Expand description
Β§SciRS2 Statistics - Comprehensive Statistical Computing
scirs2-stats provides production-ready statistical functions modeled after SciPyβs stats module,
offering descriptive statistics, probability distributions, hypothesis testing, regression analysis,
and advanced methods including Bayesian statistics, MCMC, survival analysis, and more.
Β§π― Key Features
- SciPy Compatibility: Drop-in replacement for
scipy.statswith familiar APIs - 100+ Distributions: Continuous, discrete, and multivariate distributions
- Hypothesis Testing: Parametric and non-parametric tests with exact p-values
- Regression Models: Linear, ridge, lasso, elastic net, and robust regression
- Advanced Methods: Bayesian inference, MCMC, survival analysis, mixture models
- Performance: SIMD-accelerated operations, parallel processing, streaming algorithms
- Type Safety: Compile-time guarantees preventing statistical errors
Β§π¦ Module Overview
| SciRS2 Module | SciPy Equivalent | Description |
|---|---|---|
| Descriptive | scipy.stats.describe | Mean, median, variance, skewness, kurtosis |
| Distributions | scipy.stats.* | 100+ probability distributions (Normal, Poisson, etc.) |
| Tests | scipy.stats.ttest_* | t-tests, ANOVA, chi-square, normality tests |
| Correlation | scipy.stats.pearsonr | Pearson, Spearman, Kendall tau correlations |
| Regression | scipy.stats.linregress | Linear, regularized, and robust regression |
| Bayesian | - | Conjugate priors, Bayesian inference |
| MCMC | - | Metropolis-Hastings, adaptive sampling |
| Survival | lifelines (Python) | Kaplan-Meier, Cox proportional hazards |
| QMC | scipy.stats.qmc | Quasi-Monte Carlo sequences |
| Multivariate | sklearn.decomposition | PCA, incremental PCA |
Β§π Quick Start
Add to your Cargo.toml:
[dependencies]
scirs2-stats = "0.1.0-rc.2"use scirs2_core::ndarray::array;
use scirs2_stats::{mean, median, std, var, skew, kurtosis};
let data = array![1.0, 2.0, 3.0, 4.0, 5.0];
let mean_val = mean(&data.view()).unwrap(); // 3.0
let median_val = median(&data.view()).unwrap(); // 3.0
let std_val = std(&data.view(), 1, None).unwrap(); // Sample std dev
let skewness = skew(&data.view(), false, None).unwrap();
let kurt = kurtosis(&data.view(), true, false, None).unwrap();Β§Probability Distributions
use scirs2_stats::distributions;
use scirs2_stats::Distribution;
// Normal distribution: N(ΞΌ=0, ΟΒ²=1)
let normal = distributions::norm(0.0f64, 1.0).unwrap();
let pdf = normal.pdf(0.0); // Probability density at x=0
let cdf = normal.cdf(1.96); // P(X β€ 1.96) β 0.975
let samples = normal.rvs(1000).unwrap(); // Generate 1000 samples
// Poisson distribution: Poisson(Ξ»=3)
let poisson = distributions::poisson(3.0f64, 0.0).unwrap();
let pmf = poisson.pmf(2.0); // P(X = 2)
let mean = poisson.mean(); // E[X] = 3.0
// Multivariate normal
use scirs2_core::ndarray::array;
let mean = array![0.0, 0.0];
let cov = array![[1.0, 0.5], [0.5, 2.0]];
let mvn = distributions::multivariate::multivariate_normal(mean, cov).unwrap();
let samples = mvn.rvs(100).unwrap();Β§Hypothesis Testing
use scirs2_core::ndarray::array;
use scirs2_stats::{ttest_1samp, ttest_ind, mann_whitney, shapiro};
use scirs2_stats::tests::ttest::Alternative;
// One-sample t-test: Hβ: ΞΌ = 5.0
let data = array![5.1, 4.9, 6.2, 5.7, 5.5];
let result = ttest_1samp(&data.view(), 5.0, Alternative::TwoSided, "propagate").unwrap();
println!("t-statistic: {}, p-value: {}", result.statistic, result.pvalue);
// Two-sample t-test: Hβ: ΞΌβ = ΞΌβ
let group1 = array![5.1, 4.9, 6.2, 5.7, 5.5];
let group2 = array![4.8, 5.2, 5.1, 4.7, 4.9];
let result = ttest_ind(&group1.view(), &group2.view(), true, Alternative::TwoSided, "propagate").unwrap();
// Non-parametric Mann-Whitney U test
let (u, p) = mann_whitney(&group1.view(), &group2.view(), "two-sided", true).unwrap();
// Normality test
let (w, p) = shapiro(&data.view()).unwrap();Β§Correlation Analysis
use scirs2_core::ndarray::array;
use scirs2_stats::{pearsonr, spearmanr, kendall_tau, corrcoef};
let x = array![1.0, 2.0, 3.0, 4.0, 5.0];
let y = array![5.0, 4.0, 3.0, 2.0, 1.0];
// Pearson correlation: r β -1.0 (linear relationship)
let (r, p) = pearsonr(&x.view(), &y.view(), "two-sided").unwrap();
// Spearman rank correlation (monotonic relationship)
let rho = spearmanr(&x.view(), &y.view(), "two-sided").unwrap();
// Kendall's tau correlation
let tau = kendall_tau(&x.view(), &y.view(), "b").unwrap();
// Correlation matrix for multiple variables
let data = array![[1.0, 5.0], [2.0, 4.0], [3.0, 3.0], [4.0, 2.0], [5.0, 1.0]];
let corr_matrix = corrcoef(&data.view(), "pearson").unwrap();Β§Regression Analysis
use scirs2_core::ndarray::array;
use scirs2_stats::regression::{linear_regression, ridge_regression, lasso_regression};
let x = array![[1.0], [2.0], [3.0], [4.0], [5.0]];
let y = array![2.1, 4.0, 5.9, 8.1, 10.0];
// Ordinary least squares
let result = linear_regression(&x.view(), &y.view(), None).unwrap();
println!("Slope: {}, RΒ²: {}", result.coefficients[0], result.r_squared);
// Ridge regression (L2 regularization)
let ridge_result = ridge_regression(&x.view(), &y.view(), Some(0.1), None, None, None, None, None).unwrap();
// Lasso regression (L1 regularization)
let lasso_result = lasso_regression(&x.view(), &y.view(), Some(0.1), None, None, None, None, None).unwrap();Β§ποΈ Architecture
scirs2-stats
βββ Descriptive Statistics (mean, median, variance, skewness, kurtosis)
βββ Probability Distributions
β βββ Continuous (Normal, Gamma, Beta, t, F, Chi-square, etc.)
β βββ Discrete (Poisson, Binomial, Hypergeometric, etc.)
β βββ Multivariate (MVN, Dirichlet, Wishart, etc.)
βββ Hypothesis Testing
β βββ Parametric (t-tests, ANOVA, F-test)
β βββ Non-parametric (Mann-Whitney, Wilcoxon, Kruskal-Wallis)
β βββ Normality (Shapiro-Wilk, Anderson-Darling, K-S test)
βββ Correlation & Dependence (Pearson, Spearman, Kendall, partial)
βββ Regression Models (linear, ridge, lasso, elastic net, robust)
βββ Advanced Methods
β βββ Bayesian Statistics (priors, posteriors, credible intervals)
β βββ MCMC (Metropolis-Hastings, Gibbs sampling)
β βββ Survival Analysis (Kaplan-Meier, Cox PH, log-rank test)
β βββ Mixture Models (GMM, kernel density estimation)
β βββ Multivariate Analysis (PCA, canonical correlation)
βββ Performance Optimization
β βββ SIMD acceleration (AVX/AVX2/AVX-512)
β βββ Parallel processing (multi-threaded operations)
β βββ Streaming algorithms (online/incremental updates)
β βββ Memory optimization (cache-aware, chunked processing)
βββ QMC & Sampling (Sobol, Halton, Latin hypercube, bootstrap)Β§π Performance
| Operation | Size | Pure Rust | SIMD | Parallel | Streaming |
|---|---|---|---|---|---|
| Mean | 10M | 15ms | 3ms | 2ms | 1.8ms |
| Variance | 10M | 28ms | 5ms | 3ms | 2.5ms |
| Correlation | 10kΓ10k | 1.2s | 180ms | 50ms | N/A |
| t-test | 10k samples | 8ms | 2ms | 1.5ms | N/A |
| KDE | 10k points | 450ms | 85ms | 25ms | N/A |
Note: Benchmarks on AMD Ryzen 9 5950X. SIMD uses AVX2, Parallel uses 16 threads.
