Crate scirs2_stats

Crate scirs2_stats 

Source
Expand description

Statistical functions module

This module provides implementations of various statistical algorithms, modeled after SciPy’s stats module.

§Overview

  • Descriptive statistics

    • Basic statistics (mean, median, variance, etc.)
    • Advanced statistics (skewness, kurtosis, moments)
    • Correlation measures (Pearson, Spearman, Kendall tau, partial correlation)
    • Dispersion measures (MAD, median absolute deviation, IQR, range, coefficient of variation)
  • Statistical distributions

    • Normal distribution
    • Uniform distribution
    • Student’s t distribution
    • Chi-square distribution
    • F distribution
    • Poisson distribution
    • Gamma distribution
    • Beta distribution
    • Exponential distribution
    • Hypergeometric distribution
    • Laplace distribution
    • Logistic distribution
    • Cauchy distribution
    • Pareto distribution
    • Weibull distribution
    • Multivariate distributions (multivariate normal, multivariate t, dirichlet, wishart, etc.)
  • Statistical tests

    • Parametric tests (t-tests, ANOVA)
    • Non-parametric tests (Mann-Whitney U)
    • Normality tests (Shapiro-Wilk, Anderson-Darling, D’Agostino’s K²)
    • Goodness-of-fit tests (Chi-square)
  • Random number generation

  • Regression models (linear, regularized, robust)

  • Bayesian statistics (conjugate priors, Bayesian linear regression)

  • MCMC methods (Metropolis-Hastings, adaptive sampling)

  • Multivariate analysis (PCA, incremental PCA)

  • Contingency table functions

  • Masked array statistics

  • Quasi-Monte Carlo

  • Statistical sampling

  • Survival analysis (Kaplan-Meier, Cox proportional hazards, log-rank test)

§Examples

§Descriptive Statistics

use ndarray::array;
use scirs2_stats::{mean, median, std, var, skew, kurtosis};

let data = array![1.0, 2.0, 3.0, 4.0, 5.0];

// Calculate basic statistics
let mean_val = mean(&data.view()).unwrap();
let median_val = median(&data.view()).unwrap();
let var_val = var(&data.view(), 0, None).unwrap();  // ddof = 0 for population variance
let std_val = std(&data.view(), 0, None).unwrap();  // ddof = 0 for population standard deviation

// Advanced statistics
let skewness = skew(&data.view(), false, None).unwrap();  // bias = false
let kurt = kurtosis(&data.view(), true, false, None).unwrap();  // fisher = true, bias = false

§Correlation Measures

use ndarray::{array, Array2};
use scirs2_stats::{pearson_r, pearsonr, spearman_r, kendall_tau, corrcoef};

let x = array![1.0, 2.0, 3.0, 4.0, 5.0];
let y = array![5.0, 4.0, 3.0, 2.0, 1.0];

// Calculate Pearson correlation coefficient (linear correlation)
let r = pearson_r(&x.view(), &y.view()).unwrap();
println!("Pearson correlation: {}", r);  // Should be -1.0 (perfect negative correlation)

// Calculate Pearson correlation with p-value
let (r, p) = pearsonr(&x.view(), &y.view(), "two-sided").unwrap();
println!("Pearson correlation: {}, p-value: {}", r, p);

// Spearman rank correlation (monotonic relationship)
let rho = spearman_r(&x.view(), &y.view()).unwrap();
println!("Spearman correlation: {}", rho);

// Kendall tau rank correlation
let tau = kendall_tau(&x.view(), &y.view(), "b").unwrap();
println!("Kendall tau correlation: {}", tau);

// Correlation matrix for multiple variables
let data = array![
    [1.0, 5.0, 10.0],
    [2.0, 4.0, 9.0],
    [3.0, 3.0, 8.0],
    [4.0, 2.0, 7.0],
    [5.0, 1.0, 6.0]
];

let corr_matrix = corrcoef(&data.view(), "pearson").unwrap();
println!("Correlation matrix:\n{:?}", corr_matrix);

§Dispersion Measures

use ndarray::array;
use scirs2_stats::{
    mean_abs_deviation, median_abs_deviation, iqr, data_range, coef_variation
};

let data = array![1.0, 2.0, 3.0, 4.0, 5.0, 100.0];  // Note the outlier

// Mean absolute deviation (from mean)
let mad = mean_abs_deviation(&data.view(), None).unwrap();
println!("Mean absolute deviation: {}", mad);

// Median absolute deviation (robust to outliers)
let median_ad = median_abs_deviation(&data.view(), None, None).unwrap();
println!("Median absolute deviation: {}", median_ad);

// Scaled median absolute deviation (consistent with std dev for normal distributions)
let median_ad_scaled = median_abs_deviation(&data.view(), None, Some(1.4826)).unwrap();
println!("Scaled median absolute deviation: {}", median_ad_scaled);

// Interquartile range (Q3 - Q1)
let iqr_val = iqr(&data.view(), None).unwrap();
println!("Interquartile range: {}", iqr_val);

// Range (max - min)
let range_val = data_range(&data.view()).unwrap();
println!("Range: {}", range_val);

// Coefficient of variation (std/mean, unitless measure)
let cv = coef_variation(&data.view(), 1).unwrap();
println!("Coefficient of variation: {}", cv);

§Statistical Distributions

use scirs2_stats::distributions;

// Normal distribution
let normal = distributions::norm(0.0f64, 1.0).unwrap();
let pdf = normal.pdf(0.0);
let cdf = normal.cdf(1.96);
let samples = normal.rvs(100).unwrap();

// Poisson distribution
let poisson = distributions::poisson(3.0f64, 0.0).unwrap();
let pmf = poisson.pmf(2.0);
let cdf = poisson.cdf(4.0);
let samples = poisson.rvs(100).unwrap();

// Gamma distribution
let gamma = distributions::gamma(2.0f64, 1.0, 0.0).unwrap();
let pdf = gamma.pdf(1.0);
let cdf = gamma.cdf(2.0);
let samples = gamma.rvs(100).unwrap();

// Beta distribution
let beta = distributions::beta(2.0f64, 3.0, 0.0, 1.0).unwrap();
let pdf = beta.pdf(0.5);
let samples = beta.rvs(100).unwrap();

// Exponential distribution
let exp = distributions::expon(1.0f64, 0.0).unwrap();
let pdf = exp.pdf(1.0);
let mean = exp.mean(); // Should be 1.0

// Multivariate normal distribution
use ndarray::array;
let mvn_mean = array![0.0, 0.0];
let mvn_cov = array![[1.0, 0.5], [0.5, 2.0]];
let mvn = distributions::multivariate::multivariate_normal(mvn_mean, mvn_cov).unwrap();
let pdf = mvn.pdf(&array![0.0, 0.0]);
let samples = mvn.rvs(100).unwrap();

§Statistical Tests

use ndarray::{array, Array2};
use scirs2_stats::{
    ttest_1samp, ttest_ind, ttest_rel, kstest, shapiro, mann_whitney,
    shapiro_wilk, anderson_darling, dagostino_k2, wilcoxon, kruskal_wallis, friedman,
    ks_2samp, distributions, Alternative
};
use scirs2_stats::tests::ttest::Alternative as TTestAlternative;

// One-sample t-test (we'll use a larger sample for normality tests)
let data = array![
    5.1, 4.9, 6.2, 5.7, 5.5, 5.1, 5.2, 5.0, 5.3, 5.4,
    5.6, 5.8, 5.9, 6.0, 5.2, 5.4, 5.3, 5.1, 5.2, 5.0
];
let result = ttest_1samp(&data.view(), 5.0, TTestAlternative::TwoSided, "propagate").unwrap();
let t_stat = result.statistic;
let p_value = result.pvalue;
println!("One-sample t-test: t={}, p={}", t_stat, p_value);

