Expand description
Statistical functions module
This module provides implementations of various statistical algorithms, modeled after SciPy’s stats module.
§Overview
-
Descriptive statistics
- Basic statistics (mean, median, variance, etc.)
- Advanced statistics (skewness, kurtosis, moments)
- Correlation measures (Pearson, Spearman, Kendall tau, partial correlation)
- Dispersion measures (MAD, median absolute deviation, IQR, range, coefficient of variation)
-
Statistical distributions
- Normal distribution
- Uniform distribution
- Student’s t distribution
- Chi-square distribution
- F distribution
- Poisson distribution
- Gamma distribution
- Beta distribution
- Exponential distribution
- Hypergeometric distribution
- Laplace distribution
- Logistic distribution
- Cauchy distribution
- Pareto distribution
- Weibull distribution
- Multivariate distributions (multivariate normal, multivariate t, dirichlet, wishart, etc.)
-
Statistical tests
- Parametric tests (t-tests, ANOVA)
- Non-parametric tests (Mann-Whitney U)
- Normality tests (Shapiro-Wilk, Anderson-Darling, D’Agostino’s K²)
- Goodness-of-fit tests (Chi-square)
-
Random number generation
-
Regression models (linear, regularized, robust)
-
Bayesian statistics (conjugate priors, Bayesian linear regression)
-
MCMC methods (Metropolis-Hastings, adaptive sampling)
-
Multivariate analysis (PCA, incremental PCA)
-
Contingency table functions
-
Masked array statistics
-
Quasi-Monte Carlo
-
Statistical sampling
-
Survival analysis (Kaplan-Meier, Cox proportional hazards, log-rank test)
§Examples
§Descriptive Statistics
use ndarray::array;
use scirs2_stats::{mean, median, std, var, skew, kurtosis};
let data = array![1.0, 2.0, 3.0, 4.0, 5.0];
// Calculate basic statistics
let mean_val = mean(&data.view()).unwrap();
let median_val = median(&data.view()).unwrap();
let var_val = var(&data.view(), 0, None).unwrap(); // ddof = 0 for population variance
let std_val = std(&data.view(), 0, None).unwrap(); // ddof = 0 for population standard deviation
// Advanced statistics
let skewness = skew(&data.view(), false, None).unwrap(); // bias = false
let kurt = kurtosis(&data.view(), true, false, None).unwrap(); // fisher = true, bias = false
§Correlation Measures
use ndarray::{array, Array2};
use scirs2_stats::{pearson_r, pearsonr, spearman_r, kendall_tau, corrcoef};
let x = array![1.0, 2.0, 3.0, 4.0, 5.0];
let y = array![5.0, 4.0, 3.0, 2.0, 1.0];
// Calculate Pearson correlation coefficient (linear correlation)
let r = pearson_r(&x.view(), &y.view()).unwrap();
println!("Pearson correlation: {}", r); // Should be -1.0 (perfect negative correlation)
// Calculate Pearson correlation with p-value
let (r, p) = pearsonr(&x.view(), &y.view(), "two-sided").unwrap();
println!("Pearson correlation: {}, p-value: {}", r, p);
// Spearman rank correlation (monotonic relationship)
let rho = spearman_r(&x.view(), &y.view()).unwrap();
println!("Spearman correlation: {}", rho);
// Kendall tau rank correlation
let tau = kendall_tau(&x.view(), &y.view(), "b").unwrap();
println!("Kendall tau correlation: {}", tau);
// Correlation matrix for multiple variables
let data = array![
[1.0, 5.0, 10.0],
[2.0, 4.0, 9.0],
[3.0, 3.0, 8.0],
[4.0, 2.0, 7.0],
[5.0, 1.0, 6.0]
];
let corr_matrix = corrcoef(&data.view(), "pearson").unwrap();
println!("Correlation matrix:\n{:?}", corr_matrix);
§Dispersion Measures
use ndarray::array;
use scirs2_stats::{
mean_abs_deviation, median_abs_deviation, iqr, data_range, coef_variation
};
let data = array![1.0, 2.0, 3.0, 4.0, 5.0, 100.0]; // Note the outlier
// Mean absolute deviation (from mean)
let mad = mean_abs_deviation(&data.view(), None).unwrap();
println!("Mean absolute deviation: {}", mad);
// Median absolute deviation (robust to outliers)
let median_ad = median_abs_deviation(&data.view(), None, None).unwrap();
println!("Median absolute deviation: {}", median_ad);
// Scaled median absolute deviation (consistent with std dev for normal distributions)
let median_ad_scaled = median_abs_deviation(&data.view(), None, Some(1.4826)).unwrap();
println!("Scaled median absolute deviation: {}", median_ad_scaled);
// Interquartile range (Q3 - Q1)
let iqr_val = iqr(&data.view(), None).unwrap();
println!("Interquartile range: {}", iqr_val);
// Range (max - min)
let range_val = data_range(&data.view()).unwrap();
println!("Range: {}", range_val);
// Coefficient of variation (std/mean, unitless measure)
let cv = coef_variation(&data.view(), 1).unwrap();
println!("Coefficient of variation: {}", cv);
§Statistical Distributions
use scirs2_stats::distributions;
// Normal distribution
let normal = distributions::norm(0.0f64, 1.0).unwrap();
let pdf = normal.pdf(0.0);
let cdf = normal.cdf(1.96);
let samples = normal.rvs(100).unwrap();
// Poisson distribution
let poisson = distributions::poisson(3.0f64, 0.0).unwrap();
let pmf = poisson.pmf(2.0);
let cdf = poisson.cdf(4.0);
let samples = poisson.rvs(100).unwrap();
// Gamma distribution
let gamma = distributions::gamma(2.0f64, 1.0, 0.0).unwrap();
let pdf = gamma.pdf(1.0);
let cdf = gamma.cdf(2.0);
let samples = gamma.rvs(100).unwrap();
// Beta distribution
let beta = distributions::beta(2.0f64, 3.0, 0.0, 1.0).unwrap();
let pdf = beta.pdf(0.5);
let samples = beta.rvs(100).unwrap();
// Exponential distribution
let exp = distributions::expon(1.0f64, 0.0).unwrap();
let pdf = exp.pdf(1.0);
let mean = exp.mean(); // Should be 1.0
// Multivariate normal distribution
use ndarray::array;
let mvn_mean = array![0.0, 0.0];
let mvn_cov = array![[1.0, 0.5], [0.5, 2.0]];
let mvn = distributions::multivariate::multivariate_normal(mvn_mean, mvn_cov).unwrap();
let pdf = mvn.pdf(&array![0.0, 0.0]);
let samples = mvn.rvs(100).unwrap();
§Statistical Tests
use ndarray::{array, Array2};
use scirs2_stats::{
ttest_1samp, ttest_ind, ttest_rel, kstest, shapiro, mann_whitney,
shapiro_wilk, anderson_darling, dagostino_k2, wilcoxon, kruskal_wallis, friedman,
ks_2samp, distributions, Alternative
};
use scirs2_stats::tests::ttest::Alternative as TTestAlternative;
// One-sample t-test (we'll use a larger sample for normality tests)
let data = array![
5.1, 4.9, 6.2, 5.7, 5.5, 5.1, 5.2, 5.0, 5.3, 5.4,
5.6, 5.8, 5.9, 6.0, 5.2, 5.4, 5.3, 5.1, 5.2, 5.0
];
let result = ttest_1samp(&data.view(), 5.0, TTestAlternative::TwoSided, "propagate").unwrap();
let t_stat = result.statistic;
let p_value = result.pvalue;
println!("One-sample t-test: t={}, p={}", t_stat, p_value);
// Two-sample t-test
let group1 = array![5.1, 4.9, 6.2, 5.7, 5.5];
let group2 = array![4.8, 5.2, 5.1, 4.7, 4.9];
let result = ttest_ind(&group1.view(), &group2.view(), true, TTestAlternative::TwoSided, "propagate").unwrap();
let t_stat = result.statistic;
let p_value = result.pvalue;
println!("Two-sample t-test: t={}, p={}", t_stat, p_value);
// Normality tests
let (w_stat, p_value) = shapiro(&data.view()).unwrap();
println!("Shapiro-Wilk test: W={}, p={}", w_stat, p_value);
// More accurate Shapiro-Wilk test implementation
