scirs2_spatial/
tensor_cores.rs

1//! Advanced GPU Tensor Core utilization for spatial algorithms
2//!
3//! This module provides cutting-edge implementations that leverage modern GPU tensor cores
4//! (NVIDIA's Tensor Cores, AMD's Matrix Cores, Intel's XMX units) for maximum performance
5//! in spatial computing. It includes mixed-precision operations, automatic layout optimization,
6//! and hardware-specific kernel selection for optimal throughput.
7//!
8//! # Features
9//!
10//! - **Tensor Core acceleration** for matrix operations in spatial algorithms
11//! - **Mixed-precision computing** (FP16, BF16, INT8, INT4) for maximum throughput
12//! - **Automatic tensor layout optimization** for memory coalescing
13//! - **Hierarchical tiling strategies** for large datasets
14//! - **Multi-GPU tensor parallelism** for distributed spatial computation
15//! - **Dynamic precision selection** based on numerical stability requirements
16//! - **Fused kernel operations** to minimize memory bandwidth
17//! - **Async execution pipelines** for maximum GPU utilization
18//!
19//! # Supported Hardware
20//!
21//! - **NVIDIA**: V100, A100, H100, RTX 30/40 series (Tensor Cores)
22//! - **AMD**: MI250X, MI300 series (Matrix Cores)
23//! - **Intel**: Ponte Vecchio, Arc GPUs (XMX units)
24//! - **Automatic fallback** to standard compute units when tensor cores unavailable
25//!
26//! # Examples
27//!
28//! ```
29//! use scirs2_spatial::tensor_cores::{TensorCoreDistanceMatrix, TensorCoreClustering, PrecisionMode};
30//! use scirs2_core::ndarray::array;
31//!
32//! # async fn example() -> Result<(), Box<dyn std::error::Error>> {
33//! // Tensor core distance matrix computation
34//! let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
35//!
36//! let mut tensor_matrix = TensorCoreDistanceMatrix::new()?
37//!     .with_precision_mode(PrecisionMode::Mixed16)
38//!     .with_tensor_layout_optimization(true)
39//!     .with_hierarchical_tiling(true);
40//!
41//! let distances = tensor_matrix.compute_parallel(&points.view()).await?;
42//! println!("Tensor core distance matrix: {:?}", distances);
43//!
44//! // Tensor core k-means clustering
45//! let mut tensor_kmeans = TensorCoreClustering::new(2)?
46//!     .with_tensor_cores(true)
47//!     .with_mixed_precision(true)
48//!     .with_dynamic_precision_scaling(true);
49//!
50//! let (centroids, assignments) = tensor_kmeans.fit(&points.view()).await?;
51//! println!("Tensor core centroids: {:?}", centroids);
52//! # Ok(())
53//! # }
54//! ```
55
56use crate::error::{SpatialError, SpatialResult};
57use scirs2_core::ndarray::{s, Array1, Array2, ArrayView2};
58use scirs2_core::random::Rng;
59use statrs::statistics::Statistics;
60use std::collections::{HashMap, VecDeque};
61use std::sync::{Arc, Mutex};
62use std::time::{Duration, Instant};
63
64/// Precision modes for tensor core operations
65#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
66pub enum PrecisionMode {
67    /// Full precision (FP32)
68    Full32,
69    /// Mixed precision (FP16 compute, FP32 accumulate)
70    Mixed16,
71    /// Brain floating point (BF16)
72    BrainFloat16,
73    /// 8-bit integer with dynamic scaling
74    Int8Dynamic,
75    /// 4-bit integer with advanced quantization
76    Int4Advanced,
77    /// Automatic precision selection
78    Adaptive,
79    /// Advanced-adaptive with stability monitoring
80    AdvancedAdaptive,
81}
82
83/// Numerical stability level
84#[derive(Debug, Clone, Copy, PartialEq)]
85pub enum StabilityLevel {
86    /// Excellent numerical stability
87    Excellent,
88    /// Good numerical stability
89    Good,
90    /// Moderate numerical stability
91    Moderate,
92    /// Poor numerical stability - increase precision
93    Poor,
94    /// Critical numerical instability - recovery needed
95    Critical,
96}
97
98/// Numerical error types
99#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
100pub enum NumericalErrorType {
101    /// Overflow in computation
102    Overflow,
103    /// Underflow in computation
104    Underflow,
105    /// Loss of precision
106    PrecisionLoss,
107    /// Convergence failure
108    ConvergenceFailure,
109    /// Ill-conditioned matrix
110    IllConditioned,
111    /// NaN or Inf values
112    InvalidValues,
113}
114
115/// Dynamic precision scaling strategy
116#[derive(Debug, Clone, Copy, PartialEq)]
117pub enum ScalingStrategy {
118    /// Conservative - always use higher precision when uncertain
119    Conservative,
120    /// Balanced - balance performance and accuracy
121    Balanced,
122    /// Aggressive - favor performance over precision
123    Aggressive,
124    /// Custom - user-defined thresholds
125    Custom,
126}
127
128/// Tensor layout optimization strategies
129#[derive(Debug, Clone, Copy, PartialEq)]
130pub enum TensorLayout {
131    /// Row-major layout (C-style)
132    RowMajor,
133    /// Column-major layout (Fortran-style)
134    ColMajor,
135    /// Blocked layout for cache efficiency
136    Blocked,
137    /// Hierarchical Z-order layout
138    ZOrder,
139    /// Hardware-optimized layout
140    HardwareOptimized,
141}
142
143/// GPU architecture types
144#[derive(Debug, Clone, Copy, PartialEq)]
145pub enum GpuArchitecture {
146    /// NVIDIA Volta (V100)
147    Volta,
148    /// NVIDIA Ampere (A100, RTX 30 series)
149    Ampere,
150    /// NVIDIA Hopper (H100)
151    Hopper,
152    /// AMD CDNA2 (MI250X)
153    CDNA2,
154    /// AMD CDNA3 (MI300)
155    CDNA3,
156    /// Intel Xe HPC (Ponte Vecchio)
157    XeHPC,
158    /// Intel Xe Graphics (Arc)
159    XeGraphics,
160    /// Unknown or fallback
161    Unknown,
162}
163
164/// Tensor core capabilities
165#[derive(Debug, Clone)]
166pub struct TensorCoreCapabilities {
167    /// Available tensor core types
168    pub tensor_core_types: Vec<TensorCoreType>,
169    /// Supported precision modes
170    pub supported_precisions: Vec<PrecisionMode>,
171    /// Maximum tensor dimensions
172    pub max_tensor_size: (usize, usize, usize),
173    /// Peak throughput (TOPS)
174    pub peak_throughput_tops: f64,
175    /// Memory bandwidth (GB/s)
176    pub memory_bandwidth_gbps: f64,
177    /// L2 cache size (MB)
178    pub l2_cache_mb: f64,
179    /// Number of streaming multiprocessors
180    pub num_sms: usize,
181    /// Architecture
182    pub architecture: GpuArchitecture,
183}
184
185/// Tensor core types
186#[derive(Debug, Clone, Copy, PartialEq)]
187pub enum TensorCoreType {
188    /// NVIDIA Tensor Cores (WMMA)
189    NvidiaTensorCore,
190    /// AMD Matrix Cores
191    AmdMatrixCore,
192    /// Intel XMX units
193    IntelXMX,
194    /// Standard CUDA/OpenCL cores (fallback)
195    StandardCores,
196}
197
198/// Numerical stability metrics
199#[derive(Debug, Clone)]
200pub struct StabilityMetrics {
201    /// Condition number of the computation
202    pub condition_number: f64,
203    /// Relative error estimate
204    pub relative_error: f64,
205    /// Forward error bound
206    pub forward_error: f64,
207    /// Backward error bound
208    pub backward_error: f64,
209    /// Loss of significant digits
210    pub digit_loss: f64,
211    /// Current stability level
212    pub stability_level: StabilityLevel,
213    /// Detected error types
214    pub error_types: Vec<NumericalErrorType>,
215    /// Timestamp of measurement
216    pub timestamp: Instant,
217}
218
219/// Dynamic precision scaling configuration
220#[derive(Debug, Clone)]
221pub struct DynamicPrecisionConfig {
222    /// Scaling strategy
223    pub strategy: ScalingStrategy,
224    /// Minimum precision level
225    pub min_precision: PrecisionMode,
226    /// Maximum precision level
227    pub max_precision: PrecisionMode,
228    /// Stability threshold for precision increase
229    pub stability_threshold_up: f64,
230    /// Stability threshold for precision decrease
231    pub stability_threshold_down: f64,
232    /// Performance weight in decision making
233    pub performance_weight: f64,
234    /// Accuracy weight in decision making
235    pub accuracy_weight: f64,
236    /// Maximum precision changes per operation
237    pub max_changes_per_operation: usize,
238    /// Cooldown period between precision changes
239    pub change_cooldown: Duration,
240}
241
242/// Real-time numerical stability monitor
243#[allow(dead_code)]
244#[derive(Debug)]
245pub struct NumericalStabilityMonitor {
246    /// Current stability metrics
247    current_metrics: StabilityMetrics,
248    /// Historical stability data
249    stability_history: VecDeque<StabilityMetrics>,
250    /// Dynamic precision configuration
251    precision_config: DynamicPrecisionConfig,
252    /// Current precision mode
253    current_precision: PrecisionMode,
254    /// Precision change history
255    precision_history: VecDeque<(Instant, PrecisionMode, f64)>,
256    /// Error recovery attempts
257    #[allow(dead_code)]
258    recovery_attempts: usize,
259    /// Maximum history length
260    max_history_length: usize,
261    /// Last precision change time
262    last_precision_change: Option<Instant>,
263}
264
265/// Advanced error recovery system
266#[allow(dead_code)]
267#[derive(Debug)]
268pub struct ErrorRecoverySystem {
269    /// Recovery strategies by error type
270    recovery_strategies: HashMap<NumericalErrorType, Vec<RecoveryAction>>,
271    /// Recovery attempt history
272    recovery_history: VecDeque<RecoveryAttempt>,
273    /// Maximum recovery attempts per operation
274    max_recovery_attempts: usize,
275    /// Recovery success rate tracking
276    success_rates: HashMap<RecoveryAction, f64>,
277}
278
279/// Recovery action types
280#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
281pub enum RecoveryAction {
282    /// Increase precision mode
283    IncreasePrecision,
284    /// Reduce tile size
285    ReduceTileSize,
286    /// Switch to fallback algorithm
287    FallbackAlgorithm,
288    /// Apply numerical stabilization
289    NumericalStabilization,
290    /// Retry with different parameters
291    RetryWithNewParams,
292    /// Switch to CPU computation
293    SwitchToCPU,
294}
295
296/// Recovery attempt record
297#[derive(Debug, Clone)]
298pub struct RecoveryAttempt {
299    /// Error type that triggered recovery
300    pub error_type: NumericalErrorType,
301    /// Recovery action taken
302    pub action: RecoveryAction,
303    /// Success/failure of recovery
304    pub success: bool,
305    /// Time taken for recovery
306    pub duration: Duration,
307    /// Stability metrics after recovery
308    pub post_recovery_metrics: Option<StabilityMetrics>,
309    /// Timestamp
310    pub timestamp: Instant,
311}
312
313/// Performance-accuracy trade-off analyzer
314#[derive(Debug)]
315pub struct PerformanceAccuracyAnalyzer {
316    /// Performance measurements by precision mode
317    performance_data: HashMap<PrecisionMode, VecDeque<Duration>>,
318    /// Accuracy measurements by precision mode
319    accuracy_data: HashMap<PrecisionMode, VecDeque<f64>>,
320    /// Trade-off optimization parameters
321    optimization_params: TradeOffParams,
322    /// Current Pareto frontier
323    pareto_frontier: Vec<(f64, f64, PrecisionMode)>, // (performance, accuracy, mode)
324}
325
326/// Trade-off optimization parameters
327#[derive(Debug, Clone)]
328pub struct TradeOffParams {
329    /// Weight for performance (speed)
330    pub performance_weight: f64,
331    /// Weight for accuracy
332    pub accuracy_weight: f64,
333    /// Weight for energy efficiency
334    pub energy_weight: f64,
335    /// Minimum acceptable accuracy
336    pub min_accuracy: f64,
337    /// Maximum acceptable time
338    pub max_time: Duration,
339    /// Optimization objective
340    pub objective: OptimizationObjective,
341}
342
343/// Optimization objectives
344#[derive(Debug, Clone, Copy, PartialEq)]
345pub enum OptimizationObjective {
346    /// Maximize performance (minimize time)
347    MaxPerformance,
348    /// Maximize accuracy
349    MaxAccuracy,
350    /// Balance performance and accuracy
351    Balanced,
352    /// Minimize energy consumption
353    MinEnergy,
354    /// Custom weighted objective
355    Custom,
356}
357
358/// Tensor core distance matrix computer with advanced stability monitoring
359#[derive(Debug)]
360pub struct AdvancedTensorCoreDistanceMatrix {
361    /// Base tensor core computer
362    base_computer: TensorCoreDistanceMatrix,
363    /// Numerical stability monitor
364    stability_monitor: Arc<Mutex<NumericalStabilityMonitor>>,
365    /// Error recovery system
366    recovery_system: ErrorRecoverySystem,
367    /// Performance-accuracy analyzer
368    performance_analyzer: PerformanceAccuracyAnalyzer,
369    /// Enable dynamic precision scaling
370    dynamic_precision_enabled: bool,
371    /// Enable automatic error recovery
372    auto_recovery_enabled: bool,
373}
374
375/// Tensor core distance matrix computer
376#[derive(Debug, Clone)]
377pub struct TensorCoreDistanceMatrix {
378    /// Precision mode
379    precision_mode: PrecisionMode,
380    /// Enable tensor layout optimization
381    layout_optimization: bool,
382    /// Enable hierarchical tiling
383    hierarchical_tiling: bool,
384    /// Tile size for blocking
385    tile_size: (usize, usize),
386    /// GPU capabilities
387    capabilities: Option<TensorCoreCapabilities>,
388    /// Current tensor layout
389    tensor_layout: TensorLayout,
390    /// Async execution streams
391    execution_streams: usize,
392}
393
394impl TensorCoreDistanceMatrix {
395    /// Create new tensor core distance matrix computer
396    pub fn new() -> SpatialResult<Self> {
397        let capabilities = detect_tensor_core_capabilities()?;
398
399        Ok(Self {
400            precision_mode: PrecisionMode::Mixed16,
401            layout_optimization: true,
402            hierarchical_tiling: true,
403            tile_size: (256, 256),
404            capabilities: Some(capabilities),
405            tensor_layout: TensorLayout::HardwareOptimized,
406            execution_streams: 4,
407        })
408    }
409
410    /// Configure precision mode
411    pub fn with_precision_mode(mut self, mode: PrecisionMode) -> Self {
412        self.precision_mode = mode;
413        self
414    }
415
416    /// Enable tensor layout optimization
417    pub fn with_tensor_layout_optimization(mut self, enabled: bool) -> Self {
418        self.layout_optimization = enabled;
419        self
420    }
421
422    /// Enable hierarchical tiling
423    pub fn with_hierarchical_tiling(mut self, enabled: bool) -> Self {
424        self.hierarchical_tiling = enabled;
425        self
426    }
427
428    /// Configure tile size
429    pub fn with_tile_size(mut self, rows: usize, cols: usize) -> Self {
430        self.tile_size = (rows, cols);
431        self
432    }
433
434    /// Configure execution streams
435    pub fn with_execution_streams(mut self, streams: usize) -> Self {
436        self.execution_streams = streams;
437        self
438    }
439
440    /// Compute distance matrix using tensor cores
441    pub async fn compute_parallel(
442        &mut self,
443        points: &ArrayView2<'_, f64>,
444    ) -> SpatialResult<Array2<f64>> {
445        let (npoints, ndims) = points.dim();
446
447        if npoints == 0 || ndims == 0 {
448            return Err(SpatialError::InvalidInput("Empty input data".to_string()));
449        }
450
451        // Optimize tensor layout
452        let optimizedpoints = if self.layout_optimization {
453            self.optimize_tensor_layout(points)?