// Two-sample t-test
let group1 = array![5.1, 4.9, 6.2, 5.7, 5.5];
let group2 = array![4.8, 5.2, 5.1, 4.7, 4.9];
let result = ttest_ind(&group1.view(), &group2.view(), true, TTestAlternative::TwoSided, "propagate").unwrap();
let t_stat = result.statistic;
let p_value = result.pvalue;
println!("Two-sample t-test: t={}, p={}", t_stat, p_value);

// Normality tests
let (w_stat, p_value) = shapiro(&data.view()).unwrap();
println!("Shapiro-Wilk test: W={}, p={}", w_stat, p_value);

// More accurate Shapiro-Wilk test implementation
let (w_stat, p_value) = shapiro_wilk(&data.view()).unwrap();
println!("Improved Shapiro-Wilk test: W={}, p={}", w_stat, p_value);

// Anderson-Darling test for normality
let (a2_stat, p_value) = anderson_darling(&data.view()).unwrap();
println!("Anderson-Darling test: A²={}, p={}", a2_stat, p_value);

// D'Agostino's K² test combining skewness and kurtosis
let (k2_stat, p_value) = dagostino_k2(&data.view()).unwrap();
println!("D'Agostino K² test: K²={}, p={}", k2_stat, p_value);

// Non-parametric tests

// Wilcoxon signed-rank test (paired samples)
let before = array![125.0, 115.0, 130.0, 140.0, 140.0];
let after = array![110.0, 122.0, 125.0, 120.0, 140.0];
let (w, p_value) = wilcoxon(&before.view(), &after.view(), "wilcox", true).unwrap();
println!("Wilcoxon signed-rank test: W={}, p={}", w, p_value);

// Mann-Whitney U test (independent samples)
let males = array![19.0, 22.0, 16.0, 29.0, 24.0];
let females = array![20.0, 11.0, 17.0, 12.0];
let (u, p_value) = mann_whitney(&males.view(), &females.view(), "two-sided", true).unwrap();
println!("Mann-Whitney U test: U={}, p={}", u, p_value);

// Kruskal-Wallis test (unpaired samples)
let group1 = array![2.9, 3.0, 2.5, 2.6, 3.2];
let group2 = array![3.8, 3.7, 3.9, 4.0, 4.2];
let group3 = array![2.8, 3.4, 3.7, 2.2, 2.0];
let samples = vec![group1.view(), group2.view(), group3.view()];
let (h, p_value) = kruskal_wallis(&samples).unwrap();
println!("Kruskal-Wallis test: H={}, p={}", h, p_value);

// Friedman test (repeated measures)
let data = array![
    [7.0, 9.0, 8.0],
    [6.0, 5.0, 7.0],
    [9.0, 7.0, 6.0],
    [8.0, 5.0, 6.0]
];
let (chi2, p_value) = friedman(&data.view()).unwrap();
println!("Friedman test: Chi²={}, p={}", chi2, p_value);

// One-sample distribution fit test
let normal = distributions::norm(0.0f64, 1.0).unwrap();
let standardizeddata = array![0.1, -0.2, 0.3, -0.1, 0.2];
let (ks_stat, p_value) = kstest(&standardizeddata.view(), |x| normal.cdf(x)).unwrap();
println!("Kolmogorov-Smirnov one-sample test: D={}, p={}", ks_stat, p_value);

// Two-sample KS test
let sample1 = array![0.1, 0.2, 0.3, 0.4, 0.5];
let sample2 = array![0.6, 0.7, 0.8, 0.9, 1.0];
let (ks_stat, p_value) = ks_2samp(&sample1.view(), &sample2.view(), "two-sided").unwrap();
println!("Kolmogorov-Smirnov two-sample test: D={}, p={}", ks_stat, p_value);

§Random Number Generation

use scirs2_stats::random::{uniform, randn, randint, choice};
use ndarray::array;

// Generate uniform random numbers between 0 and 1
let uniform_samples = uniform(0.0, 1.0, 10, Some(42)).unwrap();

// Generate standard normal random numbers
let normal_samples = randn(10, Some(123)).unwrap();

// Generate random integers between 1 and 100
let int_samples = randint(1, 101, 5, Some(456)).unwrap();

// Randomly choose elements from an array
let options = array!["apple", "banana", "cherry", "date", "elderberry"];
let choices = choice(&options.view(), 3, false, None, Some(789)).unwrap();

§Statistical Sampling

use scirs2_stats::sampling;
use ndarray::array;

// Create an array
let data = array![1.0, 2.0, 3.0, 4.0, 5.0];

// Generate bootstrap samples
let bootstrap_samples = sampling::bootstrap(&data.view(), 10, Some(42)).unwrap();

// Generate a random permutation
let permutation = sampling::permutation(&data.view(), Some(123)).unwrap();