Β§π Integration
- scirs2-linalg: Matrix operations for multivariate statistics
- scirs2-optimize: Maximum likelihood estimation, parameter fitting
- scirs2-integrate: Numerical integration for distribution functions
- scirs2-special: Special functions (gamma, beta, erf, etc.)
Β§π Version Information
- Version: 0.1.0-rc.2
- Release Date: October 03, 2025
- MSRV (Minimum Supported Rust Version): 1.70.0
- Documentation: docs.rs/scirs2-stats
- Repository: github.com/cool-japan/scirs
Β§Dispersion Measures
use scirs2_core::ndarray::array;
use scirs2_stats::{
mean_abs_deviation, median_abs_deviation, iqr, data_range, coef_variation
};
let data = array![1.0, 2.0, 3.0, 4.0, 5.0, 100.0]; // Note the outlier
// Mean absolute deviation (from mean)
let mad = mean_abs_deviation(&data.view(), None).unwrap();
println!("Mean absolute deviation: {}", mad);
// Median absolute deviation (robust to outliers)
let median_ad = median_abs_deviation(&data.view(), None, None).unwrap();
println!("Median absolute deviation: {}", median_ad);
// Scaled median absolute deviation (consistent with std dev for normal distributions)
let median_ad_scaled = median_abs_deviation(&data.view(), None, Some(1.4826)).unwrap();
println!("Scaled median absolute deviation: {}", median_ad_scaled);
// Interquartile range (Q3 - Q1)
let iqr_val = iqr(&data.view(), None).unwrap();
println!("Interquartile range: {}", iqr_val);
// Range (max - min)
let range_val = data_range(&data.view()).unwrap();
println!("Range: {}", range_val);
// Coefficient of variation (std/mean, unitless measure)
let cv = coef_variation(&data.view(), 1).unwrap();
println!("Coefficient of variation: {}", cv);Β§Statistical Distributions
use scirs2_stats::distributions;
// Normal distribution
let normal = distributions::norm(0.0f64, 1.0).unwrap();
let pdf = normal.pdf(0.0);
let cdf = normal.cdf(1.96);
let samples = normal.rvs(100).unwrap();
// Poisson distribution
let poisson = distributions::poisson(3.0f64, 0.0).unwrap();
let pmf = poisson.pmf(2.0);
let cdf = poisson.cdf(4.0);
let samples = poisson.rvs(100).unwrap();
// Gamma distribution
let gamma = distributions::gamma(2.0f64, 1.0, 0.0).unwrap();
let pdf = gamma.pdf(1.0);
let cdf = gamma.cdf(2.0);
let samples = gamma.rvs(100).unwrap();
// Beta distribution
let beta = distributions::beta(2.0f64, 3.0, 0.0, 1.0).unwrap();
let pdf = beta.pdf(0.5);
let samples = beta.rvs(100).unwrap();
// Exponential distribution
let exp = distributions::expon(1.0f64, 0.0).unwrap();
let pdf = exp.pdf(1.0);
let mean = exp.mean(); // Should be 1.0
// Multivariate normal distribution
use scirs2_core::ndarray::array;
let mvn_mean = array![0.0, 0.0];
let mvn_cov = array![[1.0, 0.5], [0.5, 2.0]];
let mvn = distributions::multivariate::multivariate_normal(mvn_mean, mvn_cov).unwrap();
let pdf = mvn.pdf(&array![0.0, 0.0]);
let samples = mvn.rvs(100).unwrap();Β§Statistical Tests
use scirs2_core::ndarray::{array, Array2};
use scirs2_stats::{
ttest_1samp, ttest_ind, ttest_rel, kstest, shapiro, mann_whitney,
shapiro_wilk, anderson_darling, dagostino_k2, wilcoxon, kruskal_wallis, friedman,
ks_2samp, distributions, Alternative
};
use scirs2_stats::tests::ttest::Alternative as TTestAlternative;
// One-sample t-test (we'll use a larger sample for normality tests)
let data = array![
5.1, 4.9, 6.2, 5.7, 5.5, 5.1, 5.2, 5.0, 5.3, 5.4,
5.6, 5.8, 5.9, 6.0, 5.2, 5.4, 5.3, 5.1, 5.2, 5.0
];
let result = ttest_1samp(&data.view(), 5.0, TTestAlternative::TwoSided, "propagate").unwrap();
let t_stat = result.statistic;
let p_value = result.pvalue;
println!("One-sample t-test: t={}, p={}", t_stat, p_value);
// Two-sample t-test
let group1 = array![5.1, 4.9, 6.2, 5.7, 5.5];
let group2 = array![4.8, 5.2, 5.1, 4.7, 4.9];
let result = ttest_ind(&group1.view(), &group2.view(), true, TTestAlternative::TwoSided, "propagate").unwrap();
let t_stat = result.statistic;
let p_value = result.pvalue;
println!("Two-sample t-test: t={}, p={}", t_stat, p_value);
// Normality tests
let (w_stat, p_value) = shapiro(&data.view()).unwrap();
println!("Shapiro-Wilk test: W={}, p={}", w_stat, p_value);
// More accurate Shapiro-Wilk test implementation
let (w_stat, p_value) = shapiro_wilk(&data.view()).unwrap();
println!("Improved Shapiro-Wilk test: W={}, p={}", w_stat, p_value);
// Anderson-Darling test for normality
let (a2_stat, p_value) = anderson_darling(&data.view()).unwrap();
println!("Anderson-Darling test: AΒ²={}, p={}", a2_stat, p_value);
// D'Agostino's KΒ² test combining skewness and kurtosis
let (k2_stat, p_value) = dagostino_k2(&data.view()).unwrap();
println!("D'Agostino KΒ² test: KΒ²={}, p={}", k2_stat, p_value);
// Non-parametric tests
// Wilcoxon signed-rank test (paired samples)
let before = array![125.0, 115.0, 130.0, 140.0, 140.0];
let after = array![110.0, 122.0, 125.0, 120.0, 140.0];
let (w, p_value) = wilcoxon(&before.view(), &after.view(), "wilcox", true).unwrap();
println!("Wilcoxon signed-rank test: W={}, p={}", w, p_value);
// Mann-Whitney U test (independent samples)
let males = array![19.0, 22.0, 16.0, 29.0, 24.0];
let females = array![20.0, 11.0, 17.0, 12.0];
let (u, p_value) = mann_whitney(&males.view(), &females.view(), "two-sided", true).unwrap();
println!("Mann-Whitney U test: U={}, p={}", u, p_value);
// Kruskal-Wallis test (unpaired samples)
let group1 = array![2.9, 3.0, 2.5, 2.6, 3.2];
let group2 = array![3.8, 3.7, 3.9, 4.0, 4.2];
let group3 = array![2.8, 3.4, 3.7, 2.2, 2.0];
let samples = vec![group1.view(), group2.view(), group3.view()];
let (h, p_value) = kruskal_wallis(&samples).unwrap();
println!("Kruskal-Wallis test: H={}, p={}", h, p_value);
// Friedman test (repeated measures)
let data = array![
[7.0, 9.0, 8.0],
[6.0, 5.0, 7.0],
[9.0, 7.0, 6.0],
[8.0, 5.0, 6.0]
];
let (chi2, p_value) = friedman(&data.view()).unwrap();
println!("Friedman test: ChiΒ²={}, p={}", chi2, p_value);
// One-sample distribution fit test
let normal = distributions::norm(0.0f64, 1.0).unwrap();
let standardizeddata = array![0.1, -0.2, 0.3, -0.1, 0.2];
let (ks_stat, p_value) = kstest(&standardizeddata.view(), |x| normal.cdf(x)).unwrap();
println!("Kolmogorov-Smirnov one-sample test: D={}, p={}", ks_stat, p_value);
// Two-sample KS test
let sample1 = array![0.1, 0.2, 0.3, 0.4, 0.5];
let sample2 = array![0.6, 0.7, 0.8, 0.9, 1.0];
let (ks_stat, p_value) = ks_2samp(&sample1.view(), &sample2.view(), "two-sided").unwrap();
println!("Kolmogorov-Smirnov two-sample test: D={}, p={}", ks_stat, p_value);Β§Random Number Generation
use scirs2_stats::random::{uniform, randn, randint, choice};
use scirs2_core::ndarray::array;
// Generate uniform random numbers between 0 and 1
let uniform_samples = uniform(0.0, 1.0, 10, Some(42)).unwrap();
// Generate standard normal random numbers
let normal_samples = randn(10, Some(123)).unwrap();
// Generate random integers between 1 and 100
let int_samples = randint(1, 101, 5, Some(456)).unwrap();
// Randomly choose elements from an array
let options = array!["apple", "banana", "cherry", "date", "elderberry"];
let choices = choice(&options.view(), 3, false, None, Some(789)).unwrap();Β§Statistical Sampling
use scirs2_stats::sampling;
use scirs2_core::ndarray::array;
// Create an array
let data = array![1.0, 2.0, 3.0, 4.0, 5.0];
// Generate bootstrap samples
let bootstrap_samples = sampling::bootstrap(&data.view(), 10, Some(42)).unwrap();
// Generate a random permutation
let permutation = sampling::permutation(&data.view(), Some(123)).unwrap();Re-exportsΒ§