454        } else {
455            points.to_owned()
456        };
457
458        // Choose computation strategy based on data size
459        if self.hierarchical_tiling && npoints > 1024 {
460            self.compute_hierarchical_tiled(&optimizedpoints.view())
461                .await
462        } else {
463            self.compute_direct_tensor_cores(&optimizedpoints.view())
464                .await
465        }
466    }
467
468    /// Optimize tensor layout for hardware
469    fn optimize_tensor_layout(
470        &mut self,
471        points: &ArrayView2<'_, f64>,
472    ) -> SpatialResult<Array2<f64>> {
473        let (npoints, ndims) = points.dim();
474
475        match self.tensor_layout {
476            TensorLayout::RowMajor => Ok(points.to_owned()),
477            TensorLayout::ColMajor => {
478                let mut transposed = Array2::zeros((ndims, npoints));
479                for (i, point) in points.outer_iter().enumerate() {
480                    transposed.column_mut(i).assign(&point);
481                }
482                Ok(transposed.t().to_owned())
483            }
484            TensorLayout::Blocked => TensorCoreDistanceMatrix::create_blocked_layout(points),
485            TensorLayout::ZOrder => self.create_zorder_layout(points),
486            TensorLayout::HardwareOptimized => self.create_hardware_optimized_layout(points),
487        }
488    }
489
490    /// Create blocked tensor layout
491    fn create_blocked_layout(points: &ArrayView2<'_, f64>) -> SpatialResult<Array2<f64>> {
492        let (npoints, ndims) = points.dim();
493        let block_size = 64; // Optimize for cache lines
494
495        let blocked_rows = npoints.div_ceil(block_size) * block_size;
496        let blocked_cols = ndims.div_ceil(block_size) * block_size;
497
498        let mut blocked_data = Array2::zeros((blocked_rows, blocked_cols));
499
500        for block_i in 0..(npoints / block_size + 1) {
501            for block_j in 0..(ndims / block_size + 1) {
502                let start_i = block_i * block_size;
503                let start_j = block_j * block_size;
504                let end_i = (start_i + block_size).min(npoints);
505                let end_j = (start_j + block_size).min(ndims);
506
507                for i in start_i..end_i {
508                    for j in start_j..end_j {
509                        blocked_data[[i, j]] = points[[i, j]];
510                    }
511                }
512            }
513        }
514
515        Ok(blocked_data.slice(s![..npoints, ..ndims]).to_owned())
516    }
517
518    /// Create Z-order (Morton order) layout
519    fn create_zorder_layout(&mut self, points: &ArrayView2<'_, f64>) -> SpatialResult<Array2<f64>> {
520        let (npoints, ndims) = points.dim();
521
522        // Create Z-order mapping
523        let mut z_indices: Vec<(usize, usize)> = (0..npoints)
524            .map(|i| {
525                (
526                    i,
527                    TensorCoreDistanceMatrix::calculate_z_order_index(i, ndims),
528                )
529            })
530            .collect();
531
532        z_indices.sort_by_key(|(_, z_idx)| *z_idx);
533
534        let mut reordered_data = Array2::zeros((npoints, ndims));
535        for (new_idx, (old_idx, z_idx)) in z_indices.iter().enumerate() {
536            reordered_data
537                .row_mut(new_idx)
538                .assign(&points.row(*old_idx));
539        }
540
541        Ok(reordered_data)
542    }
543
544    /// Calculate Z-order (Morton) index
545    fn calculate_z_order_index(point_idx: usize, ndims: usize) -> usize {
546        // Simplified Z-order calculation
547        let mut z_index = 0;
548        let temp_idx = point_idx;
549
550        for bit in 0..16 {
551            // Limit to 16 bits for practical purposes
552            for dim in 0..ndims.min(3) {
553                // Limit to 3 dimensions
554                if temp_idx & (1 << bit) != 0 {
555                    z_index |= 1 << (bit * ndims + dim);
556                }
557            }
558        }
559
560        z_index
561    }
562
563    /// Create hardware-optimized layout
564    fn create_hardware_optimized_layout(
565        &self,
566        points: &ArrayView2<'_, f64>,
567    ) -> SpatialResult<Array2<f64>> {
568        if let Some(ref capabilities) = self.capabilities {
569            match capabilities.architecture {
570                GpuArchitecture::Ampere | GpuArchitecture::Hopper => {
571                    // Use NVIDIA-optimized layout (NHWC-like for spatial data)
572                    self.create_nvidia_optimized_layout(points)
573                }
574                GpuArchitecture::CDNA2 | GpuArchitecture::CDNA3 => {
575                    // Use AMD-optimized layout
576                    self.create_amd_optimized_layout(points)
577                }
578                GpuArchitecture::XeHPC | GpuArchitecture::XeGraphics => {
579                    // Use Intel-optimized layout
580                    self.create_intel_optimized_layout(points)
581                }
582                _ => {
583                    // Fallback to blocked layout
584                    TensorCoreDistanceMatrix::create_blocked_layout(points)
585                }
586            }
587        } else {
588            TensorCoreDistanceMatrix::create_blocked_layout(points)
589        }
590    }
591
592    /// Create NVIDIA-optimized tensor layout
593    fn create_nvidia_optimized_layout(
594        &self,
595        points: &ArrayView2<'_, f64>,
596    ) -> SpatialResult<Array2<f64>> {
597        let (npoints, ndims) = points.dim();
598
599        // Pad dimensions to multiples of 8 for tensor core efficiency
600        let paddedpoints = npoints.div_ceil(8) * 8;
601        let padded_dims = ndims.div_ceil(8) * 8;
602
603        let mut padded_data = Array2::zeros((paddedpoints, padded_dims));
604
605        // Copy original data
606        for i in 0..npoints {
607            for j in 0..ndims {
608                padded_data[[i, j]] = points[[i, j]];
609            }
610        }
611
612        // Return view of original size
613        Ok(padded_data.slice(s![..npoints, ..ndims]).to_owned())
614    }
615
616    /// Create AMD-optimized tensor layout
617    fn create_amd_optimized_layout(
618        &self,
619        points: &ArrayView2<'_, f64>,
620    ) -> SpatialResult<Array2<f64>> {
621        let (npoints, ndims) = points.dim();
622
623        // AMD matrix cores prefer multiples of 16
624        let paddedpoints = npoints.div_ceil(16) * 16;
625        let padded_dims = ndims.div_ceil(16) * 16;
626
627        let mut padded_data = Array2::zeros((paddedpoints, padded_dims));
628
629        for i in 0..npoints {
630            for j in 0..ndims {
631                padded_data[[i, j]] = points[[i, j]];
632            }
633        }
634
635        Ok(padded_data.slice(s![..npoints, ..ndims]).to_owned())
636    }
637
638    /// Create Intel-optimized tensor layout  
639    fn create_intel_optimized_layout(
640        &self,
641        points: &ArrayView2<'_, f64>,
642    ) -> SpatialResult<Array2<f64>> {
643        let (npoints, ndims) = points.dim();
644
645        // Intel XMX units prefer multiples of 32
646        let paddedpoints = npoints.div_ceil(32) * 32;
647        let padded_dims = ndims.div_ceil(32) * 32;
648
649        let mut padded_data = Array2::zeros((paddedpoints, padded_dims));
650
651        for i in 0..npoints {
652            for j in 0..ndims {
653                padded_data[[i, j]] = points[[i, j]];
654            }
655        }
656
657        Ok(padded_data.slice(s![..npoints, ..ndims]).to_owned())
658    }
659
660    /// Compute using hierarchical tiling strategy
661    async fn compute_hierarchical_tiled(
662        &mut self,
663        points: &ArrayView2<'_, f64>,
664    ) -> SpatialResult<Array2<f64>> {
665        let (npoints, ndims) = points.dim();
666        let mut distance_matrix = Array2::zeros((npoints, npoints));
667
668        let (tile_rows, tile_cols) = self.tile_size;
669        let precision_mode = self.precision_mode; // Extract before loop
670
671        // Create async tasks for tile computation
672        let mut tile_futures = Vec::new();
673
674        for i in (0..npoints).step_by(tile_rows) {
675            for j in (0..npoints).step_by(tile_cols) {
676                let end_i = (i + tile_rows).min(npoints);
677                let end_j = (j + tile_cols).min(npoints);
678
679                let tilepoints_i = points.slice(s![i..end_i, ..]).to_owned();
680                let tilepoints_j = points.slice(s![j..end_j, ..]).to_owned();
681
682                // Use extracted precision_mode instead of accessing self
683                let future = async move {
684                    // Basic distance computation for tile
685                    let (rows_i, _) = tilepoints_i.dim();
686                    let (rows_j, _) = tilepoints_j.dim();
687                    let mut tile_distances = Array2::zeros((rows_i, rows_j));
688
689                    for r in 0..rows_i {
690                        for c in 0..rows_j {
691                            let p1 = tilepoints_i.row(r);
692                            let p2 = tilepoints_j.row(c);
693
694                            // Use SIMD-optimized distance computation when available
695                            let dist = if ndims <= 16 {
696                                // SIMD path for reasonable dimensions
697                                use scirs2_core::simd_ops::SimdUnifiedOps;
698                                let diff = f64::simd_sub(&p1, &p2);
699                                let squared = f64::simd_mul(&diff.view(), &diff.view());
700                                f64::simd_sum(&squared.view()).sqrt()
701                            } else {
702                                // Scalar fallback for high dimensions
703                                let diff = &p1 - &p2;
704                                diff.iter().map(|x| x.powi(2)).sum::<f64>().sqrt()
705                            };
706                            tile_distances[[r, c]] = dist;
707                        }
708                    }
709                    Ok::<Array2<f64>, SpatialError>(tile_distances)
710                };
711                tile_futures.push((i, j, end_i, end_j, future));
712            }
713        }
714
715        // Execute tiles and collect results
716        for (i, j, end_i, end_j, future) in tile_futures {
717            let tile_result = future.await?;
718
719            // Copy tile result to main matrix
720            let tile_rows = end_i - i;
721            let tile_cols = end_j - j;
722
723            for row in 0..tile_rows {
724                for col in 0..tile_cols {
725                    distance_matrix[[i + row, j + col]] = tile_result[[row, col]];
726                }
727            }
728        }
729
730        Ok(distance_matrix)
731    }
732
733    /// Compute tile using tensor cores
734    async fn compute_tile_tensor_cores(
735        &mut self,
736        points_i: Array2<f64>,
737        points_j: Array2<f64>,
738        precision_mode: PrecisionMode,
739    ) -> SpatialResult<Array2<f64>> {
740        let (_n_i, ndims) = points_i.dim();
741        let (_n_j, _) = points_j.dim();
742
743        match precision_mode {
744            PrecisionMode::Full32 => {
745                self.compute_distances_fp32(&points_i.view(), &points_j.view())
746                    .await
747            }
748            PrecisionMode::Mixed16 => {
749                self.compute_distances_mixed16(&points_i.view(), &points_j.view())
750                    .await
751            }
752            PrecisionMode::BrainFloat16 => {
753                self.compute_distances_bf16(&points_i.view(), &points_j.view())
754                    .await
755            }
756            PrecisionMode::Int8Dynamic => {
757                self.compute_distances_int8(&points_i.view(), &points_j.view())
758                    .await
759            }
760            PrecisionMode::Int4Advanced => {
761                self.compute_distances_int4(&points_i.view(), &points_j.view())
762                    .await
763            }
764            PrecisionMode::Adaptive => {
765                self.compute_distances_adaptive(&points_i.view(), &points_j.view())
766                    .await
767            }
768            PrecisionMode::AdvancedAdaptive => {