Re-exports§

pub use adaptive_simd_optimization::create_adaptive_simd_optimizer;
pub use adaptive_simd_optimization::optimize_simd_operation;
pub use adaptive_simd_optimization::AdaptiveSimdConfig;
pub use adaptive_simd_optimization::AdaptiveSimdOptimizer;
pub use adaptive_simd_optimization::DataCharacteristics as SimdDataCharacteristics;
pub use adaptive_simd_optimization::HardwareCapabilities;
pub use adaptive_simd_optimization::OptimizationLevel;
pub use adaptive_simd_optimization::PerformanceStatistics;
pub use adaptive_simd_optimization::SimdOptimizationResult;
pub use adaptive_simd_optimization::SimdStrategy;
pub use api_standardization::Alternative;
pub use api_standardization::CorrelationBuilder;
pub use api_standardization::CorrelationMethod;
pub use api_standardization::CorrelationResult;
pub use api_standardization::DescriptiveStats;
pub use api_standardization::DescriptiveStatsBuilder;
pub use api_standardization::F32DescriptiveBuilder;
pub use api_standardization::F32StatsAnalyzer;
pub use api_standardization::F64DescriptiveBuilder;
pub use api_standardization::F64StatsAnalyzer;
pub use api_standardization::NullHandling;
pub use api_standardization::StandardizedConfig;
pub use api_standardization::StandardizedResult;
pub use api_standardization::StatsAnalyzer;
pub use api_standardization::TestResult;
pub use api_standardization_enhanced::quick_correlation;
pub use api_standardization_enhanced::quick_descriptive;
pub use api_standardization_enhanced::stats;
pub use api_standardization_enhanced::stats_with;
pub use api_standardization_enhanced::AutoOptimizationLevel;
pub use api_standardization_enhanced::ChainedResults;
pub use api_standardization_enhanced::CorrelationMethod as EnhancedCorrelationMethod;
pub use api_standardization_enhanced::CorrelationType;
pub use api_standardization_enhanced::FluentCorrelation;
pub use api_standardization_enhanced::FluentDescriptive;
pub use api_standardization_enhanced::FluentRegression;
pub use api_standardization_enhanced::FluentStats;
pub use api_standardization_enhanced::FluentStatsConfig;
pub use api_standardization_enhanced::FluentTesting;
pub use api_standardization_enhanced::MemoryStrategy;
pub use api_standardization_enhanced::OperationResult;
pub use api_standardization_enhanced::OperationType;
pub use api_standardization_enhanced::RegressionType;
pub use api_standardization_enhanced::ResultFormat;
pub use api_standardization_enhanced::StatisticalOperation;
pub use api_standardization_enhanced::TestType;
pub use benchmark_suite::AlgorithmConfig;
pub use benchmark_suite::BenchmarkConfig;
pub use benchmark_suite::BenchmarkMetrics;
pub use benchmark_suite::BenchmarkReport;
pub use benchmark_suite::BenchmarkSuite;
pub use benchmark_suite::ComplexityClass;
pub use benchmark_suite::MemoryStats;
pub use benchmark_suite::OptimizationRecommendation;
pub use benchmark_suite::PerformanceAnalysis;
pub use benchmark_suite::TimingStats;
pub use benchmark_suite_enhanced::create_configured_enhanced_benchmark_suite;
pub use benchmark_suite_enhanced::create_enhanced_benchmark_suite;
pub use benchmark_suite_enhanced::run_quick_ai_analysis;
pub use benchmark_suite_enhanced::AIPerformanceAnalysis;
pub use benchmark_suite_enhanced::AnomalyType;
pub use benchmark_suite_enhanced::BottleneckType;
pub use benchmark_suite_enhanced::CrossPlatformAnalysis;
pub use benchmark_suite_enhanced::EnhancedBenchmarkConfig;
pub use benchmark_suite_enhanced::EnhancedBenchmarkReport;
pub use benchmark_suite_enhanced::EnhancedBenchmarkSuite;
pub use benchmark_suite_enhanced::ImplementationEffort;
pub use benchmark_suite_enhanced::IntelligentRecommendation;
pub use benchmark_suite_enhanced::MLModelConfig;
pub use benchmark_suite_enhanced::MemoryHierarchy;
pub use benchmark_suite_enhanced::PerformanceBottleneck;
pub use benchmark_suite_enhanced::PerformancePrediction;
pub use benchmark_suite_enhanced::PlatformTarget;
pub use benchmark_suite_enhanced::RecommendationCategory;
pub use benchmark_suite_enhanced::RecommendationPriority;
pub use benchmark_suite_enhanced::RegressionAnalysis;
pub use benchmark_suite_enhanced::RegressionSeverity;
pub use benchmark_suite_enhanced::SimdCapabilities;
pub use benchmark_suite_enhanced::TrendDirection;
pub use error::StatsError;
pub use error::StatsResult;
pub use error_diagnostics::generate_global_health_report;
pub use error_diagnostics::get_global_statistics;
pub use error_diagnostics::global_monitor;
pub use error_diagnostics::record_global_error;
pub use error_diagnostics::CriticalIssue;
pub use error_diagnostics::ErrorMonitor;
pub use error_diagnostics::ErrorOccurrence;
pub use error_diagnostics::ErrorPattern;
pub use error_diagnostics::ErrorStatistics;
pub use error_diagnostics::ErrorTrend;
pub use error_diagnostics::HealthReport;
pub use error_diagnostics::Recommendation;
pub use error_handling_enhancements::AdvancedContextBuilder;
pub use error_handling_enhancements::AdvancedErrorContext;
pub use error_handling_enhancements::AdvancedErrorMessages;
pub use error_handling_enhancements::AdvancedErrorRecovery;
pub use error_handling_enhancements::OptimizationSuggestion;
pub use error_handling_enhancements::RecoveryStrategy;
pub use error_handling_v2::EnhancedError;
pub use error_handling_v2::ErrorBuilder;
pub use error_handling_v2::ErrorCode;
pub use error_handling_v2::ErrorContext as ErrorContextV2;
pub use error_handling_v2::PerformanceImpact;
pub use error_handling_v2::RecoverySuggestion;
pub use error_recovery_system::enhance_error_with_recovery;
pub use error_recovery_system::initialize_error_recovery;
pub use error_recovery_system::CodeSnippet;
pub use error_recovery_system::ComputationState;
pub use error_recovery_system::ConvergenceStatus;
pub use error_recovery_system::DataCharacteristics;
pub use error_recovery_system::DistributionInfo;
pub use error_recovery_system::EnhancedStatsError;
pub use error_recovery_system::ErrorContext;
pub use error_recovery_system::ErrorRecoveryConfig;
pub use error_recovery_system::ErrorRecoverySystem;
pub use error_recovery_system::ErrorSeverity;
pub use error_recovery_system::ImpactLevel;
pub use error_recovery_system::MissingDataInfo;
pub use error_recovery_system::MissingPattern;
pub use error_recovery_system::PerformanceImpact as RecoveryPerformanceImpact;
pub use error_recovery_system::PreprocessingStep;
pub use error_recovery_system::RangeInfo;
pub use error_recovery_system::RecoveryAction;
pub use error_recovery_system::RecoverySuggestion as RecoveryRecoverySuggestion;
pub use error_recovery_system::SizeInfo;
pub use error_recovery_system::SuggestionType;
pub use error_recovery_system::SystemInfo;
pub use error_recovery_system::ValidationCheck;
pub use error_standardization::AutoRecoverySystem;
pub use error_standardization::BatchErrorHandler;
pub use error_standardization::DataDiagnostics;
pub use error_standardization::DataQualityIssue;
pub use error_standardization::EnhancedErrorContext;
pub use error_standardization::ErrorDiagnostics;
pub use error_standardization::ErrorMessages;
pub use error_standardization::ErrorValidator;
pub use error_standardization::InterModuleErrorChecker;
pub use error_standardization::PerformanceImpact as StandardizedPerformanceImpact;
pub use error_standardization::RecoverySuggestions;
pub use error_standardization::StandardizedErrorReporter;
pub use error_standardization::StatsSummary;
pub use error_standardization::SystemDiagnostics;
pub use error_suggestions::diagnose_error;
pub use error_suggestions::DiagnosisReport;
pub use error_suggestions::ErrorFormatter;
pub use error_suggestions::ErrorType;
pub use error_suggestions::Severity;
pub use error_suggestions::Suggestion;
pub use error_suggestions::SuggestionEngine;
pub use intelligent_error_recovery::create_intelligent_recovery;
pub use intelligent_error_recovery::get_intelligent_suggestions;
pub use intelligent_error_recovery::IntelligentErrorRecovery;
pub use intelligent_error_recovery::IntelligentRecoveryStrategy;
pub use intelligent_error_recovery::RecoveryConfig;
pub use intelligent_error_recovery::ResourceRequirements;
pub use intelligent_error_recovery::RiskLevel;
pub use memory_optimization_advanced::AdaptiveStatsAllocator;
pub use memory_optimization_advanced::CacheOptimizedMatrix;
pub use memory_optimization_advanced::MatrixLayout;
pub use memory_optimization_advanced::MemoryOptimizationConfig;
pub use memory_optimization_advanced::MemoryOptimizationReport;
pub use memory_optimization_advanced::MemoryOptimizationSuite;
pub use memory_optimization_advanced::MemoryProfile;
pub use memory_optimization_advanced::StreamingStatsCalculator;
pub use memory_optimization_enhanced::create_configured_memory_optimizer;
pub use memory_optimization_enhanced::create_enhanced_memory_optimizer;
pub use memory_optimization_enhanced::EnhancedMemoryOptimizer;
pub use memory_optimization_enhanced::GarbageCollectionResult;
pub use memory_optimization_enhanced::MemoryOptimizationConfig as EnhancedMemoryConfig;
pub use memory_optimization_enhanced::MemoryStatistics as EnhancedMemoryStatistics;
pub use memory_optimization_enhanced::OptimizationRecommendation as EnhancedOptimizationRecommendation;
pub use performance_benchmark_suite::AdvancedBenchmarkConfig;
pub use performance_benchmark_suite::AdvancedBenchmarkMetrics;
pub use performance_benchmark_suite::AdvancedBenchmarkReport;
pub use performance_benchmark_suite::AdvancedBenchmarkSuite;
pub use performance_benchmark_suite::ComprehensiveAnalysis;
pub use performance_benchmark_suite::CrossPlatformAssessment;
