPU architecture types
147#[derive(Debug, Clone, Serialize, Deserialize)]
148pub enum CpuArchitecture {
149    /// x86 architecture
150    X86,
151    /// x86-64 architecture
152    X86_64,
153    /// ARM architecture
154    ARM,
155    /// ARM64 architecture
156    ARM64,
157    /// RISC-V architecture
158    RISCV,
159    /// Other architecture
160    Other(String),
161}
162
163/// GPU capabilities
164#[derive(Debug, Clone, Serialize, Deserialize)]
165pub struct GpuCapabilities {
166    /// GPU compute units
167    pub compute_units: usize,
168    /// GPU memory (bytes)
169    pub gpu_memory: usize,
170    /// GPU memory bandwidth (GB/s)
171    pub gpu_bandwidth: f64,
172    /// Supported compute APIs
173    pub compute_apis: Vec<String>,
174}
175
176/// SIMD optimization strategy
177#[derive(Debug, Clone, Serialize, Deserialize)]
178pub struct SimdStrategy {
179    /// Strategy name
180    pub name: String,
181    /// Target instruction set
182    pub instruction_set: SimdInstructionSet,
183    /// Vector width to use
184    pub vector_width: usize,
185    /// Memory access pattern
186    pub memory_pattern: MemoryAccessPattern,
187    /// Alignment strategy
188    pub alignment: AlignmentStrategy,
189    /// Unrolling factor
190    pub unroll_factor: usize,
191    /// Prefetch strategy
192    pub prefetch_strategy: PrefetchStrategy,
193    /// Expected performance gain
194    pub expected_speedup: f64,
195}
196
197/// Memory access patterns
198#[derive(Debug, Clone, Serialize, Deserialize)]
199pub enum MemoryAccessPattern {
200    /// Sequential access
201    Sequential,
202    /// Strided access
203    Strided { stride: usize },
204    /// Random access
205    Random,
206    /// Blocked access
207    Blocked { blocksize: usize },
208    /// Tiled access
209    Tiled { tilesize: (usize, usize) },
210}
211
212/// Alignment strategies
213#[derive(Debug, Clone, Serialize, Deserialize)]
214pub enum AlignmentStrategy {
215    /// Force alignment with padding
216    ForceAlign,
217    /// Use unaligned loads
218    UnalignedLoads,
219    /// Dynamic alignment checking
220    DynamicAlign,
221    /// Copy to aligned buffer
222    CopyAlign,
223}
224
225/// Prefetch strategies
226#[derive(Debug, Clone, Serialize, Deserialize)]
227pub enum PrefetchStrategy {
228    /// No prefetching
229    None,
230    /// Software prefetching
231    Software { distance: usize },
232    /// Hardware prefetching hints
233    Hardware,
234    /// Adaptive prefetching
235    Adaptive,
236}
237
238/// Performance metrics for SIMD operations
239#[derive(Debug, Clone, Serialize, Deserialize)]
240pub struct SimdPerformanceMetrics {
241    /// Execution time
242    pub execution_time: Duration,
243    /// Throughput (elements/second)
244    pub throughput: f64,
245    /// Memory bandwidth utilization
246    pub bandwidth_utilization: f64,
247    /// Cache hit rate
248    pub cache_hit_rate: f64,
249    /// SIMD utilization efficiency
250    pub simd_efficiency: f64,
251    /// Energy efficiency (operations/joule)
252    pub energy_efficiency: Option<f64>,
253}
254
255/// SIMD optimization result
256#[derive(Debug, Clone, Serialize, Deserialize)]
257pub struct SimdOptimizationResult<T> {
258    /// Computed result
259    pub result: T,
260    /// Strategy used
261    pub strategy_used: SimdStrategy,
262    /// Performance metrics
263    pub metrics: SimdPerformanceMetrics,
264    /// Success status
265    pub success: bool,
266    /// Fallback information
267    pub fallback_info: Option<FallbackInfo>,
268}
269
270/// Fallback information
271#[derive(Debug, Clone, Serialize, Deserialize)]
272pub struct FallbackInfo {
273    /// Reason for fallback
274    pub reason: String,
275    /// Fallback strategy used
276    pub fallback_strategy: String,
277    /// Performance impact
278    pub performance_impact: f64,
279}
280
281/// Data characteristics for optimization selection
282#[derive(Debug, Clone, Serialize, Deserialize)]
283pub struct DataCharacteristics {
284    /// Data size
285    pub size: usize,
286    /// Data type size (bytes)
287    pub elementsize: usize,
288    /// Memory alignment
289    pub alignment: usize,
290    /// Access pattern
291    pub access_pattern: MemoryAccessPattern,
292    /// Data locality score (0.0-1.0)
293    pub locality_score: f64,
294    /// Sparsity level (0.0-1.0)
295    pub sparsity: Option<f64>,
296    /// Value distribution characteristics
297    pub value_distribution: ValueDistribution,
298}
299
300/// Value distribution characteristics
301#[derive(Debug, Clone, Serialize, Deserialize)]
302pub struct ValueDistribution {
303    /// Range of values