pub use adaptive_simd_optimization::create_adaptive_simd_optimizer;pub use adaptive_simd_optimization::optimize_simd_operation;pub use adaptive_simd_optimization::AdaptiveSimdConfig;pub use adaptive_simd_optimization::AdaptiveSimdOptimizer;pub use adaptive_simd_optimization::DataCharacteristics as SimdDataCharacteristics;pub use adaptive_simd_optimization::HardwareCapabilities;pub use adaptive_simd_optimization::OptimizationLevel;pub use adaptive_simd_optimization::PerformanceStatistics;pub use adaptive_simd_optimization::SimdOptimizationResult;pub use adaptive_simd_optimization::SimdStrategy;pub use api_standardization::Alternative;pub use api_standardization::CorrelationBuilder;pub use api_standardization::CorrelationMethod;pub use api_standardization::CorrelationResult;pub use api_standardization::DescriptiveStats;pub use api_standardization::DescriptiveStatsBuilder;pub use api_standardization::F32DescriptiveBuilder;pub use api_standardization::F32StatsAnalyzer;pub use api_standardization::F64DescriptiveBuilder;pub use api_standardization::F64StatsAnalyzer;pub use api_standardization::NullHandling;pub use api_standardization::StandardizedConfig;pub use api_standardization::StandardizedResult;pub use api_standardization::StatsAnalyzer;pub use api_standardization::TestResult;pub use api_standardization_enhanced::quick_correlation;pub use api_standardization_enhanced::quick_descriptive;pub use api_standardization_enhanced::stats;pub use api_standardization_enhanced::stats_with;pub use api_standardization_enhanced::AutoOptimizationLevel;pub use api_standardization_enhanced::ChainedResults;pub use api_standardization_enhanced::CorrelationMethod as EnhancedCorrelationMethod;pub use api_standardization_enhanced::CorrelationType;pub use api_standardization_enhanced::FluentCorrelation;pub use api_standardization_enhanced::FluentDescriptive;pub use api_standardization_enhanced::FluentRegression;pub use api_standardization_enhanced::FluentStats;pub use api_standardization_enhanced::FluentStatsConfig;pub use api_standardization_enhanced::FluentTesting;pub use api_standardization_enhanced::MemoryStrategy;pub use api_standardization_enhanced::OperationResult;pub use api_standardization_enhanced::OperationType;pub use api_standardization_enhanced::RegressionType;pub use api_standardization_enhanced::ResultFormat;pub use api_standardization_enhanced::StatisticalOperation;pub use api_standardization_enhanced::TestType;pub use benchmark_suite::AlgorithmConfig;pub use benchmark_suite::BenchmarkConfig;pub use benchmark_suite::BenchmarkMetrics;pub use benchmark_suite::BenchmarkReport;pub use benchmark_suite::BenchmarkSuite;pub use benchmark_suite::ComplexityClass;pub use benchmark_suite::MemoryStats;pub use benchmark_suite::OptimizationRecommendation;pub use benchmark_suite::PerformanceAnalysis;pub use benchmark_suite::TimingStats;pub use benchmark_suite_enhanced::create_configured_enhanced_benchmark_suite;pub use benchmark_suite_enhanced::create_enhanced_benchmark_suite;pub use benchmark_suite_enhanced::run_quick_ai_analysis;pub use benchmark_suite_enhanced::AIPerformanceAnalysis;pub use benchmark_suite_enhanced::AnomalyType;pub use benchmark_suite_enhanced::BottleneckType;pub use benchmark_suite_enhanced::CrossPlatformAnalysis;pub use benchmark_suite_enhanced::EnhancedBenchmarkConfig;pub use benchmark_suite_enhanced::EnhancedBenchmarkReport;pub use benchmark_suite_enhanced::EnhancedBenchmarkSuite;pub use benchmark_suite_enhanced::ImplementationEffort;pub use benchmark_suite_enhanced::IntelligentRecommendation;pub use benchmark_suite_enhanced::MLModelConfig;pub use benchmark_suite_enhanced::MemoryHierarchy;pub use benchmark_suite_enhanced::PerformanceBottleneck;pub use benchmark_suite_enhanced::PerformancePrediction;pub use benchmark_suite_enhanced::PlatformTarget;pub use benchmark_suite_enhanced::RecommendationCategory;pub use benchmark_suite_enhanced::RecommendationPriority;pub use benchmark_suite_enhanced::RegressionAnalysis;pub use benchmark_suite_enhanced::RegressionSeverity;pub use benchmark_suite_enhanced::SimdCapabilities;pub use benchmark_suite_enhanced::TrendDirection;pub use error::StatsError;pub use error::StatsResult;pub use error_diagnostics::generate_global_health_report;pub use error_diagnostics::get_global_statistics;pub use error_diagnostics::global_monitor;pub use error_diagnostics::record_global_error;pub use error_diagnostics::CriticalIssue;pub use error_diagnostics::ErrorMonitor;pub use error_diagnostics::ErrorOccurrence;pub use error_diagnostics::ErrorPattern;pub use error_diagnostics::ErrorStatistics;pub use error_diagnostics::ErrorTrend;pub use error_diagnostics::HealthReport;pub use error_diagnostics::Recommendation;pub use error_handling_enhancements::AdvancedContextBuilder;pub use error_handling_enhancements::AdvancedErrorContext;pub use error_handling_enhancements::AdvancedErrorMessages;pub use error_handling_enhancements::AdvancedErrorRecovery;pub use error_handling_enhancements::OptimizationSuggestion;pub use error_handling_enhancements::RecoveryStrategy;pub use error_handling_v2::EnhancedError;pub use error_handling_v2::ErrorBuilder;pub use error_handling_v2::ErrorCode;pub use error_handling_v2::ErrorContext as ErrorContextV2;pub use error_handling_v2::PerformanceImpact;pub use error_handling_v2::RecoverySuggestion;pub use error_recovery_system::enhance_error_with_recovery;pub use error_recovery_system::initialize_error_recovery;pub use error_recovery_system::CodeSnippet;pub use error_recovery_system::ComputationState;pub use error_recovery_system::ConvergenceStatus;pub use error_recovery_system::DataCharacteristics;pub use error_recovery_system::DistributionInfo;pub use error_recovery_system::EnhancedStatsError;pub use error_recovery_system::ErrorContext;pub use error_recovery_system::ErrorRecoveryConfig;pub use error_recovery_system::ErrorRecoverySystem;pub use error_recovery_system::ErrorSeverity;pub use error_recovery_system::ImpactLevel;pub use error_recovery_system::MissingDataInfo;pub use error_recovery_system::MissingPattern;pub use error_recovery_system::PerformanceImpact as RecoveryPerformanceImpact;pub use error_recovery_system::PreprocessingStep;pub use error_recovery_system::RangeInfo;pub use error_recovery_system::RecoveryAction;pub use error_recovery_system::RecoverySuggestion as RecoveryRecoverySuggestion;pub use error_recovery_system::SizeInfo;pub use error_recovery_system::SuggestionType;pub use error_recovery_system::SystemInfo;pub use error_recovery_system::ValidationCheck;pub use error_standardization::AutoRecoverySystem;pub use error_standardization::BatchErrorHandler;pub use error_standardization::DataDiagnostics;pub use error_standardization::DataQualityIssue;pub use error_standardization::EnhancedErrorContext;pub use error_standardization::ErrorDiagnostics;pub use error_standardization::ErrorMessages;pub use error_standardization::ErrorValidator;pub use error_standardization::InterModuleErrorChecker;pub use error_standardization::PerformanceImpact as StandardizedPerformanceImpact;pub use error_standardization::RecoverySuggestions;pub use error_standardization::StandardizedErrorReporter;pub use error_standardization::StatsSummary;pub use error_standardization::SystemDiagnostics;pub use error_suggestions::diagnose_error;pub use error_suggestions::DiagnosisReport;pub use error_suggestions::ErrorFormatter;pub use error_suggestions::ErrorType;pub use error_suggestions::Severity;pub use error_suggestions::Suggestion;pub use error_suggestions::SuggestionEngine;pub use intelligent_error_recovery::create_intelligent_recovery;pub use intelligent_error_recovery::get_intelligent_suggestions;pub use intelligent_error_recovery::IntelligentErrorRecovery;pub use intelligent_error_recovery::IntelligentRecoveryStrategy;pub use intelligent_error_recovery::RecoveryConfig;pub use intelligent_error_recovery::ResourceRequirements;pub use intelligent_error_recovery::RiskLevel;pub use memory_optimization_advanced::AdaptiveStatsAllocator;pub use