pub use performance_benchmark_suite::ScalabilityAssessment;
pub use performance_benchmark_suite::StabilityAssessment;
pub use performance_optimization::OptimizedCanonicalCorrelationAnalysis;
pub use performance_optimization::OptimizedLinearDiscriminantAnalysis;
pub use performance_optimization::PerformanceBenchmark;
pub use performance_optimization::PerformanceConfig;
pub use performance_optimization::PerformanceMetrics;
pub use scipy_benchmark_comparison::run_function_comparison;
pub use scipy_benchmark_comparison::run_scipy_comparison;
pub use scipy_benchmark_comparison::AccuracyComparison;
pub use scipy_benchmark_comparison::AccuracyRating;
pub use scipy_benchmark_comparison::ComparisonRecommendation;
pub use scipy_benchmark_comparison::ComparisonStatus;
pub use scipy_benchmark_comparison::FunctionComparison;
pub use scipy_benchmark_comparison::PerformanceComparison;
pub use scipy_benchmark_comparison::PerformanceRating;
pub use scipy_benchmark_comparison::ScipyBenchmarkComparison;
pub use scipy_benchmark_comparison::ScipyComparisonConfig;
pub use scipy_benchmark_comparison::ScipyComparisonReport;
pub use unified_error_handling::create_standardized_error;
pub use unified_error_handling::global_error_handler;
pub use unified_error_handling::UnifiedErrorHandler;
pub use api_improvements::CorrelationExt;
pub use api_improvements::OptimizationHint;
pub use api_improvements::StatsBuilder;
pub use api_improvements::StatsConfig;
pub use advanced_bootstrap::block_bootstrap;
pub use advanced_bootstrap::circular_block_bootstrap;
pub use advanced_bootstrap::moving_block_bootstrap;
pub use advanced_bootstrap::stationary_bootstrap;
pub use advanced_bootstrap::stratified_bootstrap;
pub use advanced_bootstrap::AdvancedBootstrapConfig;
pub use advanced_bootstrap::AdvancedBootstrapProcessor;
pub use advanced_bootstrap::AdvancedBootstrapResult;
pub use advanced_bootstrap::BlockType;
pub use advanced_bootstrap::BootstrapConfidenceIntervals;
pub use advanced_bootstrap::BootstrapDiagnostics;
pub use advanced_bootstrap::BootstrapDistributionStats;
pub use advanced_bootstrap::BootstrapType;
pub use advanced_bootstrap::ConvergenceInfo;
pub use advanced_bootstrap::ParametricBootstrapParams;
pub use advanced_bootstrap::QualityMetrics;
pub use advanced_bootstrap::TaperFunction;
pub use advanced_bootstrap::WildDistribution;
pub use advanced_integration::BayesianAnalysisResult;
pub use advanced_integration::BayesianAnalysisWorkflow;
pub use advanced_integration::BayesianModelMetrics;
pub use advanced_integration::DimensionalityAnalysisResult;
pub use advanced_integration::DimensionalityAnalysisWorkflow;
pub use advanced_integration::DimensionalityMetrics;
pub use advanced_integration::DimensionalityRecommendations;
pub use advanced_integration::QMCQualityMetrics;
pub use advanced_integration::QMCResult;
pub use advanced_integration::QMCSequenceType;
pub use advanced_integration::QMCWorkflow;
pub use advanced_integration::SurvivalAnalysisResult;
pub use advanced_integration::SurvivalAnalysisWorkflow;
pub use advanced_integration::SurvivalSummaryStats;
pub use advanced_parallel_monte_carlo::integrate_parallel;
pub use advanced_parallel_monte_carlo::AdvancedParallelMonteCarlo;
pub use advanced_parallel_monte_carlo::GaussianFunction;
pub use advanced_parallel_monte_carlo::IntegrableFunction;
pub use advanced_parallel_monte_carlo::IntegrationMetrics;
pub use advanced_parallel_monte_carlo::MonteCarloConfig;
pub use advanced_parallel_monte_carlo::MonteCarloResult;
pub use advanced_parallel_monte_carlo::TestFunction;
pub use advanced_parallel_monte_carlo::VarianceReductionConfig;
pub use api_consistency_validation::validate_api_consistency;
pub use api_consistency_validation::APIConsistencyValidator;
pub use api_consistency_validation::APIInconsistency;
pub use api_consistency_validation::CheckCategory;
pub use api_consistency_validation::DocumentationStatus;
pub use api_consistency_validation::FunctionCategory;
pub use api_consistency_validation::FunctionPattern;
pub use api_consistency_validation::FunctionRegistry;
pub use api_consistency_validation::FunctionSignature;
pub use api_consistency_validation::InconsistencyType;
pub use api_consistency_validation::NamingConventions;
pub use api_consistency_validation::ParameterInfo;
pub use api_consistency_validation::ParameterUsage;
pub use api_consistency_validation::ReturnTypeInfo;
pub use api_consistency_validation::Severity as APISeverity;
pub use api_consistency_validation::ValidationCheck as APIValidationCheck;
pub use api_consistency_validation::ValidationConfig;
pub use api_consistency_validation::ValidationReport;
pub use api_consistency_validation::ValidationResults;
pub use api_consistency_validation::ValidationStatus;
pub use api_consistency_validation::ValidationSummary;
pub use api_consistency_validation::ValidationWarning;
pub use production_deployment::create_cloud_production_config;
pub use production_deployment::create_container_production_config;
pub use production_deployment::CheckResult;
pub use production_deployment::CheckSeverity;
pub use production_deployment::CheckStatus;
pub use production_deployment::CloudProvider;
pub use production_deployment::ContainerRuntime;
pub use production_deployment::CpuFeatures;
pub use production_deployment::EnvironmentSpec;
pub use production_deployment::EnvironmentType;
pub use production_deployment::HealthCheck;
pub use production_deployment::HealthCheckResult;
pub use production_deployment::HealthChecker;
pub use production_deployment::HealthStatus;
pub use production_deployment::MemoryLimits;
pub use production_deployment::PerformanceMonitor;
pub use production_deployment::PerformanceRequirements;
pub use production_deployment::ProductionConfig;
pub use production_deployment::ProductionDeploymentValidator;
pub use production_deployment::ServerlessPlatform;
pub use production_deployment::SimdFeature;
pub use production_deployment::ValidationResults as ProductionValidationResults;
pub use traits::CircularDistribution;
pub use traits::ContinuousDistribution;
pub use traits::DiscreteDistribution;
pub use traits::Distribution;
pub use traits::Fittable;
pub use traits::MultivariateDistribution;
pub use traits::Truncatable;
pub use moments_simd::kurtosis_simd;
pub use moments_simd::moment_simd;
pub use moments_simd::moments_batch_simd;
pub use moments_simd::skewness_simd;
pub use simd_enhanced_core::comprehensive_stats_simd as comprehensive_stats_enhanced;
pub use simd_enhanced_core::correlation_simd_enhanced;
pub use simd_enhanced_core::mean_enhanced;
pub use simd_enhanced_core::variance_enhanced;
pub use simd_enhanced_core::ComprehensiveStats;
pub use advanced_simd_stats::AccuracyLevel;
pub use advanced_simd_stats::AdvancedSimdConfig as AdvancedSimdConfigV2;
pub use advanced_simd_stats::AdvancedSimdOptimizer;
pub use advanced_simd_stats::AlgorithmChoice as AdvancedAlgorithmChoice;
pub use advanced_simd_stats::BatchOperation;
pub use advanced_simd_stats::BatchResults;
pub use advanced_simd_stats::MemoryConstraints as AdvancedMemoryConstraints;
pub use advanced_simd_stats::PerformancePreference;
pub use advanced_simd_stats::PerformanceProfile as AdvancedPerformanceProfile;
pub use advanced_simd_stats::ScalarAlgorithm;
pub use advanced_simd_stats::SimdAlgorithm;
pub use advanced_simd_stats::ThreadingPreferences;
pub use parallel_enhanced_advanced::create_advanced_parallel_processor;
pub use parallel_enhanced_advanced::create_configured_parallel_processor;
pub use parallel_enhanced_advanced::AdvancedParallelConfig as EnhancedAdvancedParallelConfig;
pub use parallel_enhanced_advanced::AdvancedParallelProcessor;
pub use parallel_enhanced_advanced::ChunkStrategy;
pub use mcmc::ChainStatistics;
pub use tests::anova::one_way_anova;
pub use tests::anova::tukey_hsd;
pub use tests::chi2_test::chi2_gof;
pub use tests::chi2_test::chi2_independence;
pub use tests::chi2_test::chi2_yates;
pub use tests::nonparametric::friedman;
pub use tests::nonparametric::kruskal_wallis;
pub use tests::nonparametric::mann_whitney;
pub use tests::nonparametric::wilcoxon;
pub use tests::normality::anderson_darling;
pub use tests::normality::dagostino_k2;
pub use tests::normality::ks_2samp;
pub use tests::normality::shapiro_wilk;
pub use tests::ttest::ttest_1samp;
pub use tests::ttest::ttest_ind;
pub use tests::ttest::ttest_ind_from_stats;
pub use tests::ttest::ttest_rel;
pub use tests::ttest::TTestResult;
pub use distribution_characteristics::cross_entropy;
pub use distribution_characteristics::entropy;
pub use distribution_characteristics::kl_divergence;
pub use distribution_characteristics::kurtosis_ci;
pub use distribution_characteristics::mode;
pub use distribution_characteristics::skewness_ci;
pub use distribution_characteristics::ConfidenceInterval;
pub use distribution_characteristics::Mode;
pub use distribution_characteristics::ModeMethod;
pub use regression::elastic_net;
pub use regression::group_lasso;
pub use regression::huber_regression;
pub use regression::lasso_regression;
pub use regression::linear_regression;
pub use regression::linregress;
pub use regression::multilinear_regression;
pub use regression::odr;
pub use regression::polyfit;
pub use regression::ransac;
pub use regression::ridge_regression;
pub use regression::stepwise_regression;
pub use regression::theilslopes;
pub use regression::HuberT;
pub use regression::RegressionResults;
pub use regression::StepwiseCriterion;
pub use regression::StepwiseDirection;
pub use regression::StepwiseResults;
pub use regression::TheilSlopesResult;
pub use tests::*;
pub use random::*;