let (w_stat, p_value) = shapiro_wilk(&data.view()).unwrap();
println!("Improved Shapiro-Wilk test: W={}, p={}", w_stat, p_value);
// Anderson-Darling test for normality
let (a2_stat, p_value) = anderson_darling(&data.view()).unwrap();
println!("Anderson-Darling test: A²={}, p={}", a2_stat, p_value);
// D'Agostino's K² test combining skewness and kurtosis
let (k2_stat, p_value) = dagostino_k2(&data.view()).unwrap();
println!("D'Agostino K² test: K²={}, p={}", k2_stat, p_value);
// Non-parametric tests
// Wilcoxon signed-rank test (paired samples)
let before = array![125.0, 115.0, 130.0, 140.0, 140.0];
let after = array![110.0, 122.0, 125.0, 120.0, 140.0];
let (w, p_value) = wilcoxon(&before.view(), &after.view(), "wilcox", true).unwrap();
println!("Wilcoxon signed-rank test: W={}, p={}", w, p_value);
// Mann-Whitney U test (independent samples)
let males = array![19.0, 22.0, 16.0, 29.0, 24.0];
let females = array![20.0, 11.0, 17.0, 12.0];
let (u, p_value) = mann_whitney(&males.view(), &females.view(), "two-sided", true).unwrap();
println!("Mann-Whitney U test: U={}, p={}", u, p_value);
// Kruskal-Wallis test (unpaired samples)
let group1 = array![2.9, 3.0, 2.5, 2.6, 3.2];
let group2 = array![3.8, 3.7, 3.9, 4.0, 4.2];
let group3 = array![2.8, 3.4, 3.7, 2.2, 2.0];
let samples = vec![group1.view(), group2.view(), group3.view()];
let (h, p_value) = kruskal_wallis(&samples).unwrap();
println!("Kruskal-Wallis test: H={}, p={}", h, p_value);
// Friedman test (repeated measures)
let data = array![
[7.0, 9.0, 8.0],
[6.0, 5.0, 7.0],
[9.0, 7.0, 6.0],
[8.0, 5.0, 6.0]
];
let (chi2, p_value) = friedman(&data.view()).unwrap();
println!("Friedman test: Chi²={}, p={}", chi2, p_value);
// One-sample distribution fit test
let normal = distributions::norm(0.0f64, 1.0).unwrap();
let standardizeddata = array![0.1, -0.2, 0.3, -0.1, 0.2];
let (ks_stat, p_value) = kstest(&standardizeddata.view(), |x| normal.cdf(x)).unwrap();
println!("Kolmogorov-Smirnov one-sample test: D={}, p={}", ks_stat, p_value);
// Two-sample KS test
let sample1 = array![0.1, 0.2, 0.3, 0.4, 0.5];
let sample2 = array![0.6, 0.7, 0.8, 0.9, 1.0];
let (ks_stat, p_value) = ks_2samp(&sample1.view(), &sample2.view(), "two-sided").unwrap();
println!("Kolmogorov-Smirnov two-sample test: D={}, p={}", ks_stat, p_value);
§Random Number Generation
use scirs2_stats::random::{uniform, randn, randint, choice};
use ndarray::array;
// Generate uniform random numbers between 0 and 1
let uniform_samples = uniform(0.0, 1.0, 10, Some(42)).unwrap();
// Generate standard normal random numbers
let normal_samples = randn(10, Some(123)).unwrap();
// Generate random integers between 1 and 100
let int_samples = randint(1, 101, 5, Some(456)).unwrap();
// Randomly choose elements from an array
let options = array!["apple", "banana", "cherry", "date", "elderberry"];
let choices = choice(&options.view(), 3, false, None, Some(789)).unwrap();
§Statistical Sampling
use scirs2_stats::sampling;
use ndarray::array;
// Create an array
let data = array![1.0, 2.0, 3.0, 4.0, 5.0];
// Generate bootstrap samples
let bootstrap_samples = sampling::bootstrap(&data.view(), 10, Some(42)).unwrap();
// Generate a random permutation
let permutation = sampling::permutation(&data.view(), Some(123)).unwrap();
Re-exports§
pub use adaptive_simd_optimization::create_adaptive_simd_optimizer;
pub use adaptive_simd_optimization::optimize_simd_operation;
pub use adaptive_simd_optimization::AdaptiveSimdConfig;
pub use adaptive_simd_optimization::AdaptiveSimdOptimizer;
pub use adaptive_simd_optimization::DataCharacteristics as SimdDataCharacteristics;
pub use adaptive_simd_optimization::HardwareCapabilities;
pub use adaptive_simd_optimization::OptimizationLevel;
pub use adaptive_simd_optimization::PerformanceStatistics;
pub use adaptive_simd_optimization::SimdOptimizationResult;
pub use adaptive_simd_optimization::SimdStrategy;
pub use api_standardization::Alternative;
pub use api_standardization::CorrelationBuilder;
pub use api_standardization::CorrelationMethod;
pub use api_standardization::CorrelationResult;
pub use api_standardization::DescriptiveStats;
pub use api_standardization::DescriptiveStatsBuilder;
pub use api_standardization::F32DescriptiveBuilder;
pub use api_standardization::F32StatsAnalyzer;
pub use api_standardization::F64DescriptiveBuilder;
pub use api_standardization::F64StatsAnalyzer;
pub use api_standardization::NullHandling;
pub use api_standardization::StandardizedConfig;
pub use api_standardization::StandardizedResult;
pub use api_standardization::StatsAnalyzer;
pub use api_standardization::TestResult;
pub use api_standardization_enhanced::quick_correlation;
pub use api_standardization_enhanced::quick_descriptive;
pub use api_standardization_enhanced::stats;
pub use api_standardization_enhanced::stats_with;
pub use api_standardization_enhanced::AutoOptimizationLevel;
pub use api_standardization_enhanced::ChainedResults;
pub use api_standardization_enhanced::CorrelationMethod as EnhancedCorrelationMethod;
pub use api_standardization_enhanced::CorrelationType;
pub use api_standardization_enhanced::FluentCorrelation;
pub use api_standardization_enhanced::FluentDescriptive;
pub use api_standardization_enhanced::FluentRegression;
pub use api_standardization_enhanced::FluentStats;
pub use api_standardization_enhanced::FluentStatsConfig;
pub use api_standardization_enhanced::FluentTesting;
pub use api_standardization_enhanced::MemoryStrategy;
pub use api_standardization_enhanced::OperationResult;
pub use api_standardization_enhanced::OperationType;
pub use api_standardization_enhanced::RegressionType;
pub use api_standardization_enhanced::ResultFormat;
pub use api_standardization_enhanced::StatisticalOperation;
pub use api_standardization_enhanced::TestType;
pub use benchmark_suite::AlgorithmConfig;
pub use benchmark_suite::BenchmarkConfig;
pub use benchmark_suite::BenchmarkMetrics;
pub use benchmark_suite::BenchmarkReport;
pub use benchmark_suite::BenchmarkSuite;
pub use benchmark_suite::ComplexityClass;
pub use benchmark_suite::MemoryStats;
pub use benchmark_suite::OptimizationRecommendation;
pub use benchmark_suite::PerformanceAnalysis;
pub use benchmark_suite::TimingStats;
pub use benchmark_suite_enhanced::create_configured_enhanced_benchmark_suite;
pub use benchmark_suite_enhanced::create_enhanced_benchmark_suite;
pub use benchmark_suite_enhanced::run_quick_ai_analysis;
pub use benchmark_suite_enhanced::AIPerformanceAnalysis;
pub use benchmark_suite_enhanced::AnomalyType;
pub use benchmark_suite_enhanced::BottleneckType;
pub use benchmark_suite_enhanced::CrossPlatformAnalysis;
pub use benchmark_suite_enhanced::EnhancedBenchmarkConfig;
pub use benchmark_suite_enhanced::EnhancedBenchmarkReport;
pub use benchmark_suite_enhanced::EnhancedBenchmarkSuite;
pub use benchmark_suite_enhanced::ImplementationEffort;
pub use benchmark_suite_enhanced::IntelligentRecommendation;
pub use benchmark_suite_enhanced::MLModelConfig;