304    pub value_range: (f64, f64),
305    /// Presence of special values (NaN, infinity)
306    pub has_special_values: bool,
307    /// Clustering characteristics
308    pub clustering: ClusteringInfo,
309}
310
311/// Clustering information for values
312#[derive(Debug, Clone, Serialize, Deserialize)]
313pub struct ClusteringInfo {
314    /// Number of distinct clusters
315    pub cluster_count: usize,
316    /// Cluster density
317    pub density: f64,
318    /// Separation between clusters
319    pub separation: f64,
320}
321
322/// Main adaptive SIMD optimization system
323pub struct AdaptiveSimdOptimizer {
324    config: AdaptiveSimdConfig,
325    hardware_capabilities: HardwareCapabilities,
326    strategy_cache: Arc<Mutex<HashMap<String, SimdStrategy>>>,
327    performance_cache: Arc<Mutex<HashMap<String, SimdPerformanceMetrics>>>,
328    benchmark_results: Arc<Mutex<HashMap<String, Vec<SimdPerformanceMetrics>>>>,
329}
330
331impl AdaptiveSimdOptimizer {
332    /// Create new adaptive SIMD optimizer
333    pub fn new(config: AdaptiveSimdConfig) -> StatsResult<Self> {
334        let hardware_capabilities = Self::detect_hardware_capabilities()?;
335
336        Ok(Self {
337            config,
338            hardware_capabilities,
339            strategy_cache: Arc::new(Mutex::new(HashMap::new())),
340            performance_cache: Arc::new(Mutex::new(HashMap::new())),
341            benchmark_results: Arc::new(Mutex::new(HashMap::new())),
342        })
343    }
344
345    /// Create with default configuration
346    pub fn default() -> StatsResult<Self> {
347        Self::new(AdaptiveSimdConfig::default())
348    }
349
350    /// Optimize vector operation using adaptive SIMD
351    pub fn optimize_vector_operation<F, T>(
352        &self,
353        operation_name: &str,
354        data: ArrayView1<F>,
355        operation: impl Fn(&ArrayView1<F>, &SimdStrategy) -> StatsResult<T> + Send + Sync,
356    ) -> StatsResult<SimdOptimizationResult<T>>
357    where
358        F: Float + NumCast + SimdUnifiedOps + Send + Sync + std::fmt::Display,
359        T: Send + Sync + std::fmt::Display,
360    {
361        let data_characteristics = self.analyzedata_characteristics(&data)?;
362
363        // Get or select optimal strategy
364        let strategy = self.select_optimal_strategy(operation_name, &data_characteristics)?;
365
366        // Execute operation with performance monitoring
367        let start_time = Instant::now();
368        let result = operation(&data, &strategy);
369        let execution_time = start_time.elapsed();
370
371        match result {
372            Ok(value) => {
373                let metrics = self.calculate_performance_metrics(
374                    &data_characteristics,
375                    &strategy,
376                    execution_time,
377                )?;
378
379                // Update performance cache
380                self.update_performance_cache(operation_name, &strategy, &metrics);
381
382                Ok(SimdOptimizationResult {
383                    result: value,
384                    strategy_used: strategy,
385                    metrics,
386                    success: true,
387                    fallback_info: None,
388                })
389            }
390            Err(_e) => {
391                // Try fallback strategy
392                self.try_fallback_strategy(operation_name, data, operation, &strategy)
393            }
394        }
395    }
396
397    /// Optimize matrix operation using adaptive SIMD
398    pub fn optimize_matrix_operation<F, T>(
399        &self,
400        operation_name: &str,
401        data: ArrayView2<F>,
402        operation: impl Fn(&ArrayView2<F>, &SimdStrategy) -> StatsResult<T> + Send + Sync,
403    ) -> StatsResult<SimdOptimizationResult<T>>
404    where
405        F: Float + NumCast + SimdUnifiedOps + Send + Sync + std::fmt::Display,
406        T: Send + Sync + std::fmt::Display,
407    {
408        let data_characteristics = self.analyze_matrix_characteristics(&data)?;
409        let strategy =
410            self.select_optimal_matrix_strategy(operation_name, &data_characteristics)?;
411
412        let start_time = Instant::now();
413        let result = operation(&data, &strategy);
414        let execution_time = start_time.elapsed();
415
416        match result {
417            Ok(value) => {
418                let metrics = self.calculate_matrix_performance_metrics(
419                    &data_characteristics,
420                    &strategy,
421                    execution_time,
422                )?;
423
424                self.update_performance_cache(operation_name, &strategy, &metrics);