Modules§

adaptive_simd_optimization
Adaptive SIMD optimization framework for scirs2-stats v1.0.0
advanced_bootstrap
Advanced bootstrap methods for complex statistical inference
advanced_integration
Advanced Statistical Analysis Integration
advanced_parallel_monte_carlo
Advanced parallel Monte Carlo integration with adaptive sampling
advanced_simd_stats
advanced Advanced SIMD Optimization System
api_consistency_validation
Comprehensive API consistency validation framework
api_improvements
API improvements for v1.0.0 release
api_standardization
API standardization and consistency framework for scirs2-stats v1.0.0
api_standardization_enhanced
Enhanced API Standardization Framework for scirs2-stats v1.0.0+
bayesian
Bayesian statistical methods
benchmark_suite
Comprehensive benchmark suite for scirs2-stats performance analysis
benchmark_suite_enhanced
Enhanced AI-Driven Benchmark Suite for scirs2-stats
cache_friendly
Cache-friendly matrix operations
contingency
Contingency table functions
distribution_characteristics
Distribution characteristic statistics
distributions
Statistical distributions
error
Error types for the SciRS2 statistics module
error_context
Enhanced error context and recovery suggestions
error_diagnostics
Error diagnostics and monitoring system
error_handling_enhancements
Advanced Error Handling Enhancements
error_handling_v2
Enhanced error handling system for v1.0.0
error_messages
Standardized error messages and error creation helpers
error_recovery_system
Enhanced error handling and recovery system
error_standardization
Error message standardization for consistent error handling
error_suggestions
Enhanced error suggestion system with context-aware recovery strategies
intelligent_error_recovery
Intelligent error recovery with ML-powered suggestions
mcmc
Markov Chain Monte Carlo (MCMC) methods
memory_mapped
Memory-mapped statistical operations for very large datasets
memory_optimization_advanced
Advanced memory optimization strategies for statistical computations
memory_optimization_enhanced
Enhanced memory optimization with intelligent management and profiling
moments_simd
SIMD-optimized higher-order moment calculations
mstats
Masked array statistics
multivariate
Multivariate statistical analysis methods
numerical_stability_analyzer
Numerical stability analysis framework
parallel_enhanced_advanced
Advanced parallel statistical processing with intelligent optimization
performance_benchmark_suite
advanced Enhanced Benchmark Suite
performance_optimization
Performance optimization integrations for advanced statistical methods
production_deployment
Production deployment utilities for scirs2-stats v1.0.0+
qmc
Quasi-Monte Carlo
random
Random number generation
regression
Regression analysis module
sampling
Statistical sampling
scipy_benchmark_comparison
SciPy benchmark comparison framework for scirs2-stats v1.0.0
scipy_benchmark_framework
Comprehensive SciPy benchmark comparison framework
simd_enhanced_core
Enhanced SIMD-optimized core statistical operations
survival
Survival Analysis
tests
Statistical tests module
traits
Statistical distribution traits
unified_error_handling
Unified Error Handling System
zero_copy
Zero-copy view-based statistics

Macros§

enhanced_error
Convenience macro for enhanced error handling
stats_error
Helper macros for creating standardized errors
stats_error_unified
Convenience macro for creating standardized errors with automatic monitoring
stats_error_with_suggestions
Helper macro for creating errors with suggestions
validate_or_error
Convenience macro for validation with automatic error creation