pub use benchmark_suite_enhanced::MemoryHierarchy;
pub use benchmark_suite_enhanced::PerformanceBottleneck;
pub use benchmark_suite_enhanced::PerformancePrediction;
pub use benchmark_suite_enhanced::PlatformTarget;
pub use benchmark_suite_enhanced::RecommendationCategory;
pub use benchmark_suite_enhanced::RecommendationPriority;
pub use benchmark_suite_enhanced::RegressionAnalysis;
pub use benchmark_suite_enhanced::RegressionSeverity;
pub use benchmark_suite_enhanced::SimdCapabilities;
pub use benchmark_suite_enhanced::TrendDirection;
pub use error::StatsError;
pub use error::StatsResult;
pub use error_diagnostics::generate_global_health_report;
pub use error_diagnostics::get_global_statistics;
pub use error_diagnostics::global_monitor;
pub use error_diagnostics::record_global_error;
pub use error_diagnostics::CriticalIssue;
pub use error_diagnostics::ErrorMonitor;
pub use error_diagnostics::ErrorOccurrence;
pub use error_diagnostics::ErrorPattern;
pub use error_diagnostics::ErrorStatistics;
pub use error_diagnostics::ErrorTrend;
pub use error_diagnostics::HealthReport;
pub use error_diagnostics::Recommendation;
pub use error_handling_enhancements::AdvancedContextBuilder;
pub use error_handling_enhancements::AdvancedErrorContext;
pub use error_handling_enhancements::AdvancedErrorMessages;
pub use error_handling_enhancements::AdvancedErrorRecovery;
pub use error_handling_enhancements::OptimizationSuggestion;
pub use error_handling_enhancements::RecoveryStrategy;
pub use error_handling_v2::EnhancedError;
pub use error_handling_v2::ErrorBuilder;
pub use error_handling_v2::ErrorCode;
pub use error_handling_v2::ErrorContext as ErrorContextV2;
pub use error_handling_v2::PerformanceImpact;
pub use error_handling_v2::RecoverySuggestion;
pub use error_recovery_system::enhance_error_with_recovery;
pub use error_recovery_system::initialize_error_recovery;
pub use error_recovery_system::CodeSnippet;
pub use error_recovery_system::ComputationState;
pub use error_recovery_system::ConvergenceStatus;
pub use error_recovery_system::DataCharacteristics;
pub use error_recovery_system::DistributionInfo;
pub use error_recovery_system::EnhancedStatsError;
pub use error_recovery_system::ErrorContext;
pub use error_recovery_system::ErrorRecoveryConfig;
pub use error_recovery_system::ErrorRecoverySystem;
pub use error_recovery_system::ErrorSeverity;
pub use error_recovery_system::ImpactLevel;
pub use error_recovery_system::MissingDataInfo;
pub use error_recovery_system::MissingPattern;
pub use error_recovery_system::PerformanceImpact as RecoveryPerformanceImpact;
pub use error_recovery_system::PreprocessingStep;
pub use error_recovery_system::RangeInfo;
pub use error_recovery_system::RecoveryAction;
pub use error_recovery_system::RecoverySuggestion as RecoveryRecoverySuggestion;
pub use error_recovery_system::SizeInfo;
pub use error_recovery_system::SuggestionType;
pub use error_recovery_system::SystemInfo;
pub use error_recovery_system::ValidationCheck;
pub use error_standardization::AutoRecoverySystem;
pub use error_standardization::BatchErrorHandler;
pub use error_standardization::DataDiagnostics;
pub use error_standardization::DataQualityIssue;
pub use error_standardization::EnhancedErrorContext;
pub use error_standardization::ErrorDiagnostics;
pub use error_standardization::ErrorMessages;
pub use error_standardization::ErrorValidator;
pub use error_standardization::InterModuleErrorChecker;
pub use error_standardization::PerformanceImpact as StandardizedPerformanceImpact;
pub use error_standardization::RecoverySuggestions;
pub use error_standardization::StandardizedErrorReporter;
pub use error_standardization::StatsSummary;
pub use error_standardization::SystemDiagnostics;
pub use error_suggestions::diagnose_error;
pub use error_suggestions::DiagnosisReport;
pub use error_suggestions::ErrorFormatter;
pub use error_suggestions::ErrorType;
pub use error_suggestions::Severity;
pub use error_suggestions::Suggestion;
pub use error_suggestions::SuggestionEngine;
pub use intelligent_error_recovery::create_intelligent_recovery;
pub use intelligent_error_recovery::get_intelligent_suggestions;
pub use intelligent_error_recovery::IntelligentErrorRecovery;
pub use intelligent_error_recovery::IntelligentRecoveryStrategy;
pub use intelligent_error_recovery::RecoveryConfig;
pub use intelligent_error_recovery::ResourceRequirements;
pub use intelligent_error_recovery::RiskLevel;
pub use memory_optimization_advanced::AdaptiveStatsAllocator;
pub use memory_optimization_advanced::CacheOptimizedMatrix;
pub use memory_optimization_advanced::MatrixLayout;
pub use memory_optimization_advanced::MemoryOptimizationConfig;
pub use memory_optimization_advanced::MemoryOptimizationReport;
pub use memory_optimization_advanced::MemoryOptimizationSuite;
pub use memory_optimization_advanced::MemoryProfile;
pub use memory_optimization_advanced::StreamingStatsCalculator;
pub use memory_optimization_enhanced::create_configured_memory_optimizer;
pub use memory_optimization_enhanced::create_enhanced_memory_optimizer;
pub use memory_optimization_enhanced::EnhancedMemoryOptimizer;
pub use memory_optimization_enhanced::GarbageCollectionResult;
pub use memory_optimization_enhanced::MemoryOptimizationConfig as EnhancedMemoryConfig;
pub use memory_optimization_enhanced::MemoryStatistics as EnhancedMemoryStatistics;
pub use memory_optimization_enhanced::OptimizationRecommendation as EnhancedOptimizationRecommendation;
pub use performance_benchmark_suite::AdvancedBenchmarkConfig;
pub use performance_benchmark_suite::AdvancedBenchmarkMetrics;
pub use performance_benchmark_suite::AdvancedBenchmarkReport;
pub use performance_benchmark_suite::AdvancedBenchmarkSuite;
pub use performance_benchmark_suite::ComprehensiveAnalysis;
pub use performance_benchmark_suite::CrossPlatformAssessment;
pub use performance_benchmark_suite::ScalabilityAssessment;
pub use performance_benchmark_suite::StabilityAssessment;
pub use performance_optimization::OptimizedCanonicalCorrelationAnalysis;
pub use performance_optimization::OptimizedLinearDiscriminantAnalysis;
pub use performance_optimization::PerformanceBenchmark;
pub use performance_optimization::PerformanceConfig;
pub use performance_optimization::PerformanceMetrics;
pub use scipy_benchmark_comparison::run_function_comparison;
pub use scipy_benchmark_comparison::run_scipy_comparison;
pub use scipy_benchmark_comparison::AccuracyComparison;
pub use scipy_benchmark_comparison::AccuracyRating;
pub use scipy_benchmark_comparison::ComparisonRecommendation;
pub use scipy_benchmark_comparison::ComparisonStatus;
pub use scipy_benchmark_comparison::FunctionComparison;
pub use scipy_benchmark_comparison::PerformanceComparison;
pub use scipy_benchmark_comparison::PerformanceRating;
pub use scipy_benchmark_comparison::ScipyBenchmarkComparison;
pub use scipy_benchmark_comparison::ScipyComparisonConfig;
pub use scipy_benchmark_comparison::ScipyComparisonReport;