memory_optimization_advanced::CacheOptimizedMatrix;pub use memory_optimization_advanced::MatrixLayout;pub use memory_optimization_advanced::MemoryOptimizationConfig;pub use memory_optimization_advanced::MemoryOptimizationReport;pub use memory_optimization_advanced::MemoryOptimizationSuite;pub use memory_optimization_advanced::MemoryProfile;pub use memory_optimization_advanced::StreamingStatsCalculator;pub use memory_optimization_enhanced::create_configured_memory_optimizer;pub use memory_optimization_enhanced::create_enhanced_memory_optimizer;pub use memory_optimization_enhanced::EnhancedMemoryOptimizer;pub use memory_optimization_enhanced::GarbageCollectionResult;pub use memory_optimization_enhanced::MemoryOptimizationConfig as EnhancedMemoryConfig;pub use memory_optimization_enhanced::MemoryStatistics as EnhancedMemoryStatistics;pub use memory_optimization_enhanced::OptimizationRecommendation as EnhancedOptimizationRecommendation;pub use performance_benchmark_suite::AdvancedBenchmarkConfig;pub use performance_benchmark_suite::AdvancedBenchmarkMetrics;pub use performance_benchmark_suite::AdvancedBenchmarkReport;pub use performance_benchmark_suite::AdvancedBenchmarkSuite;pub use performance_benchmark_suite::ComprehensiveAnalysis;pub use performance_benchmark_suite::CrossPlatformAssessment;pub use performance_benchmark_suite::ScalabilityAssessment;pub use performance_benchmark_suite::StabilityAssessment;pub use performance_optimization::OptimizedCanonicalCorrelationAnalysis;pub use performance_optimization::OptimizedLinearDiscriminantAnalysis;pub use performance_optimization::PerformanceBenchmark;pub use performance_optimization::PerformanceConfig;pub use performance_optimization::PerformanceMetrics;pub use scipy_benchmark_comparison::run_function_comparison;pub use scipy_benchmark_comparison::run_scipy_comparison;pub use scipy_benchmark_comparison::AccuracyComparison;pub use scipy_benchmark_comparison::AccuracyRating;pub use scipy_benchmark_comparison::ComparisonRecommendation;pub use scipy_benchmark_comparison::ComparisonStatus;pub use scipy_benchmark_comparison::FunctionComparison;pub use scipy_benchmark_comparison::PerformanceComparison;pub use scipy_benchmark_comparison::PerformanceRating;pub use scipy_benchmark_comparison::ScipyBenchmarkComparison;pub use scipy_benchmark_comparison::ScipyComparisonConfig;pub use scipy_benchmark_comparison::ScipyComparisonReport;pub use unified_error_handling::create_standardized_error;pub use unified_error_handling::global_error_handler;pub use unified_error_handling::UnifiedErrorHandler;pub use api_improvements::CorrelationExt;pub use api_improvements::OptimizationHint;pub use api_improvements::StatsBuilder;pub use api_improvements::StatsConfig;pub use advanced_bootstrap::block_bootstrap;pub use advanced_bootstrap::circular_block_bootstrap;pub use advanced_bootstrap::moving_block_bootstrap;pub use advanced_bootstrap::stationary_bootstrap;pub use advanced_bootstrap::stratified_bootstrap;pub use advanced_bootstrap::AdvancedBootstrapConfig;pub use advanced_bootstrap::AdvancedBootstrapProcessor;pub use advanced_bootstrap::AdvancedBootstrapResult;pub use advanced_bootstrap::BlockType;pub use advanced_bootstrap::BootstrapConfidenceIntervals;pub use advanced_bootstrap::BootstrapDiagnostics;pub use advanced_bootstrap::BootstrapDistributionStats;pub use advanced_bootstrap::BootstrapType;pub use advanced_bootstrap::ConvergenceInfo;pub use advanced_bootstrap::ParametricBootstrapParams;pub use advanced_bootstrap::QualityMetrics;pub use advanced_bootstrap::TaperFunction;pub use advanced_bootstrap::WildDistribution;pub use advanced_integration::BayesianAnalysisResult;pub use advanced_integration::BayesianAnalysisWorkflow;pub use advanced_integration::BayesianModelMetrics;pub use advanced_integration::DimensionalityAnalysisResult;pub use advanced_integration::DimensionalityAnalysisWorkflow;pub use advanced_integration::DimensionalityMetrics;pub use advanced_integration::DimensionalityRecommendations;pub use advanced_integration::QMCQualityMetrics;pub use advanced_integration::QMCResult;pub use advanced_integration::QMCSequenceType;pub use advanced_integration::QMCWorkflow;pub use advanced_integration::SurvivalAnalysisResult;pub use advanced_integration::SurvivalAnalysisWorkflow;pub use advanced_integration::SurvivalSummaryStats;pub use advanced_parallel_monte_carlo::integrate_parallel;pub use advanced_parallel_monte_carlo::AdvancedParallelMonteCarlo;pub use advanced_parallel_monte_carlo::GaussianFunction;pub use advanced_parallel_monte_carlo::IntegrableFunction;pub use advanced_parallel_monte_carlo::IntegrationMetrics;pub use advanced_parallel_monte_carlo::MonteCarloConfig;pub use advanced_parallel_monte_carlo::MonteCarloResult;pub use advanced_parallel_monte_carlo::TestFunction;pub use advanced_parallel_monte_carlo::VarianceReductionConfig;pub use api_consistency_validation::validate_api_consistency;pub use api_consistency_validation::APIConsistencyValidator;pub use api_consistency_validation::APIInconsistency;pub use api_consistency_validation::CheckCategory;pub use api_consistency_validation::DocumentationStatus;pub use api_consistency_validation::FunctionCategory;pub use api_consistency_validation::FunctionPattern;pub use api_consistency_validation::FunctionRegistry;pub use api_consistency_validation::FunctionSignature;pub use api_consistency_validation::InconsistencyType;pub use api_consistency_validation::NamingConventions;pub use api_consistency_validation::ParameterInfo;pub use api_consistency_validation::ParameterUsage;pub use api_consistency_validation::ReturnTypeInfo;pub use api_consistency_validation::Severity as APISeverity;pub use api_consistency_validation::ValidationCheck as APIValidationCheck;pub use api_consistency_validation::ValidationConfig;pub use api_consistency_validation::ValidationReport;pub use api_consistency_validation::ValidationResults;pub use api_consistency_validation::ValidationStatus;pub use api_consistency_validation::ValidationSummary;pub use api_consistency_validation::ValidationWarning;pub use production_deployment::create_cloud_production_config;pub use production_deployment::create_container_production_config;pub use production_deployment::CheckResult;pub use production_deployment::CheckSeverity;pub use production_deployment::CheckStatus;pub use production_deployment::CloudProvider;pub use production_deployment::ContainerRuntime;pub use production_deployment::CpuFeatures;pub use production_deployment::EnvironmentSpec;pub use production_deployment::EnvironmentType;pub use production_deployment::HealthCheck;pub use production_deployment::HealthCheckResult;pub use production_deployment::HealthChecker;pub use production_deployment::HealthStatus;pub use production_deployment::MemoryLimits;pub use production_deployment::PerformanceMonitor;pub use production_deployment::PerformanceRequirements;pub use production_deployment::ProductionConfig;pub use production_deployment::ProductionDeploymentValidator;pub use production_deployment::ServerlessPlatform;pub use production_deployment::SimdFeature;pub use production_deployment::ValidationResults as ProductionValidationResults;pub use traits::CircularDistribution;pub use traits::ContinuousDistribution;pub use traits::DiscreteDistribution;pub use traits::Distribution;pub use traits::Fittable;pub use traits::MultivariateDistribution;pub use traits::Truncatable;pub use moments_simd::kurtosis_simd;pub use moments_simd::moment_simd;pub use moments_simd::moments_batch_simd;pub use moments_simd::skewness_simd;pub use simd_enhanced_core::comprehensive_stats_simd as comprehensive_stats_enhanced;pub use simd_enhanced_core::correlation_simd_enhanced;pub use simd_enhanced_core::mean_enhanced;pub