425
426                Ok(SimdOptimizationResult {
427                    result: value,
428                    strategy_used: strategy,
429                    metrics,
430                    success: true,
431                    fallback_info: None,
432                })
433            }
434            Err(_e) => {
435                // Implement matrix fallback strategy
436                self.try_matrix_fallback_strategy(operation_name, data, operation, &strategy)
437            }
438        }
439    }
440
441    /// Detect hardware capabilities
442    fn detect_hardware_capabilities() -> StatsResult<HardwareCapabilities> {
443        // Simplified hardware detection - would use proper CPU feature detection
444        let capabilities = HardwareCapabilities {
445            simd_instructions: vec![
446                SimdInstructionSet::SSE2,
447                SimdInstructionSet::AVX,
448                SimdInstructionSet::AVX2,
449            ],
450            vector_width: 256, // AVX2
451            simd_units: 2,
452            cache_info: CacheHierarchy {
453                l1size: 32 * 1024,       // 32KB
454                l2size: 256 * 1024,      // 256KB
455                l3size: 8 * 1024 * 1024, // 8MB
456                cache_linesize: 64,
457                associativity: vec![8, 8, 16],
458            },
459            memory_bandwidth: 50.0, // 50 GB/s
460            cpu_architecture: CpuArchitecture::X86_64,
461            gpu_available: false,
462            gpu_capabilities: None,
463        };
464
465        Ok(capabilities)
466    }
467
468    /// Analyze data characteristics
469    fn analyzedata_characteristics<F>(
470        &self,
471        data: &ArrayView1<F>,
472    ) -> StatsResult<DataCharacteristics>
473    where
474        F: Float + NumCast + std::fmt::Display,
475    {
476        let size = data.len();
477        let elementsize = std::mem::size_of::<F>();
478
479        // Check alignment
480        let alignment = (data.as_ptr() as usize) % 32; // Check 32-byte alignment
481
482        // Analyze value distribution
483        let mut min_val = F::infinity();
484        let mut max_val = F::neg_infinity();
485        let mut has_special = false;
486
487        for &value in data.iter() {
488            if value.is_nan() || value.is_infinite() {
489                has_special = true;
490            } else {
491                if value < min_val {
492                    min_val = value;
493                }
494                if value > max_val {
495                    max_val = value;
496                }
497            }
498        }
499
500        let value_distribution = ValueDistribution {
501            value_range: (
502                min_val.to_f64().unwrap_or(0.0),
503                max_val.to_f64().unwrap_or(0.0),
504            ),
505            has_special_values: has_special,
506            clustering: ClusteringInfo {
507                cluster_count: 1, // Simplified
508                density: 1.0,
509                separation: 0.0,
510            },
511        };
512
513        Ok(DataCharacteristics {
514            size,
515            elementsize,
516            alignment,
517            access_pattern: MemoryAccessPattern::Sequential,
518            locality_score: 1.0, // Assume good locality for contiguous arrays
519            sparsity: None,
520            value_distribution,
521        })
522    }
523
524    /// Analyze matrix characteristics
525    fn analyze_matrix_characteristics<F>(
526        &self,
527        data: &ArrayView2<F>,
528    ) -> StatsResult<DataCharacteristics>
529    where
530        F: Float + NumCast + std::fmt::Display,
531    {
532        let size = data.len();
533        let elementsize = std::mem::size_of::<F>();
534
535        // Check if matrix is C-contiguous or Fortran-contiguous
536        let access_pattern = if data.is_standard_layout() {
537            MemoryAccessPattern::Sequential
538        } else {
539            MemoryAccessPattern::Strided {
540                stride: data.strides()[0] as usize,
541            }
542        };
543
544        // Calculate sparsity
545        let zero_count = data.iter().filter(|&&x| x == F::zero()).count();
546        let sparsity = if size > 0 {
547            Some(zero_count as f64 / size as f64)
548        } else {
549            None
550        };
551
552        Ok(DataCharacteristics {
553            size,
554            elementsize,
555            alignment: (data.as_ptr() as usize) % 32,
556            access_pattern,
557            locality_score: if data.is_standard_layout() { 1.0 } else { 0.5 },