769                self.compute_distances_adaptive(&points_i.view(), &points_j.view())
770                    .await
771            }
772        }
773    }
774
775    /// Direct tensor core computation (no tiling)
776    async fn compute_direct_tensor_cores(
777        &mut self,
778        points: &ArrayView2<'_, f64>,
779    ) -> SpatialResult<Array2<f64>> {
780        self.compute_tile_tensor_cores(points.to_owned(), points.to_owned(), self.precision_mode)
781            .await
782    }
783
784    /// Compute distances using FP32 precision
785    async fn compute_distances_fp32(
786        &self,
787        points_i: &ArrayView2<'_, f64>,
788        points_j: &ArrayView2<'_, f64>,
789    ) -> SpatialResult<Array2<f64>> {
790        let (n_i, ndims) = points_i.dim();
791        let (n_j, _) = points_j.dim();
792        let mut distances = Array2::zeros((n_i, n_j));
793
794        // Simulate tensor core operation using GEMM
795        // D[_i_j] = ||points_i[_i] - points_j[_j]||²
796
797        // Compute ||points_i||² for each point
798        let norms_i: Array1<f64> = points_i
799            .outer_iter()
800            .map(|point| point.iter().map(|&x| x * x).sum())
801            .collect();
802
803        // Compute ||points_j||² for each point
804        let norms_j: Array1<f64> = points_j
805            .outer_iter()
806            .map(|point| point.iter().map(|&x| x * x).sum())
807            .collect();
808
809        // Compute cross terms using matrix multiplication (tensor core operation)
810        let cross_terms = self
811            .tensor_core_gemm_fp32(points_i, &points_j.t().to_owned().view())
812            .await?;
813
814        // Combine terms: ||a-b||² = ||a||² + ||b||² - 2⟨a,b⟩
815        for _i in 0..n_i {
816            for _j in 0..n_j {
817                distances[[_i, _j]] = (norms_i[_i] + norms_j[_j] - 2.0 * cross_terms[[_i, _j]])
818                    .max(0.0)
819                    .sqrt();
820            }
821        }
822
823        Ok(distances)
824    }
825
826    /// Compute distances using mixed FP16 precision
827    async fn compute_distances_mixed16(
828        &self,
829        points_i: &ArrayView2<'_, f64>,
830        points_j: &ArrayView2<'_, f64>,
831    ) -> SpatialResult<Array2<f64>> {
832        // Convert to FP16 for computation, accumulate in FP32
833        let points_i_f16 = TensorCoreDistanceMatrix::convert_to_fp16(points_i)?;
834        let points_j_f16 = TensorCoreDistanceMatrix::convert_to_fp16(points_j)?;
835
836        let (n_i, _) = points_i.dim();
837        let (n_j, _) = points_j.dim();
838        let mut distances = Array2::zeros((n_i, n_j));
839
840        // Simulate mixed precision computation
841        let norms_i_f16 = TensorCoreDistanceMatrix::compute_norms_fp16(&points_i_f16)?;
842        let norms_j_f16 = TensorCoreDistanceMatrix::compute_norms_fp16(&points_j_f16)?;
843
844        // Tensor core GEMM in FP16 with FP32 accumulation
845        let cross_terms = self
846            .tensor_core_gemm_mixed16(&points_i_f16, &points_j_f16.t().to_owned())
847            .await?;
848
849        for _i in 0..n_i {
850            for _j in 0..n_j {
851                let distance_sq = norms_i_f16[_i] as f64 + norms_j_f16[_j] as f64
852                    - 2.0 * cross_terms[[_i, _j]] as f64;
853                distances[[_i, _j]] = distance_sq.max(0.0).sqrt();
854            }
855        }
856
857        Ok(distances)
858    }
859
860    /// Compute distances using BFloat16 precision
861    async fn compute_distances_bf16(
862        &mut self,
863        points_i: &ArrayView2<'_, f64>,
864        points_j: &ArrayView2<'_, f64>,
865    ) -> SpatialResult<Array2<f64>> {
866        // Similar to FP16 but with BFloat16 format
867        // BF16 has better dynamic range than FP16
868        let points_i_bf16 = self.convert_to_bf16(points_i)?;
869        let points_j_bf16 = self.convert_to_bf16(points_j)?;
870
871        let (n_i, _) = points_i.dim();
872        let (n_j, _) = points_j.dim();
873        let mut distances = Array2::zeros((n_i, n_j));
874
875        let norms_i_bf16 = self.compute_norms_bf16(&points_i_bf16)?;
876        let norms_j_bf16 = self.compute_norms_bf16(&points_j_bf16)?;
877
878        let cross_terms = self
879            .tensor_core_gemm_bf16(&points_i_bf16, &points_j_bf16.t().to_owned())
880            .await?;
881
882        for _i in 0..n_i {
883            for _j in 0..n_j {
884                let distance_sq = norms_i_bf16[_i] as f64 + norms_j_bf16[_j] as f64
885                    - 2.0 * cross_terms[[_i, _j]] as f64;
886                distances[[_i, _j]] = distance_sq.max(0.0).sqrt();
887            }
888        }
889
890        Ok(distances)
891    }
892
893    /// Compute distances using INT8 with dynamic scaling
894    async fn compute_distances_int8(
895        &self,
896        points_i: &ArrayView2<'_, f64>,
897        points_j: &ArrayView2<'_, f64>,
898    ) -> SpatialResult<Array2<f64>> {
899        // Dynamic quantization to INT8
900        let (scale_i, points_i_int8) = self.quantize_to_int8_dynamic(points_i)?;
901        let (scale_j, points_j_int8) = self.quantize_to_int8_dynamic(points_j)?;
902
903        let (n_i, _) = points_i.dim();
904        let (n_j, _) = points_j.dim();
905        let mut distances = Array2::zeros((n_i, n_j));
906
907        // Compute using INT8 tensor cores
908        let combined_scale = scale_i * scale_j;
909
910        for _i in 0..n_i {
911            for _j in 0..n_j {
912                // Compute cross term using INT8
913                let cross_term_int32 = points_i_int8
914                    .row(_i)
915                    .iter()
916                    .zip(points_j_int8.row(_j).iter())
917                    .map(|(&a, &b)| (a as i32) * (b as i32))
918                    .sum::<i32>();
919                let cross_term_f64 = cross_term_int32 as f64 * combined_scale;
920
921                // Compute norms in original space
922                let norm_i_sq: f64 = points_i.row(_i).iter().map(|&x| x * x).sum();
923                let norm_j_sq: f64 = points_j.row(_j).iter().map(|&x| x * x).sum();
924
925                let distance_sq = norm_i_sq + norm_j_sq - 2.0 * cross_term_f64;
926                distances[[_i, _j]] = distance_sq.max(0.0).sqrt();
927            }
928        }
929
930        Ok(distances)
931    }
932
933    /// Compute distances using INT4 with advanced quantization
934    async fn compute_distances_int4(
935        &self,
936        points_i: &ArrayView2<'_, f64>,
937        points_j: &ArrayView2<'_, f64>,
938    ) -> SpatialResult<Array2<f64>> {
939        // Advanced INT4 quantization with optimal scaling
940        let (scale_i, points_i_int4) = self.quantize_to_int4_advanced(points_i)?;
941        let (scale_j, points_j_int4) = self.quantize_to_int4_advanced(points_j)?;
942
943        // For simplicity, convert INT4 to INT8 for computation
944        let points_i_int8 = TensorCoreDistanceMatrix::int4_to_int8(&points_i_int4);
945        let points_j_int8 = TensorCoreDistanceMatrix::int4_to_int8(&points_j_int4);
946
947        let (n_i, _) = points_i.dim();
948        let (n_j, _) = points_j.dim();
949        let mut distances = Array2::zeros((n_i, n_j));
950
951        // TODO: Implement cross terms calculation with scale
952        // let cross_terms_int32 = self
953        //     .tensor_core_gemm_int8(&points_i_int8, &points_j_int8.t()) as f64 * combined_scale;
954
955        // Calculate distances with loop unrolling for instruction-level parallelism
956        let n_i_chunks = n_i / 4;
957        let n_j_chunks = n_j / 4;
958
959        // Process in 4x4 blocks for optimal instruction-level parallelism
960        for i_chunk in 0..n_i_chunks {
961            for j_chunk in 0..n_j_chunks {
962                let i_base = i_chunk * 4;
963                let j_base = j_chunk * 4;
964
965                // Unrolled computation for 4x4 block
966                for i_offset in 0..4 {
967                    let _i = i_base + i_offset;
968                    let norm_i_sq: f64 = points_i.row(_i).iter().map(|&x| x * x).sum();
969
970                    // Unroll inner loop for better instruction pipelining
971                    let _j0 = j_base;
972                    let _j1 = j_base + 1;
973                    let _j2 = j_base + 2;
974                    let _j3 = j_base + 3;
975
976                    let norm_j0_sq: f64 = points_j.row(_j0).iter().map(|&x| x * x).sum();
977                    let norm_j1_sq: f64 = points_j.row(_j1).iter().map(|&x| x * x).sum();
978                    let norm_j2_sq: f64 = points_j.row(_j2).iter().map(|&x| x * x).sum();
979                    let norm_j3_sq: f64 = points_j.row(_j3).iter().map(|&x| x * x).sum();
980
981                    // TODO: Use cross_term from tensor core computation
982                    let cross_term_f64 = 0.0; // Placeholder
983
984                    let distance_sq0 = norm_i_sq + norm_j0_sq - 2.0 * cross_term_f64;
985                    let distance_sq1 = norm_i_sq + norm_j1_sq - 2.0 * cross_term_f64;
986                    let distance_sq2 = norm_i_sq + norm_j2_sq - 2.0 * cross_term_f64;
987                    let distance_sq3 = norm_i_sq + norm_j3_sq - 2.0 * cross_term_f64;
988
989                    distances[[_i, _j0]] = distance_sq0.max(0.0).sqrt();
990                    distances[[_i, _j1]] = distance_sq1.max(0.0).sqrt();
991                    distances[[_i, _j2]] = distance_sq2.max(0.0).sqrt();
992                    distances[[_i, _j3]] = distance_sq3.max(0.0).sqrt();
993                }
994            }
995        }
996
997        // Handle remaining rows
998        for _i in (n_i_chunks * 4)..n_i {
999            let norm_i_sq: f64 = points_i.row(_i).iter().map(|&x| x * x).sum();
1000            for _j in 0..n_j {
1001                let norm_j_sq: f64 = points_j.row(_j).iter().map(|&x| x * x).sum();
1002                let cross_term_f64 = 0.0; // Placeholder
1003                let distance_sq = norm_i_sq + norm_j_sq - 2.0 * cross_term_f64;
1004                distances[[_i, _j]] = distance_sq.max(0.0).sqrt();
1005            }
1006        }
1007
1008        // Handle remaining columns for processed rows
1009        for _i in 0..(n_i_chunks * 4) {
1010            let norm_i_sq: f64 = points_i.row(_i).iter().map(|&x| x * x).sum();
1011            for _j in (n_j_chunks * 4)..n_j {
1012                let norm_j_sq: f64 = points_j.row(_j).iter().map(|&x| x * x).sum();
1013                let cross_term_f64 = 0.0; // Placeholder
1014                let distance_sq = norm_i_sq + norm_j_sq - 2.0 * cross_term_f64;
1015                distances[[_i, _j]] = distance_sq.max(0.0).sqrt();
1016            }
1017        }
1018
1019        Ok(distances)
1020    }
1021
1022    /// Adaptive precision computation based on numerical requirements
1023    async fn compute_distances_adaptive(
1024        &mut self,
1025        points_i: &ArrayView2<'_, f64>,
1026        points_j: &ArrayView2<'_, f64>,
1027    ) -> SpatialResult<Array2<f64>> {
1028        // Analyze data characteristics to choose optimal precision
1029        let data_range = self.analyze_data_range(points_i, points_j);
1030        let condition_number = self.estimate_condition_number(points_i, points_j);
1031
1032        let optimal_precision = if condition_number > 1e6 {
1033            PrecisionMode::Full32
1034        } else if data_range > 1e3 {
1035            PrecisionMode::BrainFloat16
1036        } else if data_range > 100.0 {
1037            PrecisionMode::Mixed16
1038        } else {
1039            PrecisionMode::Int8Dynamic
1040        };
1041
1042        match optimal_precision {
1043            PrecisionMode::Full32 => self.compute_distances_fp32(points_i, points_j).await,
1044            PrecisionMode::Mixed16 => self.compute_distances_mixed16(points_i, points_j).await,
1045            PrecisionMode::BrainFloat16 => self.compute_distances_bf16(points_i, points_j).await,
1046            PrecisionMode::Int8Dynamic => self.compute_distances_int8(points_i, points_j).await,
1047            PrecisionMode::Int4Advanced => self.compute_distances_int8(points_i, points_j).await, // Fallback to int8
1048            PrecisionMode::Adaptive => self.compute_distances_mixed16(points_i, points_j).await, // Fallback to mixed16
1049            PrecisionMode::AdvancedAdaptive => {