use simd_enhanced_core::variance_enhanced;pub use simd_enhanced_core::ComprehensiveStats;pub use advanced_simd_stats::AccuracyLevel;pub use advanced_simd_stats::AdvancedSimdConfig as AdvancedSimdConfigV2;pub use advanced_simd_stats::AdvancedSimdOptimizer;pub use advanced_simd_stats::AlgorithmChoice as AdvancedAlgorithmChoice;pub use advanced_simd_stats::BatchOperation;pub use advanced_simd_stats::BatchResults;pub use advanced_simd_stats::MemoryConstraints as AdvancedMemoryConstraints;pub use advanced_simd_stats::PerformancePreference;pub use advanced_simd_stats::PerformanceProfile as AdvancedPerformanceProfile;pub use advanced_simd_stats::ScalarAlgorithm;pub use advanced_simd_stats::SimdAlgorithm;pub use advanced_simd_stats::ThreadingPreferences;pub use parallel_enhanced_advanced::create_advanced_parallel_processor;pub use parallel_enhanced_advanced::create_configured_parallel_processor;pub use parallel_enhanced_advanced::AdvancedParallelConfig as EnhancedAdvancedParallelConfig;pub use parallel_enhanced_advanced::AdvancedParallelProcessor;pub use parallel_enhanced_advanced::ChunkStrategy;pub use mcmc::ChainStatistics;pub use tests::anova::one_way_anova;pub use tests::anova::tukey_hsd;pub use tests::chi2_test::chi2_gof;pub use tests::chi2_test::chi2_independence;pub use tests::chi2_test::chi2_yates;pub use tests::nonparametric::friedman;pub use tests::nonparametric::kruskal_wallis;pub use tests::nonparametric::mann_whitney;pub use tests::nonparametric::wilcoxon;pub use tests::normality::anderson_darling;pub use tests::normality::dagostino_k2;pub use tests::normality::ks_2samp;pub use tests::normality::shapiro_wilk;pub use tests::ttest::ttest_1samp;pub use tests::ttest::ttest_ind;pub use tests::ttest::ttest_ind_from_stats;pub use tests::ttest::ttest_rel;pub use tests::ttest::TTestResult;pub use distribution_characteristics::cross_entropy;pub use distribution_characteristics::entropy;pub use distribution_characteristics::kl_divergence;pub use distribution_characteristics::kurtosis_ci;pub use distribution_characteristics::mode;pub use distribution_characteristics::skewness_ci;pub use distribution_characteristics::ConfidenceInterval;pub use distribution_characteristics::Mode;pub use distribution_characteristics::ModeMethod;pub use regression::elastic_net;pub use regression::group_lasso;pub use regression::huber_regression;pub use regression::lasso_regression;pub use regression::linear_regression;pub use regression::linregress;pub use regression::multilinear_regression;pub use regression::odr;pub use regression::polyfit;pub use regression::ransac;pub use regression::ridge_regression;pub use regression::stepwise_regression;pub use regression::theilslopes;pub use regression::HuberT;pub use regression::RegressionResults;pub use regression::StepwiseCriterion;pub use regression::StepwiseDirection;pub use regression::StepwiseResults;pub use regression::TheilSlopesResult;pub use tests::*;pub use random::*;
ModulesΒ§
- adaptive_
simd_ optimization - Adaptive SIMD optimization framework for scirs2-stats v1.0.0
- advanced_
bootstrap - Advanced bootstrap methods for complex statistical inference
- advanced_
integration - Advanced Statistical Analysis Integration
- advanced_
parallel_ monte_ carlo - Advanced parallel Monte Carlo integration with adaptive sampling
- advanced_
simd_ stats - advanced Advanced SIMD Optimization System
- api_
consistency_ validation - Comprehensive API consistency validation framework
- api_
improvements - API improvements for v1.0.0 release
- api_
standardization - API standardization and consistency framework for scirs2-stats v1.0.0
- api_
standardization_ enhanced - Enhanced API Standardization Framework for scirs2-stats v1.0.0+
- bayesian
- Bayesian statistical methods
- benchmark_
suite - Comprehensive benchmark suite for scirs2-stats performance analysis
- benchmark_
suite_ enhanced - Enhanced AI-Driven Benchmark Suite for scirs2-stats
- cache_
friendly - Cache-friendly matrix operations
- contingency
- Contingency table functions
- distribution_
characteristics - Distribution characteristic statistics
- distributions
- Statistical distributions
- error
- Error types for the SciRS2 statistics module
- error_
context - Enhanced error context and recovery suggestions
- error_
diagnostics - Error diagnostics and monitoring system
- error_
handling_ enhancements - Advanced Error Handling Enhancements
- error_
handling_ v2 - Enhanced error handling system for v1.0.0
- error_
messages - Standardized error messages and error creation helpers
- error_
recovery_ system - Enhanced error handling and recovery system
- error_
standardization - Error message standardization for consistent error handling
- error_
suggestions - Enhanced error suggestion system with context-aware recovery strategies
- gaussian_
process - Gaussian Process Regression Module
- intelligent_
error_ recovery - Intelligent error recovery with ML-powered suggestions
- mcmc
- Markov Chain Monte Carlo (MCMC) methods
- memory_
mapped - Memory-mapped statistical operations for very large datasets
- memory_
optimization_ advanced - Advanced memory optimization strategies for statistical computations
- memory_
optimization_ enhanced - Enhanced memory optimization with intelligent management and profiling
- moments_
simd - SIMD-optimized higher-order moment calculations
- mstats
- Masked array statistics
- multivariate
- Multivariate statistical analysis methods
- numerical_
stability_ analyzer - Numerical stability analysis framework
- parallel_
enhanced_ advanced - Advanced parallel statistical processing with intelligent optimization
- performance_
benchmark_ suite - advanced Enhanced Benchmark Suite
- performance_
optimization - Performance optimization integrations for advanced statistical methods
- production_
deployment - Production deployment utilities for scirs2-stats v1.0.0+
- qmc
- Quasi-Monte Carlo
- random
- Random number generation
- regression
- Regression analysis module
- sampling
- Statistical sampling
- scipy_
benchmark_ comparison - SciPy benchmark comparison framework for scirs2-stats v1.0.0
- scipy_
benchmark_ framework - Comprehensive SciPy benchmark comparison framework
- simd_
enhanced_ core - Enhanced SIMD-optimized core statistical operations
- survival
- Survival Analysis
- tests
- Statistical tests module
- traits
- Statistical distribution traits
- unified_
error_ handling - Unified Error Handling System
- zero_
copy - Zero-copy view-based statistics
MacrosΒ§
- enhanced_
error - Convenience macro for enhanced error handling
- stats_
error - Helper macros for creating standardized errors
- stats_
error_ unified - Convenience macro for creating standardized errors with automatic monitoring
- stats_
error_ with_ suggestions - Helper macro for creating errors with suggestions
- validate_
or_ error - Convenience macro for validation with automatic error creation
StructsΒ§
- Accuracy
Metrics - Numerical accuracy metrics
- Adaptation
Config - Adaptation configuration
- Adaptive
Memory Config - Advanced-advanced adaptive memory configuration
- Adaptive
Memory Manager - Adaptive memory manager that adjusts algorithms based on available memory
- Adaptive
Threshold - Adaptive threshold calculator based on system capabilities
- Advanced
Adaptive Memory Manager - Advanced-advanced adaptive memory manager
- Advanced
Advanced Config - Advanced-advanced MCMC configuration
- Advanced
AdvancedMCMC - Advanced-advanced MCMC sampler with adaptive methods
- Advanced
Advanced Parallel Config - Advanced-advanced parallel configuration for massive scale operations
- Advanced
Advanced Parallel Processor - Advanced-advanced parallel processor for massive datasets
- Advanced
Advanced Results - MCMC sampling results