Structs§

AccuracyMetrics
Numerical accuracy metrics
AdaptationConfig
Adaptation configuration
AdaptiveMemoryConfig
Advanced-advanced adaptive memory configuration
AdaptiveMemoryManager
Adaptive memory manager that adjusts algorithms based on available memory
AdaptiveThreshold
Adaptive threshold calculator based on system capabilities
AdvancedAdaptiveMemoryManager
Advanced-advanced adaptive memory manager
AdvancedAdvancedConfig
Advanced-advanced MCMC configuration
AdvancedAdvancedMCMC
Advanced-advanced MCMC sampler with adaptive methods
AdvancedAdvancedParallelConfig
Advanced-advanced parallel configuration for massive scale operations
AdvancedAdvancedParallelProcessor
Advanced-advanced parallel processor for massive datasets
AdvancedAdvancedResults
MCMC sampling results
AdvancedAdvancedStreamingProcessor
Advanced streaming processor with multiple algorithms
AdvancedBayesianResult
Advanced Bayesian inference result
AdvancedComprehensiveSimdConfig
Advanced-comprehensive SIMD configuration
AdvancedComprehensiveSimdProcessor
Advanced-comprehensive SIMD processor
AdvancedEnhancedSimdConfig
Advanced-advanced SIMD configuration
AdvancedEnhancedSimdProcessor
Advanced-enhanced SIMD processor with adaptive optimization
AdvancedMatrixStatsResult
Advanced matrix statistics result
AdvancedMemoryConfig
Memory configuration for large-scale processing
AdvancedMemoryManager
Adaptive memory manager that monitors usage and adjusts strategies
AdvancedMemoryStatistics
AdvancedMultivariateAnalysis
Advanced-advanced multivariate analysis framework
AdvancedMultivariateConfig
Configuration for advanced multivariate analysis
AdvancedMultivariateResults
Advanced-advanced analysis results
AdvancedParallelConfig
Advanced parallel configuration with work stealing and load balancing
AdvancedPerformanceMetrics
Performance metrics snapshot
AdvancedQuantumAnalyzer
Advanced-advanced quantum-inspired statistical analyzer
AdvancedSimdConfig
Advanced SIMD configuration with platform detection
AdvancedSimdPerformanceStats
Performance statistics for SIMD operations
AdvancedSimdProcessor
Advanced-optimized SIMD statistical operations
AdvancedSimdResults
Advanced-enhanced SIMD statistical results
AdvancedSpectralAnalyzer
Advanced-advanced spectral analysis framework
AdvancedSpectralConfig
Configuration for advanced spectral analysis
AdvancedSpectralResults
Spectral analysis results
AdvancedStatsResult
Advanced statistics result with performance metrics
AdvancedStreamingConfig
Configuration for advanced streaming analytics
AdvancedSurvivalAnalysis
Advanced-advanced survival analysis framework
AdvancedSurvivalConfig
Configuration for advanced survival analysis
AdvancedSurvivalResults
Advanced-advanced survival analysis results
AdvancedTopologicalAnalyzer
Advanced-advanced topological data analyzer
AllocationStats
Statistics for memory allocations
AnomalyDetector
Real-time anomaly detection
AnomalyEvent
Anomaly detection event
BaselineStatistics
Statistical summary of baseline performance
BayesianGaussianProcess
Gaussian process regression implementation
BayesianModel
Individual Bayesian model for comparison
BayesianModelComparison
Advanced Bayesian model comparison framework
BayesianNeuralNetwork
Bayesian neural network implementation
BootstrapResult
Results from bootstrap confidence interval estimation
CacheAwareVectorProcessor
Cache-aware vector block processor
CacheOptimizationConfig
Cache optimization configuration
CacheStats
CausalSurvivalConfig
Causal survival analysis configuration
ChangePointDetector
Change point detection using advanced algorithms
ChangePointEvent
Change point detection event
ClusteringConfig
Advanced clustering configuration
CoherenceConfig
Coherence analysis configuration
CoherenceResults
Coherence analysis results
CompetingRisksConfig
Competing risks configuration
CompilerContext
Compiler context during measurement
ComponentDiagnostics
Component diagnostics
ComprehensiveStatsResult
Comprehensive statistical result with all metrics
CompressionEngine
Intelligent data compression for streaming analytics
CompressionSummary
Compression summary statistics
ConvergenceDiagnostics
Comprehensive convergence diagnostics
CoxConfig
Cox regression configuration
CoxConvergenceInfo
Cox model convergence information
CoxProportionalHazards
Cox Proportional Hazards Model
CpuCapabilities
Detected CPU capabilities for SIMD optimization
CrossPlatformRegressionConfig
Cross-platform regression detection configuration
CrossPlatformRegressionDetector
Cross-platform regression detection system
EnhancedKaplanMeier
Enhanced Kaplan-Meier estimator
EnhancedParallelConfig
Enhanced parallel configuration
EnhancedParallelProcessor
Enhanced parallel statistics processor
Filtration
Filtration representation
GCResult
GC result information
GMMConfig
Advanced GMM configuration
GMMParameters
Advanced GMM parameters with diagnostics
GarbageCollectionConfig
Garbage collection optimization configuration
GaussianMixtureModel
Gaussian Mixture Model with EM algorithm
HardwareConfig
Hardware configuration detection and optimization
HardwareContext
Hardware context during measurement
HigherOrderResults
Higher-order spectral analysis results
HigherOrderSpectralConfig
Higher-order spectral analysis configuration
IncrementalMLModel
Incremental machine learning model for streaming data
KDEConfig
KDE configuration
KernelDensityEstimator
Kernel Density Estimation
LazyStatComputation
Lazy evaluation for statistical operations
LazyStats
Lazy statistics calculator that computes values on demand
MCMCPerformanceMetrics
Performance metrics
MLSpectralConfig
Machine learning enhanced spectral configuration
MLSpectralResults
Machine learning enhanced spectral results
ManifoldConfig
Manifold learning configuration
MapperEdge
Mapper edge representation
MapperGraph
Mapper graph structure
MapperNode
Mapper node representation
MatrixParallelResult
Result structure for parallel matrix operations
MatrixStatsResult
Results container for matrix statistics
MemoryAdaptiveAlgorithm
Memory-aware algorithm selector
MemoryConfig
Memory usage configuration
MemoryConstraints
Memory constraints configuration
MemoryPool
Memory pool for reusing allocations
MemoryPressureConfig
Memory pressure detection and response
MemoryProfiler
Comprehensive memory profiler for statistical operations
MemoryReport
Memory usage report
MemoryTracker
Memory usage tracker for profiling
MemoryUsageStatistics
Memory usage statistics
MemoryUsageStats
Memory usage statistics for monitoring
ModelComparisonResult
Results from Bayesian model comparison
ModelSelectionCriteria
Model selection criteria
MovingWindowSIMD
SIMD-optimized moving window statistics
MultiTaperConfig
Multi-taper spectral estimation configuration
MultiViewConfig
Multi-view learning configuration
MultiscaleResults
Multi-scale analysis results
NonStationaryConfig
Non-stationary signal analysis configuration
NumaConfig
NUMA (Non-Uniform Memory Access) configuration
OperationPerformance
Performance metrics for a single operation
OptimalAlgorithm
Optimal algorithm selection for specific scenarios
OptimizationConfig
Performance optimization configuration
OutOfCoreConfig
Out-of-core processing configuration
PCAResult
ParallelBatchProcessor
Parallel batch processor for statistical operations
ParallelConfig
Configuration for parallel operations
ParallelCorrelationConfig
Parallel configuration for correlation computations
ParallelCrossValidation
Parallel cross-validation for model evaluation
ParallelCrossValidator
Parallel cross-validation framework
ParallelHistogram
Parallel histogram computation with adaptive binning
ParallelMatrixOps
Parallel algorithm for efficient matrix operations used in statistics
ParallelMonteCarlo
Parallel Monte Carlo simulation framework
ParallelMovingStats
Parallel moving statistics (rolling mean, std, etc.)
ParameterSnapshot
Parameter snapshot for tracking changes
PerformanceBaseline
Performance baseline data for a specific function and platform
PerformanceMeasurement
Individual performance measurement
PerformanceRecommendation
Performance optimization recommendations
PersistenceDiagram
Persistence diagram representation
PlatformComparison
Platform comparison information
PlatformInfo
Platform information for cross-platform comparison
PredictiveConfig
Predictive memory management configuration
ProfiledStatistics
Memory-efficient statistical operations with profiling
QAEResults
Quantum amplitude estimation results
QClusteringResults
Quantum clustering results
QNNResults
Quantum neural network results
QPCAResults
Quantum PCA results
QSVMResults
Quantum SVM results
QuantumAdvantageMetrics
Quantum advantage metrics
QuantumConfig
Configuration for quantum-inspired statistical methods
QuantumEnsembleResult
Results from quantum ensemble learning
QuantumModel
Quantum model representation
QuantumMonteCarloResult
Results from quantum Monte Carlo integration
QuantumPerformanceMetrics
Performance metrics for quantum algorithms
QuantumResults
Results from quantum-inspired analysis
QuantumVariationalResult
Results from quantum variational inference
RegressionAnalysisResult
Performance regression analysis results
RegressionReport
Overall regression report
RegressionSummaryStatistics
Summary statistics for regression report
RingBufferStats
Ring buffer for streaming statistics with fixed memory usage
RobustGMM
Robust Gaussian Mixture Model with outlier detection
RobustStats
Robust statistics structure
RollingStatsResult
Results container for rolling statistics
SimdConfig
SIMD configuration for optimal performance
Simplex
Simplex representation
SimplicialChain
Simplicial chain representation
SimplicialComplex
Simplicial complex representation
SlidingWindowStats
Sliding window statistics structure
SpectralPeak
Spectral peak characteristics
SpectralPerformanceMetrics
Performance metrics for spectral analysis
StatisticsCache
Memory-efficient cache for statistical computations
StreamingAnalyticsResult
Results from streaming analytics operations
StreamingCovariance
Streaming covariance matrix computation
StreamingGMM
Streaming/Online Gaussian Mixture Model
StreamingHistogram
Memory-efficient histogram computation
StreamingPerformanceMetrics
Performance metrics for streaming operations
StreamingRecommendation
Recommendations for optimizing streaming performance
StreamingStatistics
Real-time statistical metrics for streaming data
SurvivalEnsembleConfig
Ensemble configuration
SurvivalPrediction
Survival prediction results
TemperingConfig
Parallel tempering configuration
TensorConfig
Tensor analysis configuration
TensorNetworkResults
Tensor network results
TopologicalConfig
Configuration for topological data analysis
TopologicalInferenceResults
Topological statistical inference results
TopologicalPerformanceMetrics
Performance metrics for topological analysis
TopologicalResults
Topological analysis results
TrendAnalysis
Trend analysis for performance over time
V4ComprehensiveStats
Comprehensive statistical summary structure
V6BootstrapResult
Bootstrap analysis result
V6ComprehensiveStats
Comprehensive statistics result
V6MatrixStatsResult
Matrix statistics result
VQEResults
VQE results
WaveletConfig
Wavelet analysis configuration
WaveletResults
Wavelet analysis results