pub use unified_error_handling::create_standardized_error;
pub use unified_error_handling::global_error_handler;
pub use unified_error_handling::UnifiedErrorHandler;
pub use api_improvements::CorrelationExt;
pub use api_improvements::OptimizationHint;
pub use api_improvements::StatsBuilder;
pub use api_improvements::StatsConfig;
pub use advanced_bootstrap::block_bootstrap;
pub use advanced_bootstrap::circular_block_bootstrap;
pub use advanced_bootstrap::moving_block_bootstrap;
pub use advanced_bootstrap::stationary_bootstrap;
pub use advanced_bootstrap::stratified_bootstrap;
pub use advanced_bootstrap::AdvancedBootstrapConfig;
pub use advanced_bootstrap::AdvancedBootstrapProcessor;
pub use advanced_bootstrap::AdvancedBootstrapResult;
pub use advanced_bootstrap::BlockType;
pub use advanced_bootstrap::BootstrapConfidenceIntervals;
pub use advanced_bootstrap::BootstrapDiagnostics;
pub use advanced_bootstrap::BootstrapDistributionStats;
pub use advanced_bootstrap::BootstrapType;
pub use advanced_bootstrap::ConvergenceInfo;
pub use advanced_bootstrap::ParametricBootstrapParams;
pub use advanced_bootstrap::QualityMetrics;
pub use advanced_bootstrap::TaperFunction;
pub use advanced_bootstrap::WildDistribution;
pub use advanced_integration::BayesianAnalysisResult;
pub use advanced_integration::BayesianAnalysisWorkflow;
pub use advanced_integration::BayesianModelMetrics;
pub use advanced_integration::DimensionalityAnalysisResult;
pub use advanced_integration::DimensionalityAnalysisWorkflow;
pub use advanced_integration::DimensionalityMetrics;
pub use advanced_integration::DimensionalityRecommendations;
pub use advanced_integration::QMCQualityMetrics;
pub use advanced_integration::QMCResult;
pub use advanced_integration::QMCSequenceType;
pub use advanced_integration::QMCWorkflow;
pub use advanced_integration::SurvivalAnalysisResult;
pub use advanced_integration::SurvivalAnalysisWorkflow;
pub use advanced_integration::SurvivalSummaryStats;
pub use advanced_parallel_monte_carlo::integrate_parallel;
pub use advanced_parallel_monte_carlo::AdvancedParallelMonteCarlo;
pub use advanced_parallel_monte_carlo::GaussianFunction;
pub use advanced_parallel_monte_carlo::IntegrableFunction;
pub use advanced_parallel_monte_carlo::IntegrationMetrics;
pub use advanced_parallel_monte_carlo::MonteCarloConfig;
pub use advanced_parallel_monte_carlo::MonteCarloResult;
pub use advanced_parallel_monte_carlo::TestFunction;
pub use advanced_parallel_monte_carlo::VarianceReductionConfig;
pub use api_consistency_validation::validate_api_consistency;
pub use api_consistency_validation::APIConsistencyValidator;
pub use api_consistency_validation::APIInconsistency;
pub use api_consistency_validation::CheckCategory;
pub use api_consistency_validation::DocumentationStatus;
pub use api_consistency_validation::FunctionCategory;
pub use api_consistency_validation::FunctionPattern;
pub use api_consistency_validation::FunctionRegistry;
pub use api_consistency_validation::FunctionSignature;
pub use api_consistency_validation::InconsistencyType;
pub use api_consistency_validation::NamingConventions;
pub use api_consistency_validation::ParameterInfo;
pub use api_consistency_validation::ParameterUsage;
pub use api_consistency_validation::ReturnTypeInfo;
pub use api_consistency_validation::Severity as APISeverity;
pub use api_consistency_validation::ValidationCheck as APIValidationCheck;
pub use api_consistency_validation::ValidationConfig;
pub use api_consistency_validation::ValidationReport;
pub use api_consistency_validation::ValidationResults;
pub use api_consistency_validation::ValidationStatus;
pub use api_consistency_validation::ValidationSummary;
pub use api_consistency_validation::ValidationWarning;
pub use production_deployment::create_cloud_production_config;
pub use production_deployment::create_container_production_config;
pub use production_deployment::CheckResult;
pub use production_deployment::CheckSeverity;
pub use production_deployment::CheckStatus;
pub use production_deployment::CloudProvider;
pub use production_deployment::ContainerRuntime;
pub use production_deployment::CpuFeatures;
pub use production_deployment::EnvironmentSpec;
pub use production_deployment::EnvironmentType;
pub use production_deployment::HealthCheck;
pub use production_deployment::HealthCheckResult;
pub use production_deployment::HealthChecker;
pub use production_deployment::HealthStatus;
pub use production_deployment::MemoryLimits;
pub use production_deployment::PerformanceMonitor;
pub use production_deployment::PerformanceRequirements;
pub use production_deployment::ProductionConfig;
pub use production_deployment::ProductionDeploymentValidator;
pub use production_deployment::ServerlessPlatform;
pub use production_deployment::SimdFeature;
pub use production_deployment::ValidationResults as ProductionValidationResults;
pub use traits::CircularDistribution;
pub use traits::ContinuousDistribution;
pub use traits::DiscreteDistribution;
pub use traits::Distribution;
pub use traits::Fittable;
pub use traits::MultivariateDistribution;
pub use traits::Truncatable;
pub use moments_simd::kurtosis_simd;
pub use moments_simd::moment_simd;
pub use moments_simd::moments_batch_simd;
pub use moments_simd::skewness_simd;
pub use simd_enhanced_core::comprehensive_stats_simd as comprehensive_stats_enhanced;
pub use simd_enhanced_core::correlation_simd_enhanced;
pub use simd_enhanced_core::mean_enhanced;
pub use simd_enhanced_core::variance_enhanced;
pub use simd_enhanced_core::ComprehensiveStats;
pub use advanced_simd_stats::AccuracyLevel;
pub use advanced_simd_stats::AdvancedSimdConfig as AdvancedSimdConfigV2;
pub use advanced_simd_stats::AdvancedSimdOptimizer;
pub use advanced_simd_stats::AlgorithmChoice as AdvancedAlgorithmChoice;
pub use advanced_simd_stats::BatchOperation;
pub use advanced_simd_stats::BatchResults;
pub use advanced_simd_stats::MemoryConstraints as AdvancedMemoryConstraints;
pub use advanced_simd_stats::PerformancePreference;
pub use advanced_simd_stats::PerformanceProfile as AdvancedPerformanceProfile;
pub use advanced_simd_stats::ScalarAlgorithm;
pub use advanced_simd_stats::SimdAlgorithm;
pub use advanced_simd_stats::ThreadingPreferences;
pub use parallel_enhanced_advanced::create_advanced_parallel_processor;
pub use parallel_enhanced_advanced::create_configured_parallel_processor;
pub use parallel_enhanced_advanced::AdvancedParallelConfig as EnhancedAdvancedParallelConfig;
pub use parallel_enhanced_advanced::AdvancedParallelProcessor;
pub use parallel_enhanced_advanced::ChunkStrategy;
pub use mcmc::ChainStatistics;
pub use tests::anova::one_way_anova;
pub use tests::anova::tukey_hsd;
pub use tests::chi2_test::chi2_gof;
pub use tests::chi2_test::chi2_independence;
pub use tests::chi2_test::chi2_yates;
pub use tests::nonparametric::friedman;
pub use tests::nonparametric::kruskal_wallis;
pub use tests::nonparametric::mann_whitney;
pub use tests::nonparametric::wilcoxon;
pub use tests::normality::anderson_darling;