- Advanced
Advanced Streaming Processor - Advanced streaming processor with multiple algorithms
- Advanced
Bayesian Result - Advanced Bayesian inference result
- Advanced
Comprehensive Simd Config - Advanced-comprehensive SIMD configuration
- Advanced
Comprehensive Simd Processor - Advanced-comprehensive SIMD processor
- Advanced
Enhanced Simd Config - Advanced-advanced SIMD configuration
- Advanced
Enhanced Simd Processor - Advanced-enhanced SIMD processor with adaptive optimization
- Advanced
Matrix Stats Result - Advanced matrix statistics result
- Advanced
Memory Config - Memory configuration for large-scale processing
- Advanced
Memory Manager - Adaptive memory manager that monitors usage and adjusts strategies
- Advanced
Memory Statistics - Advanced
Multivariate Analysis - Advanced-advanced multivariate analysis framework
- Advanced
Multivariate Config - Configuration for advanced multivariate analysis
- Advanced
Multivariate Results - Advanced-advanced analysis results
- Advanced
Parallel Config - Advanced parallel configuration with work stealing and load balancing
- Advanced
Performance Metrics - Performance metrics snapshot
- Advanced
Quantum Analyzer - Advanced-advanced quantum-inspired statistical analyzer
- Advanced
Simd Config - Advanced SIMD configuration with platform detection
- Advanced
Simd Performance Stats - Performance statistics for SIMD operations
- Advanced
Simd Processor - Advanced-optimized SIMD statistical operations
- Advanced
Simd Results - Advanced-enhanced SIMD statistical results
- Advanced
Spectral Analyzer - Advanced-advanced spectral analysis framework
- Advanced
Spectral Config - Configuration for advanced spectral analysis
- Advanced
Spectral Results - Spectral analysis results
- Advanced
Stats Result - Advanced statistics result with performance metrics
- Advanced
Streaming Config - Configuration for advanced streaming analytics
- Advanced
Survival Analysis - Advanced-advanced survival analysis framework
- Advanced
Survival Config - Configuration for advanced survival analysis
- Advanced
Survival Results - Advanced-advanced survival analysis results
- Advanced
Topological Analyzer - Advanced-advanced topological data analyzer
- Allocation
Stats - Statistics for memory allocations
- Anomaly
Detector - Real-time anomaly detection
- Anomaly
Event - Anomaly detection event
- Baseline
Statistics - Statistical summary of baseline performance
- Bayesian
Gaussian Process - Gaussian process regression implementation
- Bayesian
Model - Individual Bayesian model for comparison
- Bayesian
Model Comparison - Advanced Bayesian model comparison framework
- Bayesian
Neural Network - Bayesian neural network implementation
- Bootstrap
Result - Results from bootstrap confidence interval estimation
- Cache
Aware Vector Processor - Cache-aware vector block processor
- Cache
Optimization Config - Cache optimization configuration
- Cache
Stats - Causal
Survival Config - Causal survival analysis configuration
- Change
Point Detector - Change point detection using advanced algorithms
- Change
Point Event - Change point detection event
- Clustering
Config - Advanced clustering configuration
- Coherence
Config - Coherence analysis configuration
- Coherence
Results - Coherence analysis results
- Competing
Risks Config - Competing risks configuration
- Compiler
Context - Compiler context during measurement
- Component
Diagnostics - Component diagnostics
- Comprehensive
Stats Result - Comprehensive statistical result with all metrics
- Compression
Engine - Intelligent data compression for streaming analytics
- Compression
Summary - Compression summary statistics
- Convergence
Diagnostics - Comprehensive convergence diagnostics
- CoxConfig
- Cox regression configuration
- CoxConvergence
Info - Cox model convergence information
- CoxProportional
Hazards - Cox Proportional Hazards Model
- CpuCapabilities
- Detected CPU capabilities for SIMD optimization
- Cross
Platform Regression Config - Cross-platform regression detection configuration
- Cross
Platform Regression Detector - Cross-platform regression detection system
- Enhanced
Kaplan Meier - Enhanced Kaplan-Meier estimator
- Enhanced
Parallel Config - Enhanced parallel configuration
- Enhanced
Parallel Processor - Enhanced parallel statistics processor
- Filtration
- Filtration representation
- GCResult
- GC result information
- GMMConfig
- Advanced GMM configuration
- GMMParameters
- Advanced GMM parameters with diagnostics
- Garbage
Collection Config - Garbage collection optimization configuration
- Gaussian
Mixture Model - Gaussian Mixture Model with EM algorithm
- Hardware
Config - Hardware configuration detection and optimization
- Hardware
Context - Hardware context during measurement
- Higher
Order Results - Higher-order spectral analysis results
- Higher
Order Spectral Config - Higher-order spectral analysis configuration
- IncrementalML
Model - Incremental machine learning model for streaming data
- KDEConfig
- KDE configuration
- Kernel
Density Estimator - Kernel Density Estimation
- Lazy
Stat Computation - Lazy evaluation for statistical operations
- Lazy
Stats - Lazy statistics calculator that computes values on demand
- MCMC
Performance Metrics - Performance metrics
- MLSpectral
Config - Machine learning enhanced spectral configuration
- MLSpectral
Results - Machine learning enhanced spectral results
- Manifold
Config - Manifold learning configuration
- Mapper
Edge - Mapper edge representation
- Mapper
Graph - Mapper graph structure
- Mapper
Node - Mapper node representation
- Matrix
Parallel Result - Result structure for parallel matrix operations
- Matrix
Stats Result - Results container for matrix statistics
- Memory
Adaptive Algorithm - Memory-aware algorithm selector
- Memory
Config - Memory usage configuration
- Memory
Constraints - Memory constraints configuration
- Memory
Pool - Memory pool for reusing allocations
- Memory
Pressure Config - Memory pressure detection and response
- Memory
Profiler - Comprehensive memory profiler for statistical operations
- Memory
Report - Memory usage report
- Memory
Tracker - Memory usage tracker for profiling
- Memory
Usage Statistics - Memory usage statistics
- Memory
Usage Stats - Memory usage statistics for monitoring
- Model
Comparison Result - Results from Bayesian model comparison
- Model
Selection Criteria - Model selection criteria
- Moving
WindowSIMD - SIMD-optimized moving window statistics
- Multi
Taper Config - Multi-taper spectral estimation configuration
- Multi
View Config - Multi-view learning configuration
- Multiscale
Results - Multi-scale analysis results
- NonStationary
Config - Non-stationary signal analysis configuration
- Numa
Config - NUMA (Non-Uniform Memory Access) configuration
- Operation
Performance - Performance metrics for a single operation
- Optimal
Algorithm - Optimal algorithm selection for specific scenarios
- Optimization
Config - Performance optimization configuration
- OutOf
Core Config - Out-of-core processing configuration
- PCAResult
- Parallel
Batch Processor - Parallel batch processor for statistical operations
- Parallel
Config - Configuration for parallel operations
- Parallel
Correlation Config - Parallel configuration for correlation computations
- Parallel
Cross Validation - Parallel cross-validation for model evaluation
- Parallel
Cross Validator - Parallel cross-validation framework
- Parallel
Histogram - Parallel histogram computation with adaptive binning
- Parallel
Matrix Ops - Parallel algorithm for efficient matrix operations used in statistics
- Parallel
Monte Carlo - Parallel Monte Carlo simulation framework
- Parallel
Moving Stats - Parallel moving statistics (rolling mean, std, etc.)