558            sparsity,
559            value_distribution: ValueDistribution {
560                value_range: (0.0, 1.0), // Simplified
561                has_special_values: false,
562                clustering: ClusteringInfo {
563                    cluster_count: 1,
564                    density: 1.0,
565                    separation: 0.0,
566                },
567            },
568        })
569    }
570
571    /// Select optimal SIMD strategy
572    fn select_optimal_strategy(
573        &self,
574        operation_name: &str,
575        characteristics: &DataCharacteristics,
576    ) -> StatsResult<SimdStrategy> {
577        let cache_key = format!(
578            "{}_{}_{}",
579            operation_name, characteristics.size, characteristics.elementsize
580        );
581
582        // Check cache first
583        if let Ok(cache) = self.strategy_cache.lock() {
584            if let Some(strategy) = cache.get(&cache_key) {
585                return Ok(strategy.clone());
586            }
587        }
588
589        // Generate candidate strategies
590        let candidates = self.generate_candidate_strategies(characteristics)?;
591
592        // Select best strategy based on characteristics and hardware
593        let best_strategy = self.evaluate_strategies(&candidates, characteristics)?;
594
595        // Cache the result
596        if let Ok(mut cache) = self.strategy_cache.lock() {
597            cache.insert(cache_key, best_strategy.clone());
598
599            // Maintain cache size
600            if cache.len() > self.config.cachesize {
601                let oldest_key = cache.keys().next().cloned();
602                if let Some(key) = oldest_key {
603                    cache.remove(&key);
604                }
605            }
606        }
607
608        Ok(best_strategy)
609    }
610
611    /// Select optimal matrix strategy
612    fn select_optimal_matrix_strategy(
613        &self,
614        operation_name: &str,
615        characteristics: &DataCharacteristics,
616    ) -> StatsResult<SimdStrategy> {
617        // For matrix operations, consider tiling and blocking strategies
618        let mut strategy = self.select_optimal_strategy(operation_name, characteristics)?;
619
620        // Adjust for matrix-specific optimizations
621        if characteristics.size > 1000000 {
622            // Large matrices
623            strategy.memory_pattern = MemoryAccessPattern::Tiled { tilesize: (64, 64) };
624            strategy.prefetch_strategy = PrefetchStrategy::Software { distance: 8 };
625        } else if matches!(
626            characteristics.access_pattern,
627            MemoryAccessPattern::Strided { .. }
628        ) {
629            strategy.memory_pattern = MemoryAccessPattern::Blocked { blocksize: 256 };
630        }
631
632        Ok(strategy)
633    }
634
635    /// Generate candidate SIMD strategies
636    fn generate_candidate_strategies(
637        &self,
638        characteristics: &DataCharacteristics,
639    ) -> StatsResult<Vec<SimdStrategy>> {
640        let mut candidates = Vec::new();
641
642        // Generate strategies based on available instruction sets
643        for instruction_set in &self.hardware_capabilities.simd_instructions {
644            let vector_width = match instruction_set {
645                SimdInstructionSet::SSE | SimdInstructionSet::SSE2 => 128,
646                SimdInstructionSet::AVX | SimdInstructionSet::AVX2 => 256,
647                SimdInstructionSet::AVX512 => 512,
648                SimdInstructionSet::NEON => 128,
649                _ => 128,
650            };
651
652            // Conservative strategy
653            candidates.push(SimdStrategy {
654                name: format!("{:?}_conservative", instruction_set),
655                instruction_set: instruction_set.clone(),
656                vector_width,
657                memory_pattern: characteristics.access_pattern.clone(),
658                alignment: if characteristics.alignment == 0 {
659                    AlignmentStrategy::ForceAlign
660                } else {
661                    AlignmentStrategy::UnalignedLoads
662                },
663                unroll_factor: 2,
664                prefetch_strategy: PrefetchStrategy::None,
665                expected_speedup: 2.0,
666            });
667
668            // Aggressive strategy
669            if matches!(
670                self.config.optimization_level,
671                OptimizationLevel::Aggressive | OptimizationLevel::Extreme
672            ) {
673                candidates.push(SimdStrategy {
674                    name: format!("{:?}_aggressive", instruction_set),