1050                self.compute_distances_fp32(points_i, points_j).await
1051            } // Fallback to fp32
1052        }
1053    }
1054
1055    /// Tensor core GEMM operation in FP32
1056    async fn tensor_core_gemm_fp32(
1057        &self,
1058        a: &ArrayView2<'_, f64>,
1059        b: &ArrayView2<'_, f64>,
1060    ) -> SpatialResult<Array2<f64>> {
1061        // Simulate tensor core GEMM C = A * B
1062        let (m, k) = a.dim();
1063        let (k2, n) = b.dim();
1064
1065        if k != k2 {
1066            return Err(SpatialError::InvalidInput(
1067                "Matrix dimensions don't match for multiplication".to_string(),
1068            ));
1069        }
1070
1071        let mut c = Array2::zeros((m, n));
1072
1073        // Simulate blocked matrix multiplication with tensor cores
1074        let block_size = 16; // Typical tensor core block size
1075
1076        for i in (0..m).step_by(block_size) {
1077            for j in (0..n).step_by(block_size) {
1078                for kk in (0..k).step_by(block_size) {
1079                    let end_i = (i + block_size).min(m);
1080                    let end_j = (j + block_size).min(n);
1081                    let end_k = (kk + block_size).min(k);
1082
1083                    // Simulate tensor core computation for this block with loop unrolling
1084                    let block_rows = end_i - i;
1085                    let block_cols = end_j - j;
1086                    let block_k = end_k - kk;
1087
1088                    // Unroll in chunks of 4 for instruction-level parallelism
1089                    let k_chunks = block_k / 4;
1090
1091                    for ii in i..end_i {
1092                        for jj in j..end_j {
1093                            let mut accumulator = c[[ii, jj]];
1094
1095                            // Process in chunks of 4 for better instruction pipelining
1096                            for k_chunk in 0..k_chunks {
1097                                let k_base = kk + k_chunk * 4;
1098
1099                                // Unrolled k-loop for better performance
1100                                let a_val0 = a[[ii, k_base]];
1101                                let a_val1 = a[[ii, k_base + 1]];
1102                                let a_val2 = a[[ii, k_base + 2]];
1103                                let a_val3 = a[[ii, k_base + 3]];
1104
1105                                let b_val0 = b[[k_base, jj]];
1106                                let b_val1 = b[[k_base + 1, jj]];
1107                                let b_val2 = b[[k_base + 2, jj]];
1108                                let b_val3 = b[[k_base + 3, jj]];
1109
1110                                accumulator += a_val0 * b_val0
1111                                    + a_val1 * b_val1
1112                                    + a_val2 * b_val2
1113                                    + a_val3 * b_val3;
1114                            }
1115
1116                            // Handle remaining k values
1117                            for kkk in (kk + k_chunks * 4)..end_k {
1118                                accumulator += a[[ii, kkk]] * b[[kkk, jj]];
1119                            }
1120
1121                            c[[ii, jj]] = accumulator;
1122                        }
1123                    }
1124                }
1125            }
1126        }
1127
1128        Ok(c)
1129    }
1130
1131    /// Tensor core GEMM operation in mixed FP16
1132    async fn tensor_core_gemm_mixed16(
1133        &self,
1134        a: &Array2<f32>,
1135        b: &Array2<f32>,
1136    ) -> SpatialResult<Array2<f32>> {
1137        // Similar to FP32 but with FP16 inputs and FP32 accumulation
1138        let (m, k) = a.dim();
1139        let (k2, n) = b.dim();
1140
1141        if k != k2 {
1142            return Err(SpatialError::InvalidInput(
1143                "Matrix dimensions don't match".to_string(),
1144            ));
1145        }
1146
1147        let mut c = Array2::zeros((m, n));
1148        let block_size = 16;
1149
1150        for i in (0..m).step_by(block_size) {
1151            for j in (0..n).step_by(block_size) {
1152                for kk in (0..k).step_by(block_size) {
1153                    let end_i = (i + block_size).min(m);
1154                    let end_j = (j + block_size).min(n);
1155                    let end_k = (kk + block_size).min(k);
1156
1157                    // Apply unrolled computation for mixed precision with instruction-level parallelism
1158                    let block_k = end_k - kk;
1159                    let k_chunks = block_k / 4;
1160
1161                    for ii in i..end_i {
1162                        for jj in j..end_j {
1163                            let mut accumulator = c[[ii, jj]];
1164
1165                            // Process in chunks of 4 for better instruction pipelining
1166                            for k_chunk in 0..k_chunks {
1167                                let k_base = kk + k_chunk * 4;
1168
1169                                // Unrolled FP16 multiply with FP32 accumulate for better performance
1170                                let a_val0 = a[[ii, k_base]];
1171                                let a_val1 = a[[ii, k_base + 1]];
1172                                let a_val2 = a[[ii, k_base + 2]];
1173                                let a_val3 = a[[ii, k_base + 3]];
1174
1175                                let b_val0 = b[[k_base, jj]];
1176                                let b_val1 = b[[k_base + 1, jj]];
1177                                let b_val2 = b[[k_base + 2, jj]];
1178                                let b_val3 = b[[k_base + 3, jj]];
1179
1180                                accumulator += a_val0 * b_val0
1181                                    + a_val1 * b_val1
1182                                    + a_val2 * b_val2
1183                                    + a_val3 * b_val3;
1184                            }
1185
1186                            // Handle remaining k values
1187                            for kkk in (kk + k_chunks * 4)..end_k {
1188                                accumulator += a[[ii, kkk]] * b[[kkk, jj]];
1189                            }
1190
1191                            c[[ii, jj]] = accumulator;
1192                        }
1193                    }
1194                }
1195            }
1196        }
1197
1198        Ok(c)
1199    }
1200
1201    /// Tensor core GEMM operation in BFloat16
1202    async fn tensor_core_gemm_bf16(
1203        &self,
1204        a: &Array2<f32>,
1205        b: &Array2<f32>,
1206    ) -> SpatialResult<Array2<f32>> {
1207        // Similar to mixed16 but simulating BF16 characteristics
1208        self.tensor_core_gemm_mixed16(a, b).await
1209    }
1210
1211    /// Tensor core GEMM operation in INT8
1212    #[allow(dead_code)]
1213    async fn tensor_core_gemm_int8(
1214        &self,
1215        a: &Array2<i8>,
1216        b: &Array2<i8>,
1217    ) -> SpatialResult<Array2<i32>> {
1218        let (m, k) = a.dim();
1219        let (k2, n) = b.dim();
1220
1221        if k != k2 {
1222            return Err(SpatialError::InvalidInput(
1223                "Matrix dimensions don't match".to_string(),
1224            ));
1225        }
1226
1227        let mut c = Array2::zeros((m, n));
1228        let block_size = 16;
1229
1230        for i in (0..m).step_by(block_size) {
1231            for j in (0..n).step_by(block_size) {
1232                for kk in (0..k).step_by(block_size) {
1233                    let end_i = (i + block_size).min(m);
1234                    let end_j = (j + block_size).min(n);
1235                    let end_k = (kk + block_size).min(k);
1236
1237                    for ii in i..end_i {
1238                        for jj in j..end_j {
1239                            for kkk in kk..end_k {
1240                                // INT8 multiply with INT32 accumulate
1241                                c[[ii, jj]] += a[[ii, kkk]] as i32 * b[[kkk, jj]] as i32;
1242                            }
1243                        }
1244                    }
1245                }
1246            }
1247        }
1248
1249        Ok(c)
1250    }
1251
1252    /// Convert FP64 to FP16 format
1253    fn convert_to_fp16(data: &ArrayView2<'_, f64>) -> SpatialResult<Array2<f32>> {
1254        let (rows, cols) = data.dim();
1255        let mut fp16_data = Array2::zeros((rows, cols));
1256
1257        for i in 0..rows {
1258            for j in 0..cols {
1259                // Simple conversion to FP32 (FP16 would need special library)
1260                fp16_data[[i, j]] = data[[i, j]] as f32;
1261            }
1262        }
1263
1264        Ok(fp16_data)
1265    }
1266
1267    /// Convert FP64 to BFloat16 format
1268    fn convert_to_bf16(&mut self, data: &ArrayView2<'_, f64>) -> SpatialResult<Array2<f32>> {
1269        // Similar to FP16 but with BF16 characteristics
1270        TensorCoreDistanceMatrix::convert_to_fp16(data)
1271    }
1272
1273    /// Quantize to INT8 with dynamic scaling
1274    fn quantize_to_int8_dynamic(
1275        &self,
1276        data: &ArrayView2<'_, f64>,
1277    ) -> SpatialResult<(f64, Array2<i8>)> {
1278        let max_val = data.fold(0.0f64, |acc, &x| acc.max(x.abs()));
1279        let scale = max_val / 127.0; // Map to [-127, 127]
1280
1281        let (rows, cols) = data.dim();
1282        let mut quantized = Array2::zeros((rows, cols));
1283
1284        for i in 0..rows {
1285            for j in 0..cols {
1286                let quantized_val = (data[[i, j]] / scale).round() as i8;
1287                quantized[[i, j]] = quantized_val.clamp(-127, 127);
1288            }
1289        }
1290
1291        Ok((scale, quantized))
1292    }
1293
1294    /// Quantize to INT4 with advanced quantization
1295    fn quantize_to_int4_advanced(
1296        &self,
1297        data: &ArrayView2<'_, f64>,
1298    ) -> SpatialResult<(f64, Array2<i8>)> {
1299        let max_val = data.fold(0.0f64, |acc, &x| acc.max(x.abs()));
1300        let scale = max_val / 7.0; // Map to [-7, 7] for 4-bit
1301
1302        let (rows, cols) = data.dim();
1303        let mut quantized = Array2::zeros((rows, cols));
1304
1305        for i in 0..rows {
1306            for j in 0..cols {
1307                let quantized_val = (data[[i, j]] / scale).round() as i8;
1308                quantized[[i, j]] = quantized_val.clamp(-7, 7);
1309            }
1310        }
1311
1312        Ok((scale, quantized))
1313    }
1314
1315    /// Convert INT4 to INT8 for computation
1316    fn int4_to_int8(data: &Array2<i8>) -> Array2<i8> {
1317        // INT4 values are already in INT8 format, just clamp to ensure 4-bit range
1318        data.mapv(|x| x.clamp(-7, 7))
1319    }
1320
1321    /// Compute norms for FP16 data
1322    fn compute_norms_fp16(data: &Array2<f32>) -> SpatialResult<Array1<f32>> {
1323        let norms = data
1324            .outer_iter()
1325            .map(|row| row.iter().map(|&x| x * x).sum())
1326            .collect();
1327        Ok(norms)
1328    }
1329
1330    /// Compute norms for BF16 data
1331    fn compute_norms_bf16(&mut self, data: &Array2<f32>) -> SpatialResult<Array1<f32>> {
1332        TensorCoreDistanceMatrix::compute_norms_fp16(data)
1333    }
1334
1335    /// Analyze data range for adaptive precision
1336    fn analyze_data_range(
1337        &self,
1338        points_i: &ArrayView2<'_, f64>,
1339        points_j: &ArrayView2<'_, f64>,
1340    ) -> f64 {
1341        let min_i = points_i.fold(f64::INFINITY, |acc, &x| acc.min(x));
1342        let max_i = points_i.fold(f64::NEG_INFINITY, |acc, &x| acc.max(x));
1343        let min_j = points_j.fold(f64::INFINITY, |acc, &x| acc.min(x));
1344        let max_j = points_j.fold(f64::NEG_INFINITY, |acc, &x| acc.max(x));
1345
1346        let overall_min = min_i.min(min_j);
1347        let overall_max = max_i.max(max_j);
1348
1349        overall_max - overall_min
1350    }
1351
1352    /// Estimate condition number for numerical stability
1353    fn estimate_condition_number(
1354        &self,
1355        points_i: &ArrayView2<'_, f64>,
1356        points_j: &ArrayView2<'_, f64>,
1357    ) -> f64 {
1358        // Simplified condition number estimation
1359        let data_range = self.analyze_data_range(points_i, points_j);
1360        let mean_i: f64 = points_i.sum() / (points_i.len() as f64);
1361        let mean_j: f64 = points_j.sum() / (points_j.len() as f64);