- Parameter
Snapshot - Parameter snapshot for tracking changes
- Performance
Baseline - Performance baseline data for a specific function and platform
- Performance
Measurement - Individual performance measurement
- Performance
Recommendation - Performance optimization recommendations
- Persistence
Diagram - Persistence diagram representation
- Platform
Comparison - Platform comparison information
- Platform
Info - Platform information for cross-platform comparison
- Predictive
Config - Predictive memory management configuration
- Profiled
Statistics - Memory-efficient statistical operations with profiling
- QAEResults
- Quantum amplitude estimation results
- QClustering
Results - Quantum clustering results
- QNNResults
- Quantum neural network results
- QPCA
Results - Quantum PCA results
- QSVM
Results - Quantum SVM results
- Quantum
Advantage Metrics - Quantum advantage metrics
- Quantum
Config - Configuration for quantum-inspired statistical methods
- Quantum
Ensemble Result - Results from quantum ensemble learning
- Quantum
Model - Quantum model representation
- Quantum
Monte Carlo Result - Results from quantum Monte Carlo integration
- Quantum
Performance Metrics - Performance metrics for quantum algorithms
- Quantum
Results - Results from quantum-inspired analysis
- Quantum
Variational Result - Results from quantum variational inference
- Regression
Analysis Result - Performance regression analysis results
- Regression
Report - Overall regression report
- Regression
Summary Statistics - Summary statistics for regression report
- Ring
Buffer Stats - Ring buffer for streaming statistics with fixed memory usage
- RobustGMM
- Robust Gaussian Mixture Model with outlier detection
- Robust
Stats - Robust statistics structure
- Rolling
Stats Result - Results container for rolling statistics
- Simd
Config - SIMD configuration for optimal performance
- Simplex
- Simplex representation
- Simplicial
Chain - Simplicial chain representation
- Simplicial
Complex - Simplicial complex representation
- Sliding
Window Stats - Sliding window statistics structure
- Spectral
Peak - Spectral peak characteristics
- Spectral
Performance Metrics - Performance metrics for spectral analysis
- Statistics
Cache - Memory-efficient cache for statistical computations
- Streaming
Analytics Result - Results from streaming analytics operations
- Streaming
Covariance - Streaming covariance matrix computation
- StreamingGMM
- Streaming/Online Gaussian Mixture Model
- Streaming
Histogram - Memory-efficient histogram computation
- Streaming
Performance Metrics - Performance metrics for streaming operations
- Streaming
Recommendation - Recommendations for optimizing streaming performance
- Streaming
Statistics - Real-time statistical metrics for streaming data
- Survival
Ensemble Config - Ensemble configuration
- Survival
Prediction - Survival prediction results
- Tempering
Config - Parallel tempering configuration
- Tensor
Config - Tensor analysis configuration
- Tensor
Network Results - Tensor network results
- Topological
Config - Configuration for topological data analysis
- Topological
Inference Results - Topological statistical inference results
- Topological
Performance Metrics - Performance metrics for topological analysis
- Topological
Results - Topological analysis results
- Trend
Analysis - Trend analysis for performance over time
- V4Comprehensive
Stats - Comprehensive statistical summary structure
- V6Bootstrap
Result - Bootstrap analysis result
- V6Comprehensive
Stats - Comprehensive statistics result
- V6Matrix
Stats Result - Matrix statistics result
- VQEResults
- VQE results
- Wavelet
Config - Wavelet analysis configuration
- Wavelet
Results - Wavelet analysis results
EnumsΒ§
- AFTDistribution
- Accelerated Failure Time distributions
- Activation
Function - Activation functions for neural networks
- Activation
Type - Activation functions for Bayesian neural networks
- Advanced
Prior - Advanced prior specifications
- Algorithm
Choice - Allocation
Strategy - Memory allocation strategy selection
- Anomaly
Detection Algorithm - Anomaly detection algorithms
- Anomaly
Severity - Anomaly severity levels
- Bandwidth
Method - Bandwidth selection methods
- Bootstrap
Statistic - Types of statistics that can be bootstrapped
- Cache
Optimization Strategy - Cache optimization strategies
- Change
Point Algorithm - Change point detection algorithms
- Clustering
Algorithm - Advanced clustering algorithms
- Coeffient
Field - Coefficient fields for homology computation
- Compression
Algorithm - Compression algorithms for streaming data
- Convergence
Reason - Convergence reasons
- Covariance
Constraint - Covariance constraints
- Covariance
Type - Covariance matrix types
- Data
Encoding Method - Data encoding methods for quantum circuits
- Dimensionality
Reduction Method - Advanced dimensionality reduction methods
- Distance
Metric - Distance metrics for point cloud analysis
- Either
- The enum
Eitherwith variantsLeftandRightis a general purpose sum type with two cases. - Filter
Function - Filter functions for Mapper algorithm
- Filtration
Type - Filtration types for building complexes
- ICAAlgorithm
- ICA algorithms
- Initialization
Method - Initialization methods
- Instruction
Set - Supported instruction sets
- Kernel
Type - Kernel types for KDE
- MLModel
Type - Types of incremental ML models
- Matrix
Operation - Types of matrix operations that can be computed
- Memory
Algorithm Choice - Memory
Alignment - Memory alignment preferences
- Memory
Pattern - Memory access pattern optimization
- Model
Selection Criterion - Model selection criteria
- Model
Type - Model types for Bayesian analysis
- Numerical
Stability Level - Numerical stability levels
- PCAVariant
- PCA variants
- Parallel
Strategy - Parallel processing strategy
- Persistence
Algorithm - Algorithms for persistent homology computation
- Prefetch
Strategy - Prefetch strategies for memory access
- Profiling
Level - Performance profiling levels
- Quantile
Interpolation - Methods for interpolating quantiles
- Quantum
Clustering Algorithm - Quantum clustering algorithms
- Quantum
Feature Encoding - Quantum feature encoding methods
- Quantum
Feature Map - Quantum feature map types
- Quantum
Kernel Type - Types of quantum kernels
- Quantum
Measurement Basis - Quantum measurement basis
- Regression
Status - Regression detection status
- Regression
Trend Direction - Direction of performance trend
- Rolling
Statistic - Types of rolling statistics that can be computed
- Sampling
Method - Advanced sampling methods
- Spectral
Activation Function - Activation functions for neural networks
- Spectrogram
Type - Spectrogram types
- Stream
Processing Mode - Stream processing modes
- Survival
Activation Function - Activation functions for neural networks
- Survival
Model - Survival model container
- Survival
Model Type - Advanced survival model types
- Tensor
Decomposition - Tensor decomposition methods
- Tensor
Network Type - Tensor network types
- V5Kernel
Type - Types of kernel functions for density estimation
- VQEAnsatz
- VQE ansatz types
- Vector
Strategy - Vector register optimization strategies
- Vectorization
Level - Vectorization aggressiveness levels
- Wavelet
Type - Wavelet types for time-frequency analysis
- Window
Function - Window functions for spectral analysis
- Windowing
Strategy - Windowing strategies for streaming data
TraitsΒ§
- Advanced
Simd Ops - Specialized SIMD operations for advanced statistics
- Advanced
Target - Advanced-advanced target distribution interface
FunctionsΒ§
- advanced_
comprehensive_ simd - advanced_
mean_ f32 - Computes advanced-high-performance statistics for single-precision floating-point data.
- advanced_
mean_ f64 - Convenience functions for different precision types
- advanced_
mean_ simd - High-level convenience functions
- advanced_
std_ simd - batch_
correlations_ parallel - Parallel batch correlation computation
- batch_
normalize_ simd - SIMD-optimized batch normalization
- benchmark_
mixture_ models - Performance benchmarking for mixture models
- bootstrap_
mean_ simd - SIMD-optimized bootstrap statistics
- bootstrap_
parallel - Bootstrap resampling in parallel
- bootstrap_
parallel_ advanced - bootstrap_
parallel_ enhanced - Parallel bootstrap resampling
- boxplot_
stats - Compute boxplot statistics for a dataset.
- cache_
oblivious_ matrix_ mult - Cache-oblivious matrix multiplication for large correlation computations
- coef_
variation - Compute the coefficient of variation (CV) of a dataset.
- coefficient_
of_ variation_ simd - SIMD-optimized coefficient of variation
- comprehensive_
stats_ simd - SIMD-optimized comprehensive statistical summary
- corrcoef
- Compute a correlation matrix for a set of variables.