675                    instruction_set: instruction_set.clone(),
676                    vector_width,
677                    memory_pattern: characteristics.access_pattern.clone(),
678                    alignment: AlignmentStrategy::DynamicAlign,
679                    unroll_factor: 4,
680                    prefetch_strategy: if characteristics.size > 10000 {
681                        PrefetchStrategy::Software { distance: 4 }
682                    } else {
683                        PrefetchStrategy::None
684                    },
685                    expected_speedup: 4.0,
686                });
687            }
688        }
689
690        Ok(candidates)
691    }
692
693    /// Evaluate strategies and select the best one
694    fn evaluate_strategies(
695        &self,
696        candidates: &[SimdStrategy],
697        characteristics: &DataCharacteristics,
698    ) -> StatsResult<SimdStrategy> {
699        let mut best_strategy = candidates[0].clone();
700        let mut best_score = 0.0;
701
702        for strategy in candidates {
703            let score = self.calculate_strategy_score(strategy, characteristics);
704            if score > best_score {
705                best_score = score;
706                best_strategy = strategy.clone();
707            }
708        }
709
710        Ok(best_strategy)
711    }
712
713    /// Calculate strategy score based on characteristics
714    fn calculate_strategy_score(
715        &self,
716        strategy: &SimdStrategy,
717        characteristics: &DataCharacteristics,
718    ) -> f64 {
719        let mut score = strategy.expected_speedup;
720
721        // Adjust score based on data characteristics
722        if characteristics.size < self.config.min_simdsize {
723            score *= 0.5; // Penalty for small data
724        }
725
726        // Bonus for good alignment
727        if characteristics.alignment == 0
728            && matches!(strategy.alignment, AlignmentStrategy::ForceAlign)
729        {
730            score *= 1.2;
731        }
732
733        // Penalty for complex memory patterns
734        match &characteristics.access_pattern {
735            MemoryAccessPattern::Sequential => score *= 1.0,
736            MemoryAccessPattern::Strided { .. } => score *= 0.8,
737            MemoryAccessPattern::Random => score *= 0.5,
738            _ => score *= 0.7,
739        }
740
741        // Hardware compatibility bonus
742        if self
743            .hardware_capabilities
744            .simd_instructions
745            .contains(&strategy.instruction_set)
746        {
747            score *= 1.5;
748        }
749
750        score
751    }
752
753    /// Calculate performance metrics
754    fn calculate_performance_metrics(
755        &self,
756        characteristics: &DataCharacteristics,
757        strategy: &SimdStrategy,
758        execution_time: Duration,
759    ) -> StatsResult<SimdPerformanceMetrics> {
760        let throughput = characteristics.size as f64 / execution_time.as_secs_f64();
761
762        // Estimate bandwidth utilization
763        let bytes_processed = characteristics.size * characteristics.elementsize;
764        let bandwidth_used = bytes_processed as f64 / execution_time.as_secs_f64() / 1e9; // GB/s
765        let bandwidth_utilization = bandwidth_used / self.hardware_capabilities.memory_bandwidth;
766
767        // Estimate SIMD efficiency
768        let theoretical_max = strategy.vector_width / (characteristics.elementsize * 8); // elements per vector
769        let actual_vectors = characteristics.size / theoretical_max;
770        let simd_efficiency = if actual_vectors > 0 {
771            characteristics.size as f64 / (actual_vectors * theoretical_max) as f64
772        } else {
773            0.0
774        };
775
776        Ok(SimdPerformanceMetrics {
777            execution_time,
778            throughput,
779            bandwidth_utilization: bandwidth_utilization.min(1.0),
780            cache_hit_rate: 0.9, // Placeholder
781            simd_efficiency: simd_efficiency.min(1.0),
782            energy_efficiency: None, // Would require hardware energy monitoring
783        })
784    }
785
786    /// Calculate matrix performance metrics
787    fn calculate_matrix_performance_metrics(
788        &self,
789        characteristics: &DataCharacteristics,
790        strategy: &SimdStrategy,
791        execution_time: Duration,
792    ) -> StatsResult<SimdPerformanceMetrics> {
793        // Similar to vector metrics but adjusted for matrix operations
794        let mut metrics =
795            self.calculate_performance_metrics(characteristics, strategy, execution_time)?;