pub use tests::normality::dagostino_k2;
pub use tests::normality::ks_2samp;
pub use tests::normality::shapiro_wilk;
pub use tests::ttest::ttest_1samp;
pub use tests::ttest::ttest_ind;
pub use tests::ttest::ttest_ind_from_stats;
pub use tests::ttest::ttest_rel;
pub use tests::ttest::TTestResult;
pub use distribution_characteristics::cross_entropy;
pub use distribution_characteristics::entropy;
pub use distribution_characteristics::kl_divergence;
pub use distribution_characteristics::kurtosis_ci;
pub use distribution_characteristics::mode;
pub use distribution_characteristics::skewness_ci;
pub use distribution_characteristics::ConfidenceInterval;
pub use distribution_characteristics::Mode;
pub use distribution_characteristics::ModeMethod;
pub use regression::elastic_net;
pub use regression::group_lasso;
pub use regression::huber_regression;
pub use regression::lasso_regression;
pub use regression::linear_regression;
pub use regression::linregress;
pub use regression::multilinear_regression;
pub use regression::odr;
pub use regression::polyfit;
pub use regression::ransac;
pub use regression::ridge_regression;
pub use regression::stepwise_regression;
pub use regression::theilslopes;
pub use regression::HuberT;
pub use regression::RegressionResults;
pub use regression::StepwiseCriterion;
pub use regression::StepwiseDirection;
pub use regression::StepwiseResults;
pub use regression::TheilSlopesResult;
pub use tests::*;
pub use random::*;
Modules§
- adaptive_
simd_ optimization - Adaptive SIMD optimization framework for scirs2-stats v1.0.0
- advanced_
bootstrap - Advanced bootstrap methods for complex statistical inference
- advanced_
integration - Advanced Statistical Analysis Integration
- advanced_
parallel_ monte_ carlo - Advanced parallel Monte Carlo integration with adaptive sampling
- advanced_
simd_ stats - advanced Advanced SIMD Optimization System
- api_
consistency_ validation - Comprehensive API consistency validation framework
- api_
improvements - API improvements for v1.0.0 release
- api_
standardization - API standardization and consistency framework for scirs2-stats v1.0.0
- api_
standardization_ enhanced - Enhanced API Standardization Framework for scirs2-stats v1.0.0+
- bayesian
- Bayesian statistical methods
- benchmark_
suite - Comprehensive benchmark suite for scirs2-stats performance analysis
- benchmark_
suite_ enhanced - Enhanced AI-Driven Benchmark Suite for scirs2-stats
- cache_
friendly - Cache-friendly matrix operations
- contingency
- Contingency table functions
- distribution_
characteristics - Distribution characteristic statistics
- distributions
- Statistical distributions
- error
- Error types for the SciRS2 statistics module
- error_
context - Enhanced error context and recovery suggestions
- error_
diagnostics - Error diagnostics and monitoring system
- error_
handling_ enhancements - Advanced Error Handling Enhancements
- error_
handling_ v2 - Enhanced error handling system for v1.0.0
- error_
messages - Standardized error messages and error creation helpers
- error_
recovery_ system - Enhanced error handling and recovery system
- error_
standardization - Error message standardization for consistent error handling
- error_
suggestions - Enhanced error suggestion system with context-aware recovery strategies
- intelligent_
error_ recovery - Intelligent error recovery with ML-powered suggestions
- mcmc
- Markov Chain Monte Carlo (MCMC) methods
- memory_
mapped - Memory-mapped statistical operations for very large datasets
- memory_
optimization_ advanced - Advanced memory optimization strategies for statistical computations
- memory_
optimization_ enhanced - Enhanced memory optimization with intelligent management and profiling
- moments_
simd - SIMD-optimized higher-order moment calculations
- mstats
- Masked array statistics
- multivariate
- Multivariate statistical analysis methods
- numerical_
stability_ analyzer - Numerical stability analysis framework
- parallel_
enhanced_ advanced - Advanced parallel statistical processing with intelligent optimization
- performance_
benchmark_ suite - advanced Enhanced Benchmark Suite
- performance_
optimization - Performance optimization integrations for advanced statistical methods
- production_
deployment - Production deployment utilities for scirs2-stats v1.0.0+
- qmc
- Quasi-Monte Carlo
- random
- Random number generation
- regression
- Regression analysis module
- sampling
- Statistical sampling
- scipy_
benchmark_ comparison - SciPy benchmark comparison framework for scirs2-stats v1.0.0
- scipy_
benchmark_ framework - Comprehensive SciPy benchmark comparison framework
- simd_
enhanced_ core - Enhanced SIMD-optimized core statistical operations
- survival
- Survival Analysis
- tests
- Statistical tests module
- traits
- Statistical distribution traits
- unified_
error_ handling - Unified Error Handling System
- zero_
copy - Zero-copy view-based statistics
Macros§
- enhanced_
error - Convenience macro for enhanced error handling
- stats_
error - Helper macros for creating standardized errors
- stats_
error_ unified - Convenience macro for creating standardized errors with automatic monitoring
- stats_
error_ with_ suggestions - Helper macro for creating errors with suggestions
- validate_
or_ error - Convenience macro for validation with automatic error creation
Structs§
- Accuracy
Metrics - Numerical accuracy metrics
- Adaptation
Config - Adaptation configuration
- Adaptive
Memory Config - Advanced-advanced adaptive memory configuration
- Adaptive
Memory Manager - Adaptive memory manager that adjusts algorithms based on available memory
- Adaptive
Threshold - Adaptive threshold calculator based on system capabilities
- Advanced
Adaptive Memory Manager - Advanced-advanced adaptive memory manager
- Advanced
Advanced Config - Advanced-advanced MCMC configuration
- Advanced
AdvancedMCMC - Advanced-advanced MCMC sampler with adaptive methods
- Advanced
Advanced Parallel Config - Advanced-advanced parallel configuration for massive scale operations
- Advanced
Advanced Parallel Processor - Advanced-advanced parallel processor for massive datasets
- Advanced
Advanced Results - MCMC sampling results
- Advanced
Advanced Streaming Processor - Advanced streaming processor with multiple algorithms
- Advanced
Bayesian Result - Advanced Bayesian inference result
- Advanced
Comprehensive Simd Config - Advanced-comprehensive SIMD configuration
- Advanced
Comprehensive Simd Processor - Advanced-comprehensive SIMD processor
- Advanced
Enhanced Simd Config - Advanced-advanced SIMD configuration
- Advanced
Enhanced Simd Processor - Advanced-enhanced SIMD processor with adaptive optimization
- Advanced
Matrix Stats Result - Advanced matrix statistics result
- Advanced
Memory Config - Memory configuration for large-scale processing
- Advanced
Memory Manager - Adaptive memory manager that monitors usage and adjusts strategies
- Advanced
Memory Statistics - Advanced