1362        let overall_mean = (mean_i + mean_j) / 2.0;
1363
1364        if overall_mean.abs() < 1e-10 {
1365            1e6 // High condition number for near-zero data
1366        } else {
1367            data_range / overall_mean.abs()
1368        }
1369    }
1370}
1371
1372/// Tensor core clustering algorithm
1373#[allow(dead_code)]
1374#[derive(Debug, Clone)]
1375pub struct TensorCoreClustering {
1376    /// Number of clusters
1377    _numclusters: usize,
1378    /// Precision mode
1379    precision_mode: PrecisionMode,
1380    /// Enable tensor cores
1381    tensor_cores: bool,
1382    /// Enable mixed precision
1383    mixed_precision: bool,
1384    /// Dynamic precision scaling
1385    dynamic_precision: bool,
1386    /// GPU capabilities
1387    capabilities: Option<TensorCoreCapabilities>,
1388}
1389
1390impl TensorCoreClustering {
1391    /// Create new tensor core clustering
1392    pub fn new(_numclusters: usize) -> SpatialResult<Self> {
1393        let capabilities = detect_tensor_core_capabilities().ok();
1394
1395        Ok(Self {
1396            _numclusters,
1397            precision_mode: PrecisionMode::Mixed16,
1398            tensor_cores: true,
1399            mixed_precision: true,
1400            dynamic_precision: false,
1401            capabilities,
1402        })
1403    }
1404
1405    /// Enable tensor cores
1406    pub fn with_tensor_cores(mut self, enabled: bool) -> Self {
1407        self.tensor_cores = enabled;
1408        self
1409    }
1410
1411    /// Enable mixed precision
1412    pub fn with_mixed_precision(mut self, enabled: bool) -> Self {
1413        self.mixed_precision = enabled;
1414        self
1415    }
1416
1417    /// Enable dynamic precision scaling
1418    pub fn with_dynamic_precision_scaling(mut self, enabled: bool) -> Self {
1419        self.dynamic_precision = enabled;
1420        self
1421    }
1422
1423    /// Fit clustering using tensor cores
1424    pub async fn fit(
1425        &mut self,
1426        points: &ArrayView2<'_, f64>,
1427    ) -> SpatialResult<(Array2<f64>, Array1<usize>)> {
1428        let (npoints, ndims) = points.dim();
1429
1430        if npoints < self._numclusters {
1431            return Err(SpatialError::InvalidInput(
1432                "Number of points must be >= number of clusters".to_string(),
1433            ));
1434        }
1435
1436        // Initialize centroids
1437        let mut centroids = self.initialize_centroids(points)?;
1438        let mut assignments = Array1::zeros(npoints);
1439
1440        // Tensor core k-means iterations
1441        for _iteration in 0..100 {
1442            // Compute distances using tensor cores
1443            let distance_matrix = if self.tensor_cores {
1444                let tensor_computer =
1445                    TensorCoreDistanceMatrix::new()?.with_precision_mode(self.precision_mode);
1446                tensor_computer
1447                    .compute_distances_to_centroids(points, &centroids.view())
1448                    .await?
1449            } else {
1450                self.compute_distances_fallback(points, &centroids.view())?
1451            };
1452
1453            // Update assignments
1454            let new_assignments = self.update_assignments(&distance_matrix)?;
1455
1456            // Update centroids using tensor core operations
1457            let new_centroids = if self.tensor_cores {
1458                self.update_centroids_tensor_cores(points, &new_assignments)
1459                    .await?
1460            } else {
1461                self.update_centroids_fallback(points, &new_assignments)?
1462            };
1463
1464            // Check convergence
1465            let centroid_change = self.compute_centroid_change(&centroids, &new_centroids);
1466            if centroid_change < 1e-6 {
1467                break;
1468            }
1469
1470            centroids = new_centroids;
1471            assignments = new_assignments;
1472        }
1473
1474        Ok((centroids, assignments))
1475    }
1476
1477    /// Initialize centroids using k-means++
1478    fn initialize_centroids(&mut self, points: &ArrayView2<'_, f64>) -> SpatialResult<Array2<f64>> {
1479        let (npoints, ndims) = points.dim();
1480        let mut centroids = Array2::zeros((self._numclusters, ndims));
1481
1482        // k-means++ initialization
1483        let mut rng = scirs2_core::random::rng();
1484
1485        // Choose first centroid randomly
1486        let first_idx = rng.gen_range(0..npoints);
1487        centroids.row_mut(0).assign(&points.row(first_idx));
1488
1489        // Choose remaining centroids with probability proportional to distance
1490        for k in 1..self._numclusters {
1491            let mut distances = Array1::zeros(npoints);
1492
1493            for i in 0..npoints {
1494                let point = points.row(i);
1495                let mut min_dist = f64::INFINITY;
1496
1497                for j in 0..k {
1498                    let centroid = centroids.row(j);
1499                    let dist: f64 = point
1500                        .iter()
1501                        .zip(centroid.iter())
1502                        .map(|(&a, &b)| (a - b).powi(2))
1503                        .sum::<f64>();
1504                    min_dist = min_dist.min(dist);
1505                }
1506
1507                distances[i] = min_dist;
1508            }
1509
1510            // Choose next centroid with probability proportional to squared distance
1511            let total_dist: f64 = distances.sum();
1512            let mut cumulative = 0.0;
1513            let random_val = scirs2_core::random::random::<f64>() * total_dist;
1514
1515            for i in 0..npoints {
1516                cumulative += distances[i];
1517                if cumulative >= random_val {
1518                    centroids.row_mut(k).assign(&points.row(i));
1519                    break;
1520                }
1521            }
1522        }
1523
1524        Ok(centroids)
1525    }
1526
1527    /// Update assignments based on distance matrix
1528    fn update_assignments(
1529        &mut self,
1530        distance_matrix: &Array2<f64>,
1531    ) -> SpatialResult<Array1<usize>> {
1532        let npoints = distance_matrix.nrows();
1533        let mut assignments = Array1::zeros(npoints);
1534
1535        for i in 0..npoints {
1536            let mut min_dist = f64::INFINITY;
1537            let mut best_cluster = 0;
1538
1539            for j in 0..self._numclusters {
1540                if distance_matrix[[i, j]] < min_dist {
1541                    min_dist = distance_matrix[[i, j]];
1542                    best_cluster = j;
1543                }
1544            }
1545
1546            assignments[i] = best_cluster;
1547        }
1548
1549        Ok(assignments)
1550    }
1551
1552    /// Update centroids using tensor core operations
1553    async fn update_centroids_tensor_cores(
1554        &self,
1555        points: &ArrayView2<'_, f64>,
1556        assignments: &Array1<usize>,
1557    ) -> SpatialResult<Array2<f64>> {
1558        let (_npoints, ndims) = points.dim();
1559        let mut new_centroids = Array2::zeros((self._numclusters, ndims));
1560        let mut cluster_counts = vec![0; self._numclusters];
1561
1562        // Count points in each cluster
1563        for &cluster in assignments {
1564            cluster_counts[cluster] += 1;
1565        }
1566
1567        // Compute new centroids using tensor operations
1568        for cluster in 0..self._numclusters {
1569            if cluster_counts[cluster] == 0 {
1570                continue;
1571            }
1572
1573            // Create mask for points in this cluster
1574            let clusterpoints: Vec<usize> = assignments
1575                .iter()
1576                .enumerate()
1577                .filter(|(_, &c)| c == cluster)
1578                .map(|(i, _)| i)
1579                .collect();
1580
1581            // Extract cluster points
1582            let cluster_data = Array2::from_shape_fn((clusterpoints.len(), ndims), |(i, j)| {
1583                points[[clusterpoints[i], j]]
1584            });
1585
1586            // Compute mean using tensor operations (sum + scale)
1587            let sum_vector = self.tensor_sum_reduction(&cluster_data.view()).await?;
1588            let count = clusterpoints.len() as f64;
1589
1590            for j in 0..ndims {
1591                new_centroids[[cluster, j]] = sum_vector[j] / count;
1592            }
1593        }
1594
1595        Ok(new_centroids)
1596    }
1597
1598    /// Tensor sum reduction operation
1599    async fn tensor_sum_reduction(&self, data: &ArrayView2<'_, f64>) -> SpatialResult<Array1<f64>> {
1600        let (_npoints, ndims) = data.dim();
1601        let mut sum_vector = Array1::zeros(ndims);
1602
1603        // Simulate tensor reduction operation
1604        for j in 0..ndims {
1605            let column_sum: f64 = data.column(j).sum();
1606            sum_vector[j] = column_sum;
1607        }
1608
1609        Ok(sum_vector)
1610    }
1611
1612    /// Fallback distance computation without tensor cores
1613    fn compute_distances_fallback(
1614        &self,
1615        points: &ArrayView2<'_, f64>,
1616        centroids: &ArrayView2<'_, f64>,
1617    ) -> SpatialResult<Array2<f64>> {
1618        let (npoints, ndims) = points.dim();
1619        let (n_clusters_, _) = centroids.dim();
1620        let mut distances = Array2::zeros((npoints, n_clusters_));
1621
1622        // Optimize clustering distance computation with loop unrolling
1623        let cluster_chunks = n_clusters_ / 4;
1624
1625        for i in 0..npoints {
1626            let point_row = points.row(i);
1627
1628            // Process clusters in chunks of 4 for instruction-level parallelism
1629            for j_chunk in 0..cluster_chunks {
1630                let j_base = j_chunk * 4;
1631
1632                // Unroll cluster distance computation
1633                let j0 = j_base;
1634                let j1 = j_base + 1;
1635                let j2 = j_base + 2;
1636                let j3 = j_base + 3;
1637
1638                let centroid_row0 = centroids.row(j0);
1639                let centroid_row1 = centroids.row(j1);
1640                let centroid_row2 = centroids.row(j2);
1641                let centroid_row3 = centroids.row(j3);
1642
1643                let distance0: f64 = point_row
1644                    .iter()
1645                    .zip(centroid_row0.iter())
1646                    .map(|(&a, &b)| (a - b).powi(2))
1647                    .sum::<f64>()
1648                    .sqrt();
1649
1650                let distance1: f64 = point_row
1651                    .iter()
1652                    .zip(centroid_row1.iter())
1653                    .map(|(&a, &b)| (a - b).powi(2))
1654                    .sum::<f64>()
1655                    .sqrt();
1656
1657                let distance2: f64 = point_row
1658                    .iter()
1659                    .zip(centroid_row2.iter())
1660                    .map(|(&a, &b)| (a - b).powi(2))
1661                    .sum::<f64>()
1662                    .sqrt();
1663
1664                let distance3: f64 = point_row
1665                    .iter()
1666                    .zip(centroid_row3.iter())
1667                    .map(|(&a, &b)| (a - b).powi(2))
1668                    .sum::<f64>()
1669                    .sqrt();
1670
1671                distances[[i, j0]] = distance0;
1672                distances[[i, j1]] = distance1;
1673                distances[[i, j2]] = distance2;
1674                distances[[i, j3]] = distance3;
1675            }
1676
1677            // Handle remaining clusters
1678            for j in (cluster_chunks * 4)..n_clusters_ {
1679                let distance: f64 = point_row
1680                    .iter()
1681                    .zip(centroids.row(j).iter())
1682                    .map(|(&a, &b)| (a - b).powi(2))
1683                    .sum::<f64>()
1684                    .sqrt();
1685                distances[[i, j]] = distance;
1686            }
1687        }
1688
1689        Ok(distances)
1690    }
1691
1692    /// Fallback centroid update without tensor cores
1693    fn update_centroids_fallback(
1694        &self,
1695        points: &ArrayView2<'_, f64>,
1696        assignments: &Array1<usize>,
1697    ) -> SpatialResult<Array2<f64>> {
1698        let (npoints, ndims) = points.dim();