796
797        // Adjust cache hit rate based on matrix access pattern
798        metrics.cache_hit_rate = match &characteristics.access_pattern {
799            MemoryAccessPattern::Sequential => 0.95,
800            MemoryAccessPattern::Strided { .. } => 0.8,
801            MemoryAccessPattern::Tiled { .. } => 0.9,
802            _ => 0.7,
803        };
804
805        Ok(metrics)
806    }
807
808    /// Try fallback strategy on failure
809    fn try_fallback_strategy<F, T>(
810        &self,
811        _operation_name: &str,
812        data: ArrayView1<F>,
813        operation: impl Fn(&ArrayView1<F>, &SimdStrategy) -> StatsResult<T> + Send + Sync,
814        failed_strategy: &SimdStrategy,
815    ) -> StatsResult<SimdOptimizationResult<T>>
816    where
817        F: Float + NumCast + SimdUnifiedOps + Send + Sync + std::fmt::Display,
818        T: Send + Sync + std::fmt::Display,
819    {
820        // Create a conservative fallback _strategy
821        let fallback_strategy = SimdStrategy {
822            name: "fallback_conservative".to_string(),
823            instruction_set: SimdInstructionSet::SSE2, // Most widely supported
824            vector_width: 128,
825            memory_pattern: MemoryAccessPattern::Sequential,
826            alignment: AlignmentStrategy::UnalignedLoads,
827            unroll_factor: 1,
828            prefetch_strategy: PrefetchStrategy::None,
829            expected_speedup: 1.0,
830        };
831
832        let start_time = Instant::now();
833        match operation(&data, &fallback_strategy) {
834            Ok(result) => {
835                let execution_time = start_time.elapsed();
836                let characteristics = self.analyzedata_characteristics(&data)?;
837                let metrics = self.calculate_performance_metrics(
838                    &characteristics,
839                    &fallback_strategy,
840                    execution_time,
841                )?;
842
843                Ok(SimdOptimizationResult {
844                    result,
845                    strategy_used: fallback_strategy,
846                    metrics,
847                    success: true,
848                    fallback_info: Some(FallbackInfo {
849                        reason: format!("Primary _strategy '{}' failed", failed_strategy.name),
850                        fallback_strategy: "conservative_sse2".to_string(),
851                        performance_impact: 0.5, // Estimated 50% slower
852                    }),
853                })
854            }
855            Err(e) => Err(e),
856        }
857    }
858
859    /// Try matrix fallback strategy
860    fn try_matrix_fallback_strategy<F, T>(
861        &self,
862        _operation_name: &str,
863        data: ArrayView2<F>,
864        operation: impl Fn(&ArrayView2<F>, &SimdStrategy) -> StatsResult<T> + Send + Sync,
865        failed_strategy: &SimdStrategy,
866    ) -> StatsResult<SimdOptimizationResult<T>>
867    where
868        F: Float + NumCast + SimdUnifiedOps + Send + Sync + std::fmt::Display,
869        T: Send + Sync + std::fmt::Display,
870    {
871        // Similar to vector fallback but for matrices
872        let fallback_strategy = SimdStrategy {
873            name: "matrix_fallback_conservative".to_string(),
874            instruction_set: SimdInstructionSet::SSE2,
875            vector_width: 128,
876            memory_pattern: MemoryAccessPattern::Sequential,
877            alignment: AlignmentStrategy::UnalignedLoads,
878            unroll_factor: 1,
879            prefetch_strategy: PrefetchStrategy::None,
880            expected_speedup: 1.0,
881        };
882
883        let start_time = Instant::now();
884        match operation(&data, &fallback_strategy) {
885            Ok(result) => {
886                let execution_time = start_time.elapsed();
887                let characteristics = self.analyze_matrix_characteristics(&data)?;
888                let metrics = self.calculate_matrix_performance_metrics(
889                    &characteristics,
890                    &fallback_strategy,
891                    execution_time,
892                )?;
893
894                Ok(SimdOptimizationResult {
895                    result,
896                    strategy_used: fallback_strategy,
897                    metrics,
898                    success: true,
899                    fallback_info: Some(FallbackInfo {
900                        reason: format!(
901                            "Primary matrix _strategy '{}' failed",
902                            failed_strategy.name
903                        ),