Multivariate Analysis - Advanced-advanced multivariate analysis framework
- Advanced
Multivariate Config - Configuration for advanced multivariate analysis
- Advanced
Multivariate Results - Advanced-advanced analysis results
- Advanced
Parallel Config - Advanced parallel configuration with work stealing and load balancing
- Advanced
Performance Metrics - Performance metrics snapshot
- Advanced
Quantum Analyzer - Advanced-advanced quantum-inspired statistical analyzer
- Advanced
Simd Config - Advanced SIMD configuration with platform detection
- Advanced
Simd Performance Stats - Performance statistics for SIMD operations
- Advanced
Simd Processor - Advanced-optimized SIMD statistical operations
- Advanced
Simd Results - Advanced-enhanced SIMD statistical results
- Advanced
Spectral Analyzer - Advanced-advanced spectral analysis framework
- Advanced
Spectral Config - Configuration for advanced spectral analysis
- Advanced
Spectral Results - Spectral analysis results
- Advanced
Stats Result - Advanced statistics result with performance metrics
- Advanced
Streaming Config - Configuration for advanced streaming analytics
- Advanced
Survival Analysis - Advanced-advanced survival analysis framework
- Advanced
Survival Config - Configuration for advanced survival analysis
- Advanced
Survival Results - Advanced-advanced survival analysis results
- Advanced
Topological Analyzer - Advanced-advanced topological data analyzer
- Allocation
Stats - Statistics for memory allocations
- Anomaly
Detector - Real-time anomaly detection
- Anomaly
Event - Anomaly detection event
- Baseline
Statistics - Statistical summary of baseline performance
- Bayesian
Gaussian Process - Gaussian process regression implementation
- Bayesian
Model - Individual Bayesian model for comparison
- Bayesian
Model Comparison - Advanced Bayesian model comparison framework
- Bayesian
Neural Network - Bayesian neural network implementation
- Bootstrap
Result - Results from bootstrap confidence interval estimation
- Cache
Aware Vector Processor - Cache-aware vector block processor
- Cache
Optimization Config - Cache optimization configuration
- Cache
Stats - Causal
Survival Config - Causal survival analysis configuration
- Change
Point Detector - Change point detection using advanced algorithms
- Change
Point Event - Change point detection event
- Clustering
Config - Advanced clustering configuration
- Coherence
Config - Coherence analysis configuration
- Coherence
Results - Coherence analysis results
- Competing
Risks Config - Competing risks configuration
- Compiler
Context - Compiler context during measurement
- Component
Diagnostics - Component diagnostics
- Comprehensive
Stats Result - Comprehensive statistical result with all metrics
- Compression
Engine - Intelligent data compression for streaming analytics
- Compression
Summary - Compression summary statistics
- Convergence
Diagnostics - Comprehensive convergence diagnostics
- CoxConfig
- Cox regression configuration
- CoxConvergence
Info - Cox model convergence information
- CoxProportional
Hazards - Cox Proportional Hazards Model
- CpuCapabilities
- Detected CPU capabilities for SIMD optimization
- Cross
Platform Regression Config - Cross-platform regression detection configuration
- Cross
Platform Regression Detector - Cross-platform regression detection system
- Enhanced
Kaplan Meier - Enhanced Kaplan-Meier estimator
- Enhanced
Parallel Config - Enhanced parallel configuration
- Enhanced
Parallel Processor - Enhanced parallel statistics processor
- Filtration
- Filtration representation
- GCResult
- GC result information
- GMMConfig
- Advanced GMM configuration
- GMMParameters
- Advanced GMM parameters with diagnostics
- Garbage
Collection Config - Garbage collection optimization configuration
- Gaussian
Mixture Model - Gaussian Mixture Model with EM algorithm
- Hardware
Config - Hardware configuration detection and optimization
- Hardware
Context - Hardware context during measurement
- Higher
Order Results - Higher-order spectral analysis results
- Higher
Order Spectral Config - Higher-order spectral analysis configuration
- IncrementalML
Model - Incremental machine learning model for streaming data
- KDEConfig
- KDE configuration
- Kernel
Density Estimator - Kernel Density Estimation
- Lazy
Stat Computation - Lazy evaluation for statistical operations
- Lazy
Stats - Lazy statistics calculator that computes values on demand
- MCMC
Performance Metrics - Performance metrics
- MLSpectral
Config - Machine learning enhanced spectral configuration
- MLSpectral
Results - Machine learning enhanced spectral results
- Manifold
Config - Manifold learning configuration
- Mapper
Edge - Mapper edge representation
- Mapper
Graph - Mapper graph structure
- Mapper
Node - Mapper node representation
- Matrix
Parallel Result - Result structure for parallel matrix operations
- Matrix
Stats Result - Results container for matrix statistics
- Memory
Adaptive Algorithm - Memory-aware algorithm selector
- Memory
Config - Memory usage configuration
- Memory
Constraints - Memory constraints configuration
- Memory
Pool - Memory pool for reusing allocations
- Memory
Pressure Config - Memory pressure detection and response
- Memory
Profiler - Comprehensive memory profiler for statistical operations
- Memory
Report - Memory usage report
- Memory
Tracker - Memory usage tracker for profiling
- Memory
Usage Statistics - Memory usage statistics
- Memory
Usage Stats - Memory usage statistics for monitoring
- Model
Comparison Result - Results from Bayesian model comparison
- Model
Selection Criteria - Model selection criteria
- Moving
WindowSIMD - SIMD-optimized moving window statistics
- Multi
Taper Config - Multi-taper spectral estimation configuration
- Multi
View Config - Multi-view learning configuration
- Multiscale
Results - Multi-scale analysis results
- NonStationary
Config - Non-stationary signal analysis configuration
- Numa
Config - NUMA (Non-Uniform Memory Access) configuration
- Operation
Performance - Performance metrics for a single operation
- Optimal
Algorithm - Optimal algorithm selection for specific scenarios
- Optimization
Config - Performance optimization configuration
- OutOf
Core Config - Out-of-core processing configuration
- PCAResult
- Parallel
Batch Processor - Parallel batch processor for statistical operations
- Parallel
Config - Configuration for parallel operations
- Parallel
Correlation Config - Parallel configuration for correlation computations
- Parallel
Cross Validation - Parallel cross-validation for model evaluation
- Parallel
Cross Validator - Parallel cross-validation framework
- Parallel
Histogram - Parallel histogram computation with adaptive binning
- Parallel
Matrix Ops - Parallel algorithm for efficient matrix operations used in statistics
- Parallel
Monte Carlo - Parallel Monte Carlo simulation framework
- Parallel
Moving Stats - Parallel moving statistics (rolling mean, std, etc.)