1699        let mut new_centroids = Array2::zeros((self._numclusters, ndims));
1700        let mut cluster_counts = vec![0; self._numclusters];
1701
1702        // Sum points for each cluster
1703        for i in 0..npoints {
1704            let cluster = assignments[i];
1705            cluster_counts[cluster] += 1;
1706
1707            for j in 0..ndims {
1708                new_centroids[[cluster, j]] += points[[i, j]];
1709            }
1710        }
1711
1712        // Compute means
1713        for cluster in 0..self._numclusters {
1714            if cluster_counts[cluster] > 0 {
1715                let count = cluster_counts[cluster] as f64;
1716                for j in 0..ndims {
1717                    new_centroids[[cluster, j]] /= count;
1718                }
1719            }
1720        }
1721
1722        Ok(new_centroids)
1723    }
1724
1725    /// Compute change in centroids for convergence checking
1726    fn compute_centroid_change(
1727        &self,
1728        old_centroids: &Array2<f64>,
1729        new_centroids: &Array2<f64>,
1730    ) -> f64 {
1731        let mut total_change = 0.0;
1732
1733        for i in 0..self._numclusters {
1734            let change: f64 = old_centroids
1735                .row(i)
1736                .iter()
1737                .zip(new_centroids.row(i).iter())
1738                .map(|(&a, &b)| (a - b).powi(2))
1739                .sum::<f64>()
1740                .sqrt();
1741            total_change += change;
1742        }
1743
1744        total_change / (self._numclusters as f64)
1745    }
1746}
1747
1748impl Default for StabilityMetrics {
1749    fn default() -> Self {
1750        Self::new()
1751    }
1752}
1753
1754impl StabilityMetrics {
1755    /// Create new stability metrics
1756    pub fn new() -> Self {
1757        Self {
1758            condition_number: 1.0,
1759            relative_error: 0.0,
1760            forward_error: 0.0,
1761            backward_error: 0.0,
1762            digit_loss: 0.0,
1763            stability_level: StabilityLevel::Excellent,
1764            error_types: Vec::new(),
1765            timestamp: Instant::now(),
1766        }
1767    }
1768
1769    /// Update stability level based on metrics
1770    pub fn update_stability_level(&mut self) {
1771        self.stability_level = if self.condition_number > 1e12 || self.relative_error > 1e-3 {
1772            StabilityLevel::Critical
1773        } else if self.condition_number > 1e8 || self.relative_error > 1e-6 {
1774            StabilityLevel::Poor
1775        } else if self.condition_number > 1e4 || self.relative_error > 1e-9 {
1776            StabilityLevel::Moderate
1777        } else if self.condition_number > 1e2 || self.relative_error > 1e-12 {
1778            StabilityLevel::Good
1779        } else {
1780            StabilityLevel::Excellent
1781        };
1782    }
1783
1784    /// Check for numerical errors
1785    pub fn detect_errors(&mut self, data: &Array2<f64>) {
1786        self.error_types.clear();
1787
1788        // Check for NaN or Inf values
1789        for &value in data.iter() {
1790            if !value.is_finite() {
1791                self.error_types.push(NumericalErrorType::InvalidValues);
1792                break;
1793            }
1794        }
1795
1796        // Check for overflow/underflow
1797        let max_val = data.fold(0.0f64, |acc, &x| acc.max(x.abs()));
1798        if max_val > 1e100 {
1799            self.error_types.push(NumericalErrorType::Overflow);
1800        } else if max_val < 1e-100 && max_val > 0.0 {
1801            self.error_types.push(NumericalErrorType::Underflow);
1802        }
1803
1804        // Check for precision loss
1805        if self.digit_loss > 6.0 {
1806            self.error_types.push(NumericalErrorType::PrecisionLoss);
1807        }
1808
1809        // Check for ill-conditioning
1810        if self.condition_number > 1e12 {
1811            self.error_types.push(NumericalErrorType::IllConditioned);
1812        }
1813    }
1814}
1815
1816impl Default for DynamicPrecisionConfig {
1817    fn default() -> Self {
1818        Self {
1819            strategy: ScalingStrategy::Balanced,
1820            min_precision: PrecisionMode::Int8Dynamic,
1821            max_precision: PrecisionMode::Full32,
1822            stability_threshold_up: 1e-6,
1823            stability_threshold_down: 1e-9,
1824            performance_weight: 0.6,
1825            accuracy_weight: 0.4,
1826            max_changes_per_operation: 3,
1827            change_cooldown: Duration::from_millis(100),
1828        }
1829    }
1830}
1831
1832impl NumericalStabilityMonitor {
1833    /// Create new stability monitor
1834    pub fn new(config: DynamicPrecisionConfig) -> Self {
1835        Self {
1836            current_metrics: StabilityMetrics::new(),
1837            stability_history: VecDeque::new(),
1838            precision_config: config,
1839            current_precision: PrecisionMode::Mixed16,
1840            precision_history: VecDeque::new(),
1841            recovery_attempts: 0,
1842            max_history_length: 1000,
1843            last_precision_change: None,
1844        }
1845    }
1846
1847    /// Monitor stability during computation
1848    pub fn monitor_stability(
1849        &mut self,
1850        data: &Array2<f64>,
1851        computation_result: &Array2<f64>,
1852    ) -> SpatialResult<()> {
1853        // Compute condition number estimate
1854        self.current_metrics.condition_number =
1855            NumericalStabilityMonitor::estimate_condition_number(data);
1856
1857        // Estimate relative error
1858        self.current_metrics.relative_error =
1859            self.estimate_relative_error(data, computation_result);
1860
1861        // Compute forward and backward error bounds
1862        self.current_metrics.forward_error = self.estimate_forward_error(data, computation_result);
1863        self.current_metrics.backward_error =
1864            self.estimate_backward_error(data, computation_result);
1865
1866        // Estimate digit loss
1867        self.current_metrics.digit_loss = self.estimate_digit_loss();
1868
1869        // Update stability level
1870        self.current_metrics.update_stability_level();
1871
1872        // Detect errors
1873        self.current_metrics.detect_errors(computation_result);
1874
1875        // Update timestamp
1876        self.current_metrics.timestamp = Instant::now();
1877
1878        // Add to history
1879        self.stability_history
1880            .push_back(self.current_metrics.clone());
1881        if self.stability_history.len() > self.max_history_length {
1882            self.stability_history.pop_front();
1883        }
1884
1885        Ok(())
1886    }
1887
1888    /// Dynamically adjust precision based on stability
1889    pub fn adjust_precision(&mut self) -> SpatialResult<PrecisionMode> {
1890        // Check cooldown period
1891        if let Some(last_change) = self.last_precision_change {
1892            if last_change.elapsed() < self.precision_config.change_cooldown {
1893                return Ok(self.current_precision);
1894            }
1895        }
1896
1897        let new_precision = match self.current_metrics.stability_level {
1898            StabilityLevel::Critical => {
1899                // Use highest precision for critical stability
1900                self.precision_config.max_precision
1901            }
1902            StabilityLevel::Poor => {
1903                // Increase precision
1904                NumericalStabilityMonitor::increase_precision(self.current_precision)
1905            }
1906            StabilityLevel::Moderate => {
1907                // Maintain current precision or slightly adjust
1908                if self.current_metrics.relative_error
1909                    > self.precision_config.stability_threshold_up
1910                {
1911                    NumericalStabilityMonitor::increase_precision(self.current_precision)
1912                } else {
1913                    self.current_precision
1914                }
1915            }
1916            StabilityLevel::Good => {
1917                // Can potentially decrease precision for performance
1918                if self.current_metrics.relative_error
1919                    < self.precision_config.stability_threshold_down
1920                {
1921                    NumericalStabilityMonitor::decrease_precision(self.current_precision)
1922                } else {
1923                    self.current_precision
1924                }
1925            }
1926            StabilityLevel::Excellent => {
1927                // Use lowest precision for maximum performance
1928                if self.precision_config.strategy == ScalingStrategy::Aggressive {
1929                    self.precision_config.min_precision
1930                } else {
1931                    NumericalStabilityMonitor::decrease_precision(self.current_precision)
1932                }
1933            }
1934        };
1935
1936        // Update precision if changed
1937        if new_precision != self.current_precision {
1938            self.precision_history.push_back((
1939                Instant::now(),
1940                new_precision,
1941                self.current_metrics.relative_error,
1942            ));
1943            self.current_precision = new_precision;
1944            self.last_precision_change = Some(Instant::now());
1945        }
1946
1947        Ok(new_precision)
1948    }
1949
1950    /// Increase precision mode
1951    fn increase_precision(current: PrecisionMode) -> PrecisionMode {
1952        match current {
1953            PrecisionMode::Int4Advanced => PrecisionMode::Int8Dynamic,
1954            PrecisionMode::Int8Dynamic => PrecisionMode::Mixed16,
1955            PrecisionMode::Mixed16 => PrecisionMode::BrainFloat16,
1956            PrecisionMode::BrainFloat16 => PrecisionMode::Full32,
1957            PrecisionMode::Full32 => PrecisionMode::Full32, // Already at max
1958            _ => PrecisionMode::Mixed16,
1959        }
1960    }
1961
1962    /// Decrease precision mode
1963    fn decrease_precision(current: PrecisionMode) -> PrecisionMode {
1964        match current {
1965            PrecisionMode::Full32 => PrecisionMode::BrainFloat16,
1966            PrecisionMode::BrainFloat16 => PrecisionMode::Mixed16,
1967            PrecisionMode::Mixed16 => PrecisionMode::Int8Dynamic,
1968            PrecisionMode::Int8Dynamic => PrecisionMode::Int4Advanced,
1969            PrecisionMode::Int4Advanced => PrecisionMode::Int4Advanced, // Already at min
1970            _ => PrecisionMode::Mixed16,
1971        }
1972    }
1973
1974    /// Estimate condition number
1975    fn estimate_condition_number(data: &Array2<f64>) -> f64 {
1976        // Simplified condition number estimation
1977        let max_val = data.fold(0.0f64, |acc, &x| acc.max(x.abs()));
1978        let min_val = data.fold(f64::INFINITY, |acc, &x| {
1979            if x.abs() > 1e-15 {
1980                acc.min(x.abs())
1981            } else {
1982                acc
1983            }
1984        });
1985
1986        if min_val.is_finite() && min_val > 0.0 {
1987            max_val / min_val
1988        } else {
1989            1e12 // High condition number for near-singular cases
1990        }
1991    }
1992
1993    /// Estimate relative error
1994    fn estimate_relative_error(&mut self, input: &Array2<f64>, output: &Array2<f64>) -> f64 {
1995        // Simplified relative error estimation
1996        let mean_val = output.mean().unwrap_or(0.0);
1997        if mean_val.abs() > 1e-15 {
1998            // Use machine epsilon scaled by condition number
1999            let machine_eps = match self.current_precision {
2000                PrecisionMode::Full32 => 2.22e-16,
2001                PrecisionMode::Mixed16 | PrecisionMode::BrainFloat16 => 9.77e-4,
2002                PrecisionMode::Int8Dynamic => 1.0 / 256.0,
2003                PrecisionMode::Int4Advanced => 1.0 / 16.0,
2004                _ => 1e-6,
2005            };
2006            machine_eps * self.current_metrics.condition_number
2007        } else {
2008            0.0
2009        }
2010    }
2011
2012    /// Estimate forward error
2013    fn estimate_forward_error(&mut self, _input: &Array2<f64>, output: &Array2<f64>) -> f64 {
2014        // Forward error bound estimate
2015        self.current_metrics.relative_error * self.current_metrics.condition_number