904                        fallback_strategy: "conservative_matrix_sse2".to_string(),
905                        performance_impact: 0.6,
906                    }),
907                })
908            }
909            Err(e) => Err(e),
910        }
911    }
912
913    /// Update performance cache
914    fn update_performance_cache(
915        &self,
916        operation_name: &str,
917        strategy: &SimdStrategy,
918        metrics: &SimdPerformanceMetrics,
919    ) {
920        if !self.config.enable_profiling {
921            return;
922        }
923
924        let cache_key = format!("{}_{}", operation_name, strategy.name);
925
926        if let Ok(mut cache) = self.performance_cache.lock() {
927            cache.insert(cache_key.clone(), metrics.clone());
928        }
929
930        // Also update benchmark results for learning
931        if let Ok(mut benchmarks) = self.benchmark_results.lock() {
932            benchmarks
933                .entry(cache_key)
934                .or_insert_with(Vec::new)
935                .push(metrics.clone());
936        }
937    }
938
939    /// Get performance statistics
940    pub fn get_performance_statistics(&self) -> PerformanceStatistics {
941        let cache = self.performance_cache.lock().unwrap();
942        let _benchmarks = self.benchmark_results.lock().unwrap();
943
944        let total_operations = cache.len();
945        let avg_speedup = if !cache.is_empty() {
946            cache.values().map(|m| m.simd_efficiency).sum::<f64>() / cache.len() as f64
947        } else {
948            0.0
949        };
950
951        let best_strategies: Vec<(String, f64)> = cache
952            .iter()
953            .map(|(name, metrics)| (name.clone(), metrics.simd_efficiency))
954            .collect();
955
956        PerformanceStatistics {
957            total_operations,
958            average_speedup: avg_speedup,
959            best_strategies,
960            hardware_utilization: self.calculate_hardware_utilization(&cache),
961        }
962    }
963
964    /// Calculate hardware utilization
965    fn calculate_hardware_utilization(
966        &self,
967        cache: &HashMap<String, SimdPerformanceMetrics>,
968    ) -> HardwareUtilization {
969        let avg_bandwidth = if !cache.is_empty() {
970            cache.values().map(|m| m.bandwidth_utilization).sum::<f64>() / cache.len() as f64
971        } else {
972            0.0
973        };
974
975        let avg_cache_hit_rate = if !cache.is_empty() {
976            cache.values().map(|m| m.cache_hit_rate).sum::<f64>() / cache.len() as f64
977        } else {
978            0.0
979        };
980
981        HardwareUtilization {
982            simd_utilization: 0.8, // Placeholder
983            memory_bandwidth_utilization: avg_bandwidth,
984            cache_efficiency: avg_cache_hit_rate,
985            energy_efficiency: None,
986        }
987    }
988}
989
990/// Performance statistics
991#[derive(Debug, Clone, Serialize, Deserialize)]
992pub struct PerformanceStatistics {
993    /// Total operations performed
994    pub total_operations: usize,
995    /// Average speedup achieved
996    pub average_speedup: f64,
997    /// Best performing strategies
998    pub best_strategies: Vec<(String, f64)>,
999    /// Hardware utilization metrics
1000    pub hardware_utilization: HardwareUtilization,
1001}
1002
1003/// Hardware utilization metrics
1004#[derive(Debug, Clone, Serialize, Deserialize)]
1005pub struct HardwareUtilization {
1006    /// SIMD unit utilization (0.0-1.0)
1007    pub simd_utilization: f64,
1008    /// Memory bandwidth utilization (0.0-1.0)
1009    pub memory_bandwidth_utilization: f64,
1010    /// Cache efficiency (0.0-1.0)
1011    pub cache_efficiency: f64,
1012    /// Energy efficiency (operations/joule)
1013    pub energy_efficiency: Option<f64>,
1014}
1015
1016/// Convenience functions for adaptive SIMD optimization
1017#[allow(dead_code)]
1018pub fn create_adaptive_simd_optimizer() -> StatsResult<AdaptiveSimdOptimizer> {
1019    AdaptiveSimdOptimizer::default()
1020}
1021
1022#[allow(dead_code)]
1023pub fn optimize_simd_operation<F, T>(
1024    operation_name: &str,
1025    data: ArrayView1<F>,
1026    operation: impl Fn(&ArrayView1<F>, &SimdStrategy) -> StatsResult<T> + Send + Sync,
1027) -> StatsResult<SimdOptimizationResult<T>>
1028where
1029    F: Float + NumCast + SimdUnifiedOps + Send + Sync + std::fmt::Display,
1030    T: Send + Sync + std::fmt::Display,
1031{
1032    let optimizer = AdaptiveSimdOptimizer::default()?;
1033    optimizer.optimize_vector_operation(operation_name, data, operation)
1034}
1035
1036#[cfg(test)]