- Parameter
Snapshot - Parameter snapshot for tracking changes
- Performance
Baseline - Performance baseline data for a specific function and platform
- Performance
Measurement - Individual performance measurement
- Performance
Recommendation - Performance optimization recommendations
- Persistence
Diagram - Persistence diagram representation
- Platform
Comparison - Platform comparison information
- Platform
Info - Platform information for cross-platform comparison
- Predictive
Config - Predictive memory management configuration
- Profiled
Statistics - Memory-efficient statistical operations with profiling
- QAEResults
- Quantum amplitude estimation results
- QClustering
Results - Quantum clustering results
- QNNResults
- Quantum neural network results
- QPCA
Results - Quantum PCA results
- QSVM
Results - Quantum SVM results
- Quantum
Advantage Metrics - Quantum advantage metrics
- Quantum
Config - Configuration for quantum-inspired statistical methods
- Quantum
Ensemble Result - Results from quantum ensemble learning
- Quantum
Model - Quantum model representation
- Quantum
Monte Carlo Result - Results from quantum Monte Carlo integration
- Quantum
Performance Metrics - Performance metrics for quantum algorithms
- Quantum
Results - Results from quantum-inspired analysis
- Quantum
Variational Result - Results from quantum variational inference
- Regression
Analysis Result - Performance regression analysis results
- Regression
Report - Overall regression report
- Regression
Summary Statistics - Summary statistics for regression report
- Ring
Buffer Stats - Ring buffer for streaming statistics with fixed memory usage
- RobustGMM
- Robust Gaussian Mixture Model with outlier detection
- Robust
Stats - Robust statistics structure
- Rolling
Stats Result - Results container for rolling statistics
- Simd
Config - SIMD configuration for optimal performance
- Simplex
- Simplex representation
- Simplicial
Chain - Simplicial chain representation
- Simplicial
Complex - Simplicial complex representation
- Sliding
Window Stats - Sliding window statistics structure
- Spectral
Peak - Spectral peak characteristics
- Spectral
Performance Metrics - Performance metrics for spectral analysis
- Statistics
Cache - Memory-efficient cache for statistical computations
- Streaming
Analytics Result - Results from streaming analytics operations
- Streaming
Covariance - Streaming covariance matrix computation
- StreamingGMM
- Streaming/Online Gaussian Mixture Model
- Streaming
Histogram - Memory-efficient histogram computation
- Streaming
Performance Metrics - Performance metrics for streaming operations
- Streaming
Recommendation - Recommendations for optimizing streaming performance
- Streaming
Statistics - Real-time statistical metrics for streaming data
- Survival
Ensemble Config - Ensemble configuration
- Survival
Prediction - Survival prediction results
- Tempering
Config - Parallel tempering configuration
- Tensor
Config - Tensor analysis configuration
- Tensor
Network Results - Tensor network results
- Topological
Config - Configuration for topological data analysis
- Topological
Inference Results - Topological statistical inference results
- Topological
Performance Metrics - Performance metrics for topological analysis
- Topological
Results - Topological analysis results
- Trend
Analysis - Trend analysis for performance over time
- V4Comprehensive
Stats - Comprehensive statistical summary structure
- V6Bootstrap
Result - Bootstrap analysis result
- V6Comprehensive
Stats - Comprehensive statistics result
- V6Matrix
Stats Result - Matrix statistics result
- VQEResults
- VQE results
- Wavelet
Config - Wavelet analysis configuration
- Wavelet
Results - Wavelet analysis results
Enums§
- AFTDistribution
- Accelerated Failure Time distributions
- Activation
Function - Activation functions for neural networks
- Activation
Type - Activation functions for Bayesian neural networks
- Advanced
Prior - Advanced prior specifications
- Algorithm
Choice - Allocation
Strategy - Memory allocation strategy selection
- Anomaly
Detection Algorithm - Anomaly detection algorithms
- Anomaly
Severity - Anomaly severity levels
- Bandwidth
Method - Bandwidth selection methods
- Bootstrap
Statistic - Types of statistics that can be bootstrapped
- Cache
Optimization Strategy - Cache optimization strategies
- Change
Point Algorithm - Change point detection algorithms
- Clustering
Algorithm - Advanced clustering algorithms
- Coeffient
Field - Coefficient fields for homology computation
- Compression
Algorithm - Compression algorithms for streaming data
- Convergence
Reason - Convergence reasons
- Covariance
Constraint - Covariance constraints
- Covariance
Type - Covariance matrix types
- Data
Encoding Method - Data encoding methods for quantum circuits
- Dimensionality
Reduction Method - Advanced dimensionality reduction methods
- Distance
Metric - Distance metrics for point cloud analysis
- Either
- The enum
Either
with variantsLeft
andRight
is a general purpose sum type with two cases. - Filter
Function - Filter functions for Mapper algorithm
- Filtration
Type - Filtration types for building complexes
- ICAAlgorithm
- ICA algorithms
- Initialization
Method - Initialization methods
- Instruction
Set - Supported instruction sets
- Kernel
Type - Kernel types for KDE
- MLModel
Type - Types of incremental ML models
- Matrix
Operation - Types of matrix operations that can be computed
- Memory
Algorithm Choice - Memory
Alignment - Memory alignment preferences
- Memory
Pattern - Memory access pattern optimization
- Model
Selection Criterion - Model selection criteria
- Model
Type - Model types for Bayesian analysis
- Numerical
Stability Level - Numerical stability levels
- PCAVariant
- PCA variants
- Parallel
Strategy - Parallel processing strategy
- Persistence
Algorithm - Algorithms for persistent homology computation
- Prefetch
Strategy - Prefetch strategies for memory access
- Profiling
Level - Performance profiling levels
- Quantile
Interpolation - Methods for interpolating quantiles
- Quantum
Clustering Algorithm - Quantum clustering algorithms
- Quantum
Feature Encoding - Quantum feature encoding methods
- Quantum
Feature Map - Quantum feature map types
- Quantum
Kernel Type - Types of quantum kernels
- Quantum
Measurement Basis - Quantum measurement basis
- Regression
Status - Regression detection status
- Regression
Trend Direction - Direction of performance trend
- Rolling
Statistic - Types of rolling statistics that can be computed
- Sampling
Method - Advanced sampling methods
- Spectral
Activation Function - Activation functions for neural networks
- Spectrogram
Type - Spectrogram types
- Stream
Processing Mode - Stream processing modes
- Survival
Activation Function - Activation functions for neural networks
- Survival
Model - Survival model container
- Survival
Model Type - Advanced survival model types
- Tensor
Decomposition - Tensor decomposition methods
- Tensor
Network Type - Tensor network types
- V5Kernel
Type - Types of kernel functions for density estimation
- VQEAnsatz
- VQE ansatz types
- Vector
Strategy - Vector register optimization strategies
- Vectorization
Level - Vectorization aggressiveness levels
- Wavelet
Type - Wavelet types for time-frequency analysis
- Window
Function - Window functions for spectral analysis
- Windowing
Strategy - Windowing strategies for streaming data
Traits§
- Advanced
Simd Ops - Specialized SIMD operations for advanced statistics
- Advanced
Target - Advanced-advanced target distribution interface
Functions§
- advanced_
comprehensive_ simd - advanced_
mean_ f32 - Computes advanced-high-performance statistics for single-precision floating-point data.
- advanced_
mean_ f64 - Convenience functions for different precision types
- advanced_
mean_ simd - High-level convenience functions
- advanced_
std_ simd - batch_
correlations_ parallel - Parallel batch correlation computation
- batch_
normalize_ simd - SIMD-optimized batch normalization
- benchmark_
mixture_ models - Performance benchmarking for mixture models
- bootstrap_
mean_ simd - SIMD-optimized bootstrap statistics
- bootstrap_
parallel - Bootstrap resampling in parallel
- bootstrap_
parallel_ advanced - bootstrap_
parallel_ enhanced - Parallel bootstrap resampling
- boxplot_
stats - Compute boxplot statistics for a dataset.
- cache_
oblivious_ matrix_ mult - Cache-oblivious matrix multiplication for large correlation computations
- coef_
variation - Compute the coefficient of variation (CV) of a dataset.
- coefficient_
of_ variation_ simd - SIMD-optimized coefficient of variation
- comprehensive_
stats_ simd - SIMD-optimized comprehensive statistical summary
- corrcoef
- Compute a correlation matrix for a set of variables.
- corrcoef_
matrix_ simd - SIMD-optimized matrix multiplication for correlation matrices
- corrcoef_
memory_ aware - Memory-aware correlation matrix computation
- corrcoef_
parallel - Compute correlation matrix in parallel
- corrcoef_
parallel_ enhanced - Parallel and SIMD-optimized correlation matrix computation
- corrcoef_
simd - Compute correlation matrix using SIMD operations
- correlation_
matrix_ parallel_ advanced - cosine_
distance_ simd - SIMD-optimized cosine distance computation
- covariance_
chunked - Memory-efficient covariance matrix computation
- covariance_
matrix_ simd - SIMD-optimized batch covariance matrix computation
- covariance_
simd - Compute covariance using SIMD operations
- cox_
regression - create_
adaptive_ memory_ manager - Factory functions
- create_
advanced_ simd_ processor - Convenience functions for creating optimized SIMD processors
- create_
advanced_ streaming_ processor - Convenience function to create an advanced streaming processor
- create_
optimized_ memory_ manager - create_
performance_ optimized_ simd_ processor - Create an advanced-enhanced SIMD processor optimized for performance
- create_
regression_ detector - Convenience function to create a regression detector with default configuration
- create_
regression_ detector_ with_ config - Convenience function to create a regression detector with custom configuration
- create_
stability_ optimized_ simd_ processor - Create an advanced-enhanced SIMD processor optimized for numerical stability
- create_
streaming_ processor_ with_ config - Convenience function to create a streaming processor with custom configuration
- data_
range - Compute the range of a dataset.