2016    }
2017
2018    /// Estimate backward error
2019    fn estimate_backward_error(&mut self, _input: &Array2<f64>, output: &Array2<f64>) -> f64 {
2020        // Backward error bound estimate
2021        self.current_metrics.relative_error
2022    }
2023
2024    /// Estimate digit loss
2025    fn estimate_digit_loss(&self) -> f64 {
2026        if self.current_metrics.condition_number > 1.0 {
2027            self.current_metrics.condition_number.log10().max(0.0)
2028        } else {
2029            0.0
2030        }
2031    }
2032}
2033
2034impl Default for ErrorRecoverySystem {
2035    fn default() -> Self {
2036        Self::new()
2037    }
2038}
2039
2040impl ErrorRecoverySystem {
2041    /// Create new error recovery system
2042    pub fn new() -> Self {
2043        let mut recovery_strategies = HashMap::new();
2044
2045        // Define recovery strategies for each error type
2046        recovery_strategies.insert(
2047            NumericalErrorType::Overflow,
2048            vec![
2049                RecoveryAction::IncreasePrecision,
2050                RecoveryAction::ReduceTileSize,
2051                RecoveryAction::NumericalStabilization,
2052            ],
2053        );
2054        recovery_strategies.insert(
2055            NumericalErrorType::Underflow,
2056            vec![
2057                RecoveryAction::IncreasePrecision,
2058                RecoveryAction::NumericalStabilization,
2059            ],
2060        );
2061        recovery_strategies.insert(
2062            NumericalErrorType::PrecisionLoss,
2063            vec![
2064                RecoveryAction::IncreasePrecision,
2065                RecoveryAction::RetryWithNewParams,
2066            ],
2067        );
2068        recovery_strategies.insert(
2069            NumericalErrorType::IllConditioned,
2070            vec![
2071                RecoveryAction::IncreasePrecision,
2072                RecoveryAction::NumericalStabilization,
2073                RecoveryAction::SwitchToCPU,
2074            ],
2075        );
2076        recovery_strategies.insert(
2077            NumericalErrorType::InvalidValues,
2078            vec![
2079                RecoveryAction::FallbackAlgorithm,
2080                RecoveryAction::SwitchToCPU,
2081            ],
2082        );
2083
2084        Self {
2085            recovery_strategies,
2086            recovery_history: VecDeque::new(),
2087            max_recovery_attempts: 3,
2088            success_rates: HashMap::new(),
2089        }
2090    }
2091
2092    /// Attempt recovery from numerical error
2093    pub async fn attempt_recovery(
2094        &mut self,
2095        error_type: NumericalErrorType,
2096    ) -> SpatialResult<RecoveryAction> {
2097        let start_time = Instant::now();
2098
2099        // Get recovery strategies for this error _type
2100        let strategies = self
2101            .recovery_strategies
2102            .get(&error_type)
2103            .ok_or_else(|| SpatialError::InvalidInput("Unknown error _type".to_string()))?
2104            .clone(); // Clone to avoid borrowing conflict
2105
2106        // Choose best strategy based on success rates
2107        let best_action = self.choose_best_recovery_action(&strategies);
2108
2109        // Record recovery attempt
2110        let attempt = RecoveryAttempt {
2111            error_type,
2112            action: best_action,
2113            success: false, // Will be updated after actual recovery
2114            duration: start_time.elapsed(),
2115            post_recovery_metrics: None,
2116            timestamp: start_time,
2117        };
2118
2119        self.recovery_history.push_back(attempt);
2120
2121        Ok(best_action)
2122    }
2123
2124    /// Choose best recovery action based on success rates
2125    fn choose_best_recovery_action(&mut self, strategies: &[RecoveryAction]) -> RecoveryAction {
2126        strategies
2127            .iter()
2128            .max_by(|&a, &b| {
2129                let rate_a = self.success_rates.get(a).unwrap_or(&0.5);
2130                let rate_b = self.success_rates.get(b).unwrap_or(&0.5);
2131                rate_a
2132                    .partial_cmp(rate_b)
2133                    .unwrap_or(std::cmp::Ordering::Equal)
2134            })
2135            .copied()
2136            .unwrap_or(RecoveryAction::IncreasePrecision)
2137    }
2138
2139    /// Update success rate for recovery action
2140    pub fn update_success_rate(&mut self, action: RecoveryAction, success: bool) {
2141        let current_rate = self.success_rates.get(&action).unwrap_or(&0.5);
2142        let new_rate = if success {
2143            current_rate * 0.9 + 0.1 // Exponential moving average
2144        } else {
2145            current_rate * 0.9
2146        };
2147        self.success_rates.insert(action, new_rate);
2148    }
2149}
2150
2151impl PerformanceAccuracyAnalyzer {
2152    /// Create new performance-accuracy analyzer
2153    pub fn new(params: TradeOffParams) -> Self {
2154        Self {
2155            performance_data: HashMap::new(),
2156            accuracy_data: HashMap::new(),
2157            optimization_params: params,
2158            pareto_frontier: Vec::new(),
2159        }
2160    }
2161
2162    /// Record performance measurement
2163    pub fn record_performance(&mut self, precision: PrecisionMode, duration: Duration) {
2164        self.performance_data
2165            .entry(precision)
2166            .or_default()
2167            .push_back(duration);
2168
2169        // Maintain reasonable history size
2170        if let Some(history) = self.performance_data.get_mut(&precision) {
2171            if history.len() > 100 {
2172                history.pop_front();
2173            }
2174        }
2175    }
2176
2177    /// Record accuracy measurement
2178    pub fn record_accuracy(&mut self, precision: PrecisionMode, accuracy: f64) {
2179        self.accuracy_data
2180            .entry(precision)
2181            .or_default()
2182            .push_back(accuracy);
2183
2184        // Maintain reasonable history size
2185        if let Some(history) = self.accuracy_data.get_mut(&precision) {
2186            if history.len() > 100 {
2187                history.pop_front();
2188            }
2189        }
2190    }
2191
2192    /// Optimize precision mode based on trade-offs
2193    pub fn optimize_precision(&mut self) -> PrecisionMode {
2194        self.update_pareto_frontier();
2195
2196        match self.optimization_params.objective {
2197            OptimizationObjective::MaxPerformance => self
2198                .pareto_frontier
2199                .iter()
2200                .min_by(|a, b| a.0.partial_cmp(&b.0).unwrap_or(std::cmp::Ordering::Equal))
2201                .map(|(_a, b, mode)| *mode)
2202                .unwrap_or(PrecisionMode::Mixed16),
2203            OptimizationObjective::MaxAccuracy => self
2204                .pareto_frontier
2205                .iter()
2206                .max_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal))
2207                .map(|(_a, b, mode)| *mode)
2208                .unwrap_or(PrecisionMode::Full32),
2209            OptimizationObjective::Balanced => {
2210                // Weighted combination - compute scores first to avoid borrowing conflict
2211                let mut best_score = f64::NEG_INFINITY;
2212                let mut best_mode = PrecisionMode::Mixed16;
2213
2214                // Extract weights to avoid borrowing conflict
2215                let performance_weight = self.optimization_params.performance_weight;
2216                let accuracy_weight = self.optimization_params.accuracy_weight;
2217
2218                for &(perf, acc, mode) in &self.pareto_frontier {
2219                    // Inline compute_weighted_score logic to avoid borrowing conflict
2220                    let perf_score = 1.0 / (perf + 1e-9);
2221                    let score = performance_weight * perf_score + accuracy_weight * acc;
2222                    if score > best_score {
2223                        best_score = score;
2224                        best_mode = mode;
2225                    }
2226                }
2227
2228                best_mode
2229            }
2230            _ => PrecisionMode::Mixed16,
2231        }
2232    }
2233
2234    /// Update Pareto frontier
2235    fn update_pareto_frontier(&mut self) {
2236        self.pareto_frontier.clear();
2237
2238        for precision in [
2239            PrecisionMode::Full32,
2240            PrecisionMode::BrainFloat16,
2241            PrecisionMode::Mixed16,
2242            PrecisionMode::Int8Dynamic,
2243            PrecisionMode::Int4Advanced,
2244        ] {
2245            if let (Some(perf_data), Some(acc_data)) = (
2246                self.performance_data.get(&precision),
2247                self.accuracy_data.get(&precision),
2248            ) {
2249                if !perf_data.is_empty() && !acc_data.is_empty() {
2250                    let avg_perf = perf_data.iter().map(|d| d.as_secs_f64()).sum::<f64>()
2251                        / perf_data.len() as f64;
2252                    let avg_acc = acc_data.iter().sum::<f64>() / acc_data.len() as f64;
2253
2254                    self.pareto_frontier.push((avg_perf, avg_acc, precision));
2255                }
2256            }
2257        }
2258    }
2259
2260    /// Compute weighted score for balanced optimization
2261    #[allow(dead_code)]
2262    fn compute_weighted_score(&mut self, performance: f64, accuracy: f64) -> f64 {
2263        // Performance score (inverse of time - higher is better)
2264        let perf_score = 1.0 / (performance + 1e-9);
2265
2266        // Weighted combination
2267        self.optimization_params.performance_weight * perf_score
2268            + self.optimization_params.accuracy_weight * accuracy
2269    }
2270}
2271
2272impl AdvancedTensorCoreDistanceMatrix {
2273    /// Create new advanced tensor core distance matrix computer
2274    pub fn new() -> SpatialResult<Self> {
2275        let base_computer = TensorCoreDistanceMatrix::new()?;
2276        let precision_config = DynamicPrecisionConfig::default();
2277        let stability_monitor =
2278            Arc::new(Mutex::new(NumericalStabilityMonitor::new(precision_config)));
2279        let recovery_system = ErrorRecoverySystem::new();
2280        let trade_off_params = TradeOffParams {
2281            performance_weight: 0.6,
2282            accuracy_weight: 0.4,
2283            energy_weight: 0.0,
2284            min_accuracy: 0.95,
2285            max_time: Duration::from_secs(30),
2286            objective: OptimizationObjective::Balanced,
2287        };
2288        let performance_analyzer = PerformanceAccuracyAnalyzer::new(trade_off_params);
2289
2290        Ok(Self {
2291            base_computer,
2292            stability_monitor,
2293            recovery_system,
2294            performance_analyzer,
2295            dynamic_precision_enabled: true,
2296            auto_recovery_enabled: true,
2297        })
2298    }
2299
2300    /// Configure dynamic precision scaling
2301    pub fn with_dynamic_precision(mut self, enabled: bool) -> Self {
2302        self.dynamic_precision_enabled = enabled;
2303        self
2304    }
2305
2306    /// Configure automatic error recovery
2307    pub fn with_auto_recovery(mut self, enabled: bool) -> Self {
2308        self.auto_recovery_enabled = enabled;
2309        self
2310    }
2311
2312    /// Compute distance matrix with advanced stability monitoring
2313    pub async fn compute_with_stability_monitoring(
2314        &mut self,
2315        points: &ArrayView2<'_, f64>,
2316    ) -> SpatialResult<Array2<f64>> {
2317        let start_time = Instant::now();
2318
2319        // Initial stability assessment
2320        {
2321            let mut monitor = self.stability_monitor.lock().unwrap();
2322            // Skip initial stability check as we don't have a result yet
2323
2324            if self.dynamic_precision_enabled {
2325                let optimal_precision = monitor.adjust_precision()?;
2326                self.base_computer.precision_mode = optimal_precision;
2327            }
2328        }
2329
2330        let mut result = None;
2331        let mut recovery_attempts = 0;
2332        let max_attempts = 3;
2333
2334        while result.is_none() && recovery_attempts < max_attempts {
2335            match self.base_computer.compute_parallel(points).await {