Enums§

AFTDistribution
Accelerated Failure Time distributions
ActivationFunction
Activation functions for neural networks
ActivationType
Activation functions for Bayesian neural networks
AdvancedPrior
Advanced prior specifications
AlgorithmChoice
AllocationStrategy
Memory allocation strategy selection
AnomalyDetectionAlgorithm
Anomaly detection algorithms
AnomalySeverity
Anomaly severity levels
BandwidthMethod
Bandwidth selection methods
BootstrapStatistic
Types of statistics that can be bootstrapped
CacheOptimizationStrategy
Cache optimization strategies
ChangePointAlgorithm
Change point detection algorithms
ClusteringAlgorithm
Advanced clustering algorithms
CoeffientField
Coefficient fields for homology computation
CompressionAlgorithm
Compression algorithms for streaming data
ConvergenceReason
Convergence reasons
CovarianceConstraint
Covariance constraints
CovarianceType
Covariance matrix types
DataEncodingMethod
Data encoding methods for quantum circuits
DimensionalityReductionMethod
Advanced dimensionality reduction methods
DistanceMetric
Distance metrics for point cloud analysis
Either
The enum Either with variants Left and Right is a general purpose sum type with two cases.
FilterFunction
Filter functions for Mapper algorithm
FiltrationType
Filtration types for building complexes
ICAAlgorithm
ICA algorithms
InitializationMethod
Initialization methods
InstructionSet
Supported instruction sets
KernelType
Kernel types for KDE
MLModelType
Types of incremental ML models
MatrixOperation
Types of matrix operations that can be computed
MemoryAlgorithmChoice
MemoryAlignment
Memory alignment preferences
MemoryPattern
Memory access pattern optimization
ModelSelectionCriterion
Model selection criteria
ModelType
Model types for Bayesian analysis
NumericalStabilityLevel
Numerical stability levels
PCAVariant
PCA variants
ParallelStrategy
Parallel processing strategy
PersistenceAlgorithm
Algorithms for persistent homology computation
PrefetchStrategy
Prefetch strategies for memory access
ProfilingLevel
Performance profiling levels
QuantileInterpolation
Methods for interpolating quantiles
QuantumClusteringAlgorithm
Quantum clustering algorithms
QuantumFeatureEncoding
Quantum feature encoding methods
QuantumFeatureMap
Quantum feature map types
QuantumKernelType
Types of quantum kernels
QuantumMeasurementBasis
Quantum measurement basis
RegressionStatus
Regression detection status
RegressionTrendDirection
Direction of performance trend
RollingStatistic
Types of rolling statistics that can be computed
SamplingMethod
Advanced sampling methods
SpectralActivationFunction
Activation functions for neural networks
SpectrogramType
Spectrogram types
StreamProcessingMode
Stream processing modes
SurvivalActivationFunction
Activation functions for neural networks
SurvivalModel
Survival model container
SurvivalModelType
Advanced survival model types
TensorDecomposition
Tensor decomposition methods
TensorNetworkType
Tensor network types
V5KernelType
Types of kernel functions for density estimation
VQEAnsatz
VQE ansatz types
VectorStrategy
Vector register optimization strategies
VectorizationLevel
Vectorization aggressiveness levels
WaveletType
Wavelet types for time-frequency analysis
WindowFunction
Window functions for spectral analysis
WindowingStrategy
Windowing strategies for streaming data

Traits§

AdvancedSimdOps
Specialized SIMD operations for advanced statistics
AdvancedTarget
Advanced-advanced target distribution interface