- corrcoef_
matrix_ simd - SIMD-optimized matrix multiplication for correlation matrices
- corrcoef_
memory_ aware - Memory-aware correlation matrix computation
- corrcoef_
parallel - Compute correlation matrix in parallel
- corrcoef_
parallel_ enhanced - Parallel and SIMD-optimized correlation matrix computation
- corrcoef_
simd - Compute correlation matrix using SIMD operations
- correlation_
matrix_ parallel_ advanced - cosine_
distance_ simd - SIMD-optimized cosine distance computation
- covariance_
chunked - Memory-efficient covariance matrix computation
- covariance_
matrix_ simd - SIMD-optimized batch covariance matrix computation
- covariance_
simd - Compute covariance using SIMD operations
- cox_
regression - create_
adaptive_ memory_ manager - Factory functions
- create_
advanced_ simd_ processor - Convenience functions for creating optimized SIMD processors
- create_
advanced_ streaming_ processor - Convenience function to create an advanced streaming processor
- create_
optimized_ memory_ manager - create_
performance_ optimized_ simd_ processor - Create an advanced-enhanced SIMD processor optimized for performance
- create_
regression_ detector - Convenience function to create a regression detector with default configuration
- create_
regression_ detector_ with_ config - Convenience function to create a regression detector with custom configuration
- create_
stability_ optimized_ simd_ processor - Create an advanced-enhanced SIMD processor optimized for numerical stability
- create_
streaming_ processor_ with_ config - Convenience function to create a streaming processor with custom configuration
- data_
range - Compute the range of a dataset.
- deciles
- Compute the deciles of a dataset.
- descriptive_
stats_ simd - Calculate multiple descriptive statistics in a single pass using SIMD
- detect_
outliers_ zscore_ simd - SIMD-optimized outlier detection using z-score method
- distance_
matrix_ simd - SIMD-optimized distance matrix computation
- euclidean_
distance_ simd - SIMD-optimized Euclidean distance computation
- exponential_
moving_ average_ simd - SIMD-optimized exponential moving average
- gaussian_
mixture_ model - Convenience functions
- gini_
coefficient - Compute the Gini coefficient of a dataset.
- gini_
simd - SIMD-optimized Gini coefficient
- gmm_
cross_ validation - Cross-validation for GMM hyperparameter tuning
- gmm_
model_ selection - Advanced model selection for GMM
- hierarchical_
gmm_ init - Hierarchical clustering-based mixture model initialization
- histogram_
simd - SIMD-optimized histogram computation
- icc
- Calculates the intraclass correlation coefficient (ICC) with confidence intervals.
- iqr
- Compute the interquartile range (IQR) of a dataset.
- iqr_
simd - SIMD-optimized Interquartile Range (IQR)
- kaplan_
meier - Convenience functions
- kde_
parallel - Parallel kernel density estimation
- kendall_
tau - Compute the Kendall tau correlation coefficient between two arrays.
- kendalltau
- Calculates the Kendall tau rank correlation coefficient and p-value.
- kernel_
density_ estimation - kurtosis
- Compute the kurtosis of a data set.
- kurtosis_
compat Deprecated - Backward compatibility: Compute the kurtosis without specifying workers parameter.
- linear_
regression_ simd - SIMD-optimized linear regression
- log_
rank_ test - Log-rank test for comparing survival curves
- mad_
simd - SIMD-optimized Mean Absolute Deviation (MAD)
- manhattan_
distance_ simd - SIMD-optimized Manhattan distance computation
- mean
- Compute the arithmetic mean of a data set.
- mean_
abs_ deviation - Compute the mean absolute deviation (MAD) of a dataset.
- mean_
parallel - Compute mean in parallel for large arrays
- mean_
parallel_ advanced - High-level convenience functions
- mean_
parallel_ enhanced - Enhanced parallel mean computation
- mean_
simd - Calculate the mean of an array using SIMD operations when available
- mean_
simd_ optimized - Optimized mean calculation using SIMD with chunked processing
- mean_
zero_ copy - Zero-copy mean calculation using views
- median
- Compute the median of a data set.
- median_
abs_ deviation - Compute the median absolute deviation (MAD) of a dataset.
- median_
abs_ deviation_ simd - SIMD-optimized median absolute deviation from median (MAD)
- median_
simd - SIMD-optimized median computation
- moment
- Compute the moment of a distribution.
- moment_
compat Deprecated - Backward compatibility: Compute the moment without specifying workers parameter.
- normalize_
inplace - In-place normalization (standardization) of data
- outlier_
detection_ zscore_ simd - SIMD-optimized outlier detection using Z-score
- pairwise_
distances_ parallel - Parallel computation of pairwise distances
- partial_
corr - Compute the partial correlation coefficient between two variables, controlling for one or more additional variables.
- partial_
corrr - Calculates the partial correlation coefficient and p-value.
- pca_
memory_ efficient - Memory-efficient principal component analysis
- pearson_
r - Compute the Pearson correlation coefficient between two arrays.
- pearson_
r_ simd - Compute the Pearson correlation coefficient using SIMD operations
- pearson_
r_ simd_ enhanced - SIMD-enhanced Pearson correlation computation
- pearsonr
- Calculates the Pearson correlation coefficient and p-value for testing non-correlation.
- percentile
- Compute the percentile of a dataset.
- percentile_
range_ simd - SIMD-optimized percentile range
- percentile_
simd - SIMD-optimized percentile computation
- point_
biserial - Compute the point-biserial correlation coefficient between a binary variable and a continuous variable.
- point_
biserialr - Calculates the point-biserial correlation coefficient and p-value.
- quantile
- Compute the quantile of a dataset.
- quantile_
quickselect - Memory-efficient quantile computation using quickselect
- quantile_
simd - SIMD-optimized quantile computation
- quantiles_
batch_ simd - SIMD-optimized quantile computation using partitioning
- quantiles_
parallel - Compute multiple quantiles in parallel
- quantiles_
simd - SIMD-optimized computation of multiple quantiles
- quartiles
- Compute the quartiles of a dataset.
- quickselect_
simd - SIMD-optimized quickselect algorithm for finding the k-th smallest element
- quintiles
- Compute the quintiles of a dataset.
- range_
simd - SIMD-optimized range calculation
- robust_
statistics_ simd - SIMD-optimized robust statistics computation
- robust_
stats_ v4_ simd - SIMD-optimized robust statistics using median-based methods
- rolling_
correlation_ parallel - Rolling correlation computation with parallel processing
- rolling_
statistics_ simd - SIMD-optimized rolling statistics with configurable functions
- row_
statistics_ parallel - Compute row-wise statistics in parallel
- sem_
simd - SIMD-optimized standard error of the mean
- skew
- Compute the skewness of a data set.
- skew_
compat Deprecated - Backward compatibility: Compute the skewness without specifying workers parameter.
- sliding_
window_ stats_ simd - SIMD-optimized sliding window statistics
- spearman_
r - Compute the Spearman rank correlation coefficient between two arrays.
- spearmanr
- Calculates the Spearman rank correlation coefficient and p-value.
- stats_
simd_ single_ pass - Compute all basic statistics in a single SIMD pass
- std
- Compute the standard deviation of a data set.
- std_
compat Deprecated - Backward compatibility: Compute the standard deviation without specifying workers parameter.
- std_
simd - Calculate standard deviation using SIMD operations
- streaming_
covariance_ matrix - Streaming covariance computation for large datasets
- streaming_
histogram_ adaptive - Enhanced streaming histogram computation with adaptive binning
- streaming_
mean - Streaming mean calculation that processes data in chunks
- streaming_
pca_ enhanced - Streaming principal component analysis for very large datasets
- streaming_
quantiles_ p2 - Memory-efficient streaming quantile computation using PΒ² algorithm
- streaming_
regression_ enhanced - Enhanced streaming regression for large datasets with regularization
- ttest_
ind_ simd - SIMD-optimized t-test computation
- var
- Compute the variance of a data set.
- var_
compat Deprecated - Backward compatibility: Compute the variance without specifying workers parameter.
- variance_
cache_ aware - Cache-friendly variance computation
- variance_
parallel - Compute variance in parallel for large arrays
- variance_
parallel_ advanced - variance_
parallel_ enhanced - Parallel variance with single-pass algorithm
- variance_
simd - Calculate variance using SIMD operations
- variance_
simd_ optimized - Optimized variance calculation using single-pass SIMD algorithm
- weighted_
mean - Compute the weighted average of a data set.
- welford_
variance - Welfordβs online algorithm for variance computation
- winsorized_
mean - Compute the winsorized mean of a dataset.
- winsorized_
variance - Compute the winsorized variance of a dataset.