1037mod tests {
1038    use super::*;
1039    use scirs2_core::ndarray::array;
1040
1041    #[test]
1042    fn test_adaptive_simd_config() {
1043        let config = AdaptiveSimdConfig::default();
1044        assert!(config.auto_detect_hardware);
1045        assert!(config.enable_profiling);
1046        assert!(config.min_simdsize > 0);
1047    }
1048
1049    #[test]
1050    fn test_hardware_detection() {
1051        let capabilities = AdaptiveSimdOptimizer::detect_hardware_capabilities().unwrap();
1052        assert!(!capabilities.simd_instructions.is_empty());
1053        assert!(capabilities.vector_width > 0);
1054    }
1055
1056    #[test]
1057    fn testdata_characteristics_analysis() {
1058        let optimizer = AdaptiveSimdOptimizer::default().unwrap();
1059        let data = array![1.0f64, 2.0, 3.0, 4.0, 5.0];
1060
1061        let characteristics = optimizer.analyzedata_characteristics(&data.view()).unwrap();
1062        assert_eq!(characteristics.size, 5);
1063        assert_eq!(characteristics.elementsize, 8); // f64
1064    }
1065
1066    #[test]
1067    fn test_strategy_generation() {
1068        let optimizer = AdaptiveSimdOptimizer::default().unwrap();
1069        let characteristics = DataCharacteristics {
1070            size: 1000,
1071            elementsize: 8,
1072            alignment: 0,
1073            access_pattern: MemoryAccessPattern::Sequential,
1074            locality_score: 1.0,
1075            sparsity: None,
1076            value_distribution: ValueDistribution {
1077                value_range: (0.0, 1.0),
1078                has_special_values: false,
1079                clustering: ClusteringInfo {
1080                    cluster_count: 1,
1081                    density: 1.0,
1082                    separation: 0.0,
1083                },
1084            },
1085        };
1086
1087        let strategies = optimizer
1088            .generate_candidate_strategies(&characteristics)
1089            .unwrap();
1090        assert!(!strategies.is_empty());
1091    }
1092
1093    #[test]
1094    fn test_strategy_selection() {
1095        let optimizer = AdaptiveSimdOptimizer::default().unwrap();
1096        let characteristics = DataCharacteristics {
1097            size: 1000,
1098            elementsize: 8,
1099            alignment: 0,
1100            access_pattern: MemoryAccessPattern::Sequential,
1101            locality_score: 1.0,
1102            sparsity: None,
1103            value_distribution: ValueDistribution {
1104                value_range: (0.0, 1.0),
1105                has_special_values: false,
1106                clustering: ClusteringInfo {
1107                    cluster_count: 1,
1108                    density: 1.0,
1109                    separation: 0.0,
1110                },
1111            },
1112        };
1113
1114        let strategy = optimizer
1115            .select_optimal_strategy("test_op", &characteristics)
1116            .unwrap();
1117        assert!(!strategy.name.is_empty());
1118        assert!(strategy.expected_speedup > 0.0);
1119    }
1120
1121    #[test]
1122    fn test_performance_metrics_calculation() {
1123        let optimizer = AdaptiveSimdOptimizer::default().unwrap();
1124        let characteristics = DataCharacteristics {
1125            size: 1000,
1126            elementsize: 8,
1127            alignment: 0,
1128            access_pattern: MemoryAccessPattern::Sequential,
1129            locality_score: 1.0,
1130            sparsity: None,
1131            value_distribution: ValueDistribution {
1132                value_range: (0.0, 1.0),
1133                has_special_values: false,
1134                clustering: ClusteringInfo {
1135                    cluster_count: 1,
1136                    density: 1.0,
1137                    separation: 0.0,
1138                },
1139            },
1140        };
1141
1142        let strategy = SimdStrategy {
1143            name: "test_strategy".to_string(),
1144            instruction_set: SimdInstructionSet::AVX2,
1145            vector_width: 256,
1146            memory_pattern: MemoryAccessPattern::Sequential,
1147            alignment: AlignmentStrategy::ForceAlign,
1148            unroll_factor: 2,
1149            prefetch_strategy: PrefetchStrategy::None,
1150            expected_speedup: 2.0,
1151        };
1152
1153        let metrics = optimizer
1154            .calculate_performance_metrics(&characteristics, &strategy, Duration::from_millis(10))
1155            .unwrap();
1156
1157        assert!(metrics.throughput > 0.0);
1158        assert!(metrics.simd_efficiency >= 0.0 && metrics.simd_efficiency <= 1.0);
1159    }
1160}