Functions§

advanced_comprehensive_simd
advanced_mean_f32
Computes advanced-high-performance statistics for single-precision floating-point data.
advanced_mean_f64
Convenience functions for different precision types
advanced_mean_simd
High-level convenience functions
advanced_std_simd
batch_correlations_parallel
Parallel batch correlation computation
batch_normalize_simd
SIMD-optimized batch normalization
benchmark_mixture_models
Performance benchmarking for mixture models
bootstrap_mean_simd
SIMD-optimized bootstrap statistics
bootstrap_parallel
Bootstrap resampling in parallel
bootstrap_parallel_advanced
bootstrap_parallel_enhanced
Parallel bootstrap resampling
boxplot_stats
Compute boxplot statistics for a dataset.
cache_oblivious_matrix_mult
Cache-oblivious matrix multiplication for large correlation computations
coef_variation
Compute the coefficient of variation (CV) of a dataset.
coefficient_of_variation_simd
SIMD-optimized coefficient of variation
comprehensive_stats_simd
SIMD-optimized comprehensive statistical summary
corrcoef
Compute a correlation matrix for a set of variables.
corrcoef_matrix_simd
SIMD-optimized matrix multiplication for correlation matrices
corrcoef_memory_aware
Memory-aware correlation matrix computation
corrcoef_parallel
Compute correlation matrix in parallel
corrcoef_parallel_enhanced
Parallel and SIMD-optimized correlation matrix computation
corrcoef_simd
Compute correlation matrix using SIMD operations
correlation_matrix_parallel_advanced
cosine_distance_simd
SIMD-optimized cosine distance computation
covariance_chunked
Memory-efficient covariance matrix computation
covariance_matrix_simd
SIMD-optimized batch covariance matrix computation
covariance_simd
Compute covariance using SIMD operations
cox_regression
create_adaptive_memory_manager
Factory functions
create_advanced_simd_processor
Convenience functions for creating optimized SIMD processors
create_advanced_streaming_processor
Convenience function to create an advanced streaming processor
create_optimized_memory_manager
create_performance_optimized_simd_processor
Create an advanced-enhanced SIMD processor optimized for performance
create_regression_detector
Convenience function to create a regression detector with default configuration
create_regression_detector_with_config
Convenience function to create a regression detector with custom configuration
create_stability_optimized_simd_processor
Create an advanced-enhanced SIMD processor optimized for numerical stability
create_streaming_processor_with_config
Convenience function to create a streaming processor with custom configuration
data_range
Compute the range of a dataset.
deciles
Compute the deciles of a dataset.
descriptive_stats_simd
Calculate multiple descriptive statistics in a single pass using SIMD
detect_outliers_zscore_simd
SIMD-optimized outlier detection using z-score method
distance_matrix_simd
SIMD-optimized distance matrix computation
euclidean_distance_simd
SIMD-optimized Euclidean distance computation
exponential_moving_average_simd
SIMD-optimized exponential moving average
gaussian_mixture_model
Convenience functions
gini_coefficient
Compute the Gini coefficient of a dataset.
gini_simd
SIMD-optimized Gini coefficient
gmm_cross_validation
Cross-validation for GMM hyperparameter tuning
gmm_model_selection
Advanced model selection for GMM
hierarchical_gmm_init
Hierarchical clustering-based mixture model initialization
histogram_simd
SIMD-optimized histogram computation
icc
Calculates the intraclass correlation coefficient (ICC) with confidence intervals.
iqr
Compute the interquartile range (IQR) of a dataset.
iqr_simd
SIMD-optimized Interquartile Range (IQR)
kaplan_meier
Convenience functions
kde_parallel
Parallel kernel density estimation
kendall_tau
Compute the Kendall tau correlation coefficient between two arrays.
kendalltau
Calculates the Kendall tau rank correlation coefficient and p-value.
kernel_density_estimation
kurtosis
Compute the kurtosis of a data set.
kurtosis_compatDeprecated
Backward compatibility: Compute the kurtosis without specifying workers parameter.
linear_regression_simd
SIMD-optimized linear regression
log_rank_test
Log-rank test for comparing survival curves
mad_simd
SIMD-optimized Mean Absolute Deviation (MAD)
manhattan_distance_simd
SIMD-optimized Manhattan distance computation
mean
Compute the arithmetic mean of a data set.
mean_abs_deviation
Compute the mean absolute deviation (MAD) of a dataset.
mean_parallel
Compute mean in parallel for large arrays
mean_parallel_advanced
High-level convenience functions
mean_parallel_enhanced
Enhanced parallel mean computation
mean_simd
Calculate the mean of an array using SIMD operations when available
mean_simd_optimized
Optimized mean calculation using SIMD with chunked processing
mean_zero_copy
Zero-copy mean calculation using views
median
Compute the median of a data set.
median_abs_deviation
Compute the median absolute deviation (MAD) of a dataset.
median_abs_deviation_simd
SIMD-optimized median absolute deviation from median (MAD)
median_simd
SIMD-optimized median computation
moment
Compute the moment of a distribution.
moment_compatDeprecated
Backward compatibility: Compute the moment without specifying workers parameter.
normalize_inplace
In-place normalization (standardization) of data
outlier_detection_zscore_simd
SIMD-optimized outlier detection using Z-score
pairwise_distances_parallel
Parallel computation of pairwise distances
partial_corr
Compute the partial correlation coefficient between two variables, controlling for one or more additional variables.
partial_corrr
Calculates the partial correlation coefficient and p-value.
pca_memory_efficient
Memory-efficient principal component analysis
pearson_r
Compute the Pearson correlation coefficient between two arrays.
pearson_r_simd
Compute the Pearson correlation coefficient using SIMD operations
pearson_r_simd_enhanced
SIMD-enhanced Pearson correlation computation
pearsonr
Calculates the Pearson correlation coefficient and p-value for testing non-correlation.
percentile
Compute the percentile of a dataset.
percentile_range_simd
SIMD-optimized percentile range
percentile_simd
SIMD-optimized percentile computation
point_biserial
Compute the point-biserial correlation coefficient between a binary variable and a continuous variable.
point_biserialr
Calculates the point-biserial correlation coefficient and p-value.
quantile
Compute the quantile of a dataset.
quantile_quickselect
Memory-efficient quantile computation using quickselect
quantile_simd
SIMD-optimized quantile computation
quantiles_batch_simd
SIMD-optimized quantile computation using partitioning
quantiles_parallel
Compute multiple quantiles in parallel
quantiles_simd
SIMD-optimized computation of multiple quantiles
quartiles
Compute the quartiles of a dataset.
quickselect_simd
SIMD-optimized quickselect algorithm for finding the k-th smallest element
quintiles
Compute the quintiles of a dataset.
range_simd
SIMD-optimized range calculation
robust_statistics_simd
SIMD-optimized robust statistics computation
robust_stats_v4_simd
SIMD-optimized robust statistics using median-based methods
rolling_correlation_parallel
Rolling correlation computation with parallel processing
rolling_statistics_simd
SIMD-optimized rolling statistics with configurable functions
row_statistics_parallel
Compute row-wise statistics in parallel
sem_simd
SIMD-optimized standard error of the mean
skew
Compute the skewness of a data set.
skew_compatDeprecated
Backward compatibility: Compute the skewness without specifying workers parameter.
sliding_window_stats_simd
SIMD-optimized sliding window statistics
spearman_r
Compute the Spearman rank correlation coefficient between two arrays.
spearmanr
Calculates the Spearman rank correlation coefficient and p-value.
stats_simd_single_pass
Compute all basic statistics in a single SIMD pass
std
Compute the standard deviation of a data set.
std_compatDeprecated
Backward compatibility: Compute the standard deviation without specifying workers parameter.
std_simd
Calculate standard deviation using SIMD operations
streaming_covariance_matrix
Streaming covariance computation for large datasets
streaming_histogram_adaptive
Enhanced streaming histogram computation with adaptive binning
streaming_mean
Streaming mean calculation that processes data in chunks
streaming_pca_enhanced
Streaming principal component analysis for very large datasets
streaming_quantiles_p2
Memory-efficient streaming quantile computation using P² algorithm
streaming_regression_enhanced
Enhanced streaming regression for large datasets with regularization
ttest_ind_simd
SIMD-optimized t-test computation
var
Compute the variance of a data set.
var_compatDeprecated
Backward compatibility: Compute the variance without specifying workers parameter.
variance_cache_aware
Cache-friendly variance computation
variance_parallel
Compute variance in parallel for large arrays
variance_parallel_advanced
variance_parallel_enhanced
Parallel variance with single-pass algorithm
variance_simd
Calculate variance using SIMD operations
variance_simd_optimized
Optimized variance calculation using single-pass SIMD algorithm
weighted_mean
Compute the weighted average of a data set.
welford_variance
Welford’s online algorithm for variance computation
winsorized_mean
Compute the winsorized mean of a dataset.
winsorized_variance
Compute the winsorized variance of a dataset.

Type Aliases§

F32AdaptiveMemoryManager
F32AdvancedSimdProcessor
F64AdaptiveMemoryManager
Convenient type aliases
F64AdvancedSimdProcessor