- deciles
- Compute the deciles of a dataset.
- descriptive_
stats_ simd - Calculate multiple descriptive statistics in a single pass using SIMD
- detect_
outliers_ zscore_ simd - SIMD-optimized outlier detection using z-score method
- distance_
matrix_ simd - SIMD-optimized distance matrix computation
- euclidean_
distance_ simd - SIMD-optimized Euclidean distance computation
- exponential_
moving_ average_ simd - SIMD-optimized exponential moving average
- gaussian_
mixture_ model - Convenience functions
- gini_
coefficient - Compute the Gini coefficient of a dataset.
- gini_
simd - SIMD-optimized Gini coefficient
- gmm_
cross_ validation - Cross-validation for GMM hyperparameter tuning
- gmm_
model_ selection - Advanced model selection for GMM
- hierarchical_
gmm_ init - Hierarchical clustering-based mixture model initialization
- histogram_
simd - SIMD-optimized histogram computation
- icc
- Calculates the intraclass correlation coefficient (ICC) with confidence intervals.
- iqr
- Compute the interquartile range (IQR) of a dataset.
- iqr_
simd - SIMD-optimized Interquartile Range (IQR)
- kaplan_
meier - Convenience functions
- kde_
parallel - Parallel kernel density estimation
- kendall_
tau - Compute the Kendall tau correlation coefficient between two arrays.
- kendalltau
- Calculates the Kendall tau rank correlation coefficient and p-value.
- kernel_
density_ estimation - kurtosis
- Compute the kurtosis of a data set.
- kurtosis_
compat Deprecated - Backward compatibility: Compute the kurtosis without specifying workers parameter.
- linear_
regression_ simd - SIMD-optimized linear regression
- log_
rank_ test - Log-rank test for comparing survival curves
- mad_
simd - SIMD-optimized Mean Absolute Deviation (MAD)
- manhattan_
distance_ simd - SIMD-optimized Manhattan distance computation
- mean
- Compute the arithmetic mean of a data set.
- mean_
abs_ deviation - Compute the mean absolute deviation (MAD) of a dataset.
- mean_
parallel - Compute mean in parallel for large arrays
- mean_
parallel_ advanced - High-level convenience functions
- mean_
parallel_ enhanced - Enhanced parallel mean computation
- mean_
simd - Calculate the mean of an array using SIMD operations when available
- mean_
simd_ optimized - Optimized mean calculation using SIMD with chunked processing
- mean_
zero_ copy - Zero-copy mean calculation using views
- median
- Compute the median of a data set.
- median_
abs_ deviation - Compute the median absolute deviation (MAD) of a dataset.
- median_
abs_ deviation_ simd - SIMD-optimized median absolute deviation from median (MAD)
- median_
simd - SIMD-optimized median computation
- moment
- Compute the moment of a distribution.
- moment_
compat Deprecated - Backward compatibility: Compute the moment without specifying workers parameter.
- normalize_
inplace - In-place normalization (standardization) of data
- outlier_
detection_ zscore_ simd - SIMD-optimized outlier detection using Z-score
- pairwise_
distances_ parallel - Parallel computation of pairwise distances
- partial_
corr - Compute the partial correlation coefficient between two variables, controlling for one or more additional variables.
- partial_
corrr - Calculates the partial correlation coefficient and p-value.
- pca_
memory_ efficient - Memory-efficient principal component analysis
- pearson_
r - Compute the Pearson correlation coefficient between two arrays.
- pearson_
r_ simd - Compute the Pearson correlation coefficient using SIMD operations
- pearson_
r_ simd_ enhanced - SIMD-enhanced Pearson correlation computation
- pearsonr
- Calculates the Pearson correlation coefficient and p-value for testing non-correlation.
- percentile
- Compute the percentile of a dataset.
- percentile_
range_ simd - SIMD-optimized percentile range
- percentile_
simd - SIMD-optimized percentile computation
- point_
biserial - Compute the point-biserial correlation coefficient between a binary variable and a continuous variable.
- point_
biserialr - Calculates the point-biserial correlation coefficient and p-value.
- quantile
- Compute the quantile of a dataset.
- quantile_
quickselect - Memory-efficient quantile computation using quickselect
- quantile_
simd - SIMD-optimized quantile computation
- quantiles_
batch_ simd - SIMD-optimized quantile computation using partitioning
- quantiles_
parallel - Compute multiple quantiles in parallel
- quantiles_
simd - SIMD-optimized computation of multiple quantiles
- quartiles
- Compute the quartiles of a dataset.
- quickselect_
simd - SIMD-optimized quickselect algorithm for finding the k-th smallest element
- quintiles
- Compute the quintiles of a dataset.
- range_
simd - SIMD-optimized range calculation
- robust_
statistics_ simd - SIMD-optimized robust statistics computation
- robust_
stats_ v4_ simd - SIMD-optimized robust statistics using median-based methods
- rolling_
correlation_ parallel - Rolling correlation computation with parallel processing
- rolling_
statistics_ simd - SIMD-optimized rolling statistics with configurable functions
- row_
statistics_ parallel - Compute row-wise statistics in parallel
- sem_
simd - SIMD-optimized standard error of the mean
- skew
- Compute the skewness of a data set.
- skew_
compat Deprecated - Backward compatibility: Compute the skewness without specifying workers parameter.
- sliding_
window_ stats_ simd - SIMD-optimized sliding window statistics
- spearman_
r - Compute the Spearman rank correlation coefficient between two arrays.
- spearmanr
- Calculates the Spearman rank correlation coefficient and p-value.
- stats_
simd_ single_ pass - Compute all basic statistics in a single SIMD pass
- std
- Compute the standard deviation of a data set.
- std_
compat Deprecated - Backward compatibility: Compute the standard deviation without specifying workers parameter.
- std_
simd - Calculate standard deviation using SIMD operations
- streaming_
covariance_ matrix - Streaming covariance computation for large datasets
- streaming_
histogram_ adaptive - Enhanced streaming histogram computation with adaptive binning
- streaming_
mean - Streaming mean calculation that processes data in chunks
- streaming_
pca_ enhanced - Streaming principal component analysis for very large datasets
- streaming_
quantiles_ p2 - Memory-efficient streaming quantile computation using P² algorithm
- streaming_
regression_ enhanced - Enhanced streaming regression for large datasets with regularization
- ttest_
ind_ simd - SIMD-optimized t-test computation
- var
- Compute the variance of a data set.
- var_
compat Deprecated - Backward compatibility: Compute the variance without specifying workers parameter.
- variance_
cache_ aware - Cache-friendly variance computation
- variance_
parallel - Compute variance in parallel for large arrays
- variance_
parallel_ advanced - variance_
parallel_ enhanced - Parallel variance with single-pass algorithm
- variance_
simd - Calculate variance using SIMD operations
- variance_
simd_ optimized - Optimized variance calculation using single-pass SIMD algorithm
- weighted_
mean - Compute the weighted average of a data set.
- welford_
variance - Welford’s online algorithm for variance computation
- winsorized_
mean - Compute the winsorized mean of a dataset.
- winsorized_
variance - Compute the winsorized variance of a dataset.