2336                Ok(distances) => {
2337                    // Monitor stability of result
2338                    {
2339                        let mut monitor = self.stability_monitor.lock().unwrap();
2340                        monitor.monitor_stability(&points.to_owned(), &distances)?;
2341                    }
2342
2343                    // Check for numerical errors
2344                    let stability_level = {
2345                        let monitor = self.stability_monitor.lock().unwrap();
2346                        monitor.current_metrics.stability_level
2347                    };
2348
2349                    if stability_level == StabilityLevel::Critical && self.auto_recovery_enabled {
2350                        // Attempt recovery
2351                        recovery_attempts += 1;
2352                        let recovery_action = self
2353                            .recovery_system
2354                            .attempt_recovery(NumericalErrorType::IllConditioned)
2355                            .await?;
2356
2357                        // Apply recovery action
2358                        self.apply_recovery_action(recovery_action).await?;
2359                        continue;
2360                    } else {
2361                        result = Some(distances);
2362                    }
2363                }
2364                Err(e) => {
2365                    if self.auto_recovery_enabled && recovery_attempts < max_attempts {
2366                        recovery_attempts += 1;
2367                        let recovery_action = self
2368                            .recovery_system
2369                            .attempt_recovery(NumericalErrorType::InvalidValues)
2370                            .await?;
2371                        self.apply_recovery_action(recovery_action).await?;
2372                        continue;
2373                    } else {
2374                        return Err(e);
2375                    }
2376                }
2377            }
2378        }
2379
2380        let final_result = result.ok_or_else(|| {
2381            SpatialError::InvalidInput(
2382                "Failed to compute stable result after recovery attempts".to_string(),
2383            )
2384        })?;
2385
2386        // Record performance data
2387        let duration = start_time.elapsed();
2388        let precision = self.base_computer.precision_mode;
2389        self.performance_analyzer
2390            .record_performance(precision, duration);
2391
2392        // Estimate accuracy (simplified)
2393        let accuracy = self.estimate_result_accuracy(&final_result);
2394        self.performance_analyzer
2395            .record_accuracy(precision, accuracy);
2396
2397        Ok(final_result)
2398    }
2399
2400    /// Apply recovery action
2401    async fn apply_recovery_action(&mut self, action: RecoveryAction) -> SpatialResult<()> {
2402        match action {
2403            RecoveryAction::IncreasePrecision => {
2404                self.base_computer.precision_mode = match self.base_computer.precision_mode {
2405                    PrecisionMode::Int4Advanced => PrecisionMode::Int8Dynamic,
2406                    PrecisionMode::Int8Dynamic => PrecisionMode::Mixed16,
2407                    PrecisionMode::Mixed16 => PrecisionMode::BrainFloat16,
2408                    PrecisionMode::BrainFloat16 => PrecisionMode::Full32,
2409                    PrecisionMode::Full32 => PrecisionMode::Full32,
2410                    _ => PrecisionMode::Mixed16,
2411                };
2412            }
2413            RecoveryAction::ReduceTileSize => {
2414                let (current_row, current_col) = self.base_computer.tile_size;
2415                self.base_computer.tile_size = (current_row / 2, current_col / 2);
2416                if self.base_computer.tile_size.0 < 16 {
2417                    self.base_computer.tile_size = (16, 16);
2418                }
2419            }
2420            RecoveryAction::FallbackAlgorithm => {
2421                // Switch to more conservative settings
2422                self.base_computer.precision_mode = PrecisionMode::Full32;
2423                self.base_computer.hierarchical_tiling = false;
2424            }
2425            RecoveryAction::NumericalStabilization => {
2426                // Apply numerical stabilization techniques
2427                self.base_computer.precision_mode = PrecisionMode::Full32;
2428                self.base_computer.tile_size = (64, 64);
2429            }
2430            _ => {
2431                // Default recovery
2432                self.base_computer.precision_mode = PrecisionMode::Full32;
2433            }
2434        }
2435
2436        Ok(())
2437    }
2438
2439    /// Estimate result accuracy (simplified)
2440    fn estimate_result_accuracy(&self, result: &Array2<f64>) -> f64 {
2441        // Simplified accuracy estimation based on numerical properties
2442        let has_invalid = result.iter().any(|&x| !x.is_finite());
2443        if has_invalid {
2444            return 0.0;
2445        }
2446
2447        let max_val = result.fold(0.0f64, |acc, &x| acc.max(x.abs()));
2448        let min_val = result.fold(f64::INFINITY, |acc, &x| {
2449            if x.abs() > 1e-15 {
2450                acc.min(x.abs())
2451            } else {
2452                acc
2453            }
2454        });
2455
2456        if min_val.is_finite() && min_val > 0.0 {
2457            let dynamic_range = max_val / min_val;
2458            (1.0 / (1.0 + dynamic_range.log10() / 10.0)).clamp(0.0, 1.0)
2459        } else {
2460            0.95 // Default good accuracy
2461        }
2462    }
2463}
2464
2465/// Detect tensor core capabilities of available GPU hardware
2466#[allow(dead_code)]
2467pub fn detect_tensor_core_capabilities() -> SpatialResult<TensorCoreCapabilities> {
2468    // Simulate hardware detection
2469    // In a real implementation, this would use CUDA/ROCm/OpenCL APIs
2470
2471    Ok(TensorCoreCapabilities {
2472        tensor_core_types: vec![
2473            TensorCoreType::NvidiaTensorCore,
2474            TensorCoreType::StandardCores,
2475        ],
2476        supported_precisions: vec![
2477            PrecisionMode::Full32,
2478            PrecisionMode::Mixed16,
2479            PrecisionMode::BrainFloat16,
2480            PrecisionMode::Int8Dynamic,
2481        ],
2482        max_tensor_size: (4096, 4096, 4096),
2483        peak_throughput_tops: 312.0,   // A100 FP16 performance
2484        memory_bandwidth_gbps: 1555.0, // A100 HBM2 bandwidth
2485        l2_cache_mb: 40.0,
2486        num_sms: 108,
2487        architecture: GpuArchitecture::Ampere,
2488    })
2489}
2490
2491/// Extension trait for TensorCoreDistanceMatrix
2492impl TensorCoreDistanceMatrix {
2493    /// Compute distances from points to centroids
2494    pub async fn compute_distances_to_centroids(
2495        &self,
2496        points: &ArrayView2<'_, f64>,
2497        centroids: &ArrayView2<'_, f64>,
2498    ) -> SpatialResult<Array2<f64>> {
2499        let (npoints, ndims) = points.dim();
2500        let (n_clusters_, n_dims_c) = centroids.dim();
2501        let mut distances = Array2::zeros((npoints, n_clusters_));
2502
2503        // Compute distances using optimized tensor operations with loop unrolling
2504        let cluster_chunks = n_clusters_ / 4;
2505
2506        for i in 0..npoints {
2507            let point_row = points.row(i);
2508
2509            // Process clusters in chunks of 4 for instruction-level parallelism
2510            for j_chunk in 0..cluster_chunks {
2511                let j_base = j_chunk * 4;
2512
2513                // Unroll cluster distance computation for better performance
2514                let j0 = j_base;
2515                let j1 = j_base + 1;
2516                let j2 = j_base + 2;
2517                let j3 = j_base + 3;
2518
2519                let centroid_row0 = centroids.row(j0);
2520                let centroid_row1 = centroids.row(j1);
2521                let centroid_row2 = centroids.row(j2);
2522                let centroid_row3 = centroids.row(j3);
2523
2524                let distance0: f64 = point_row
2525                    .iter()
2526                    .zip(centroid_row0.iter())
2527                    .map(|(&a, &b)| (a - b).powi(2))
2528                    .sum::<f64>()
2529                    .sqrt();
2530
2531                let distance1: f64 = point_row
2532                    .iter()
2533                    .zip(centroid_row1.iter())
2534                    .map(|(&a, &b)| (a - b).powi(2))
2535                    .sum::<f64>()
2536                    .sqrt();
2537
2538                let distance2: f64 = point_row
2539                    .iter()
2540                    .zip(centroid_row2.iter())
2541                    .map(|(&a, &b)| (a - b).powi(2))
2542                    .sum::<f64>()
2543                    .sqrt();
2544
2545                let distance3: f64 = point_row
2546                    .iter()
2547                    .zip(centroid_row3.iter())
2548                    .map(|(&a, &b)| (a - b).powi(2))
2549                    .sum::<f64>()
2550                    .sqrt();
2551
2552                distances[[i, j0]] = distance0;
2553                distances[[i, j1]] = distance1;
2554                distances[[i, j2]] = distance2;
2555                distances[[i, j3]] = distance3;
2556            }
2557
2558            // Handle remaining clusters
2559            for j in (cluster_chunks * 4)..n_clusters_ {
2560                let distance: f64 = point_row
2561                    .iter()
2562                    .zip(centroids.row(j).iter())
2563                    .map(|(&a, &b)| (a - b).powi(2))
2564                    .sum::<f64>()
2565                    .sqrt();
2566                distances[[i, j]] = distance;
2567            }
2568        }
2569
2570        Ok(distances)
2571    }
2572}
2573
2574#[cfg(test)]
2575mod tests {
2576    use super::*;
2577    use scirs2_core::ndarray::array;
2578
2579    #[test]
2580    fn test_precision_mode() {
2581        assert_eq!(PrecisionMode::Mixed16, PrecisionMode::Mixed16);
2582        assert_ne!(PrecisionMode::Mixed16, PrecisionMode::Full32);
2583    }
2584
2585    #[test]
2586    fn test_tensor_core_capabilities() {
2587        let capabilities = detect_tensor_core_capabilities();
2588        assert!(capabilities.is_ok());
2589
2590        let caps = capabilities.unwrap();
2591        assert!(!caps.tensor_core_types.is_empty());
2592        assert!(!caps.supported_precisions.is_empty());
2593    }
2594
2595    #[test]
2596    fn test_tensor_core_distance_matrix_creation() {
2597        let result = TensorCoreDistanceMatrix::new();
2598        assert!(result.is_ok());
2599
2600        let matrix_computer = result.unwrap();
2601        assert_eq!(matrix_computer.precision_mode, PrecisionMode::Mixed16);
2602    }
2603
2604    #[test]
2605    fn test_tensor_core_clustering_creation() {
2606        let result = TensorCoreClustering::new(3);
2607        assert!(result.is_ok());
2608
2609        let clustering = result.unwrap();
2610        assert_eq!(clustering._numclusters, 3);
2611    }
2612
2613    #[tokio::test]
2614    async fn test_tensor_core_distance_computation() {
2615        let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0]];
2616        let mut matrix_computer = TensorCoreDistanceMatrix::new().unwrap();
2617
2618        let result = matrix_computer.compute_parallel(&points.view()).await;
2619        assert!(result.is_ok());
2620
2621        let distances = result.unwrap();
2622        assert_eq!(distances.shape(), &[3, 3]);
2623
2624        // Check diagonal is zero
2625        for i in 0..3 {
2626            assert!((distances[[i, i]]).abs() < 1e-10);
2627        }
2628    }
2629
2630    #[tokio::test]
2631    async fn test_tensor_core_clustering() {
2632        let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
2633        let mut clustering = TensorCoreClustering::new(2).unwrap();
2634
2635        let result = clustering.fit(&points.view()).await;
2636        assert!(result.is_ok());
2637
2638        let (centroids, assignments) = result.unwrap();
2639        assert_eq!(centroids.shape(), &[2, 2]);
2640        assert_eq!(assignments.len(), 4);
2641    }
2642
2643    #[test]
2644    fn test_stability_metrics_creation() {
2645        let metrics = StabilityMetrics::new();
2646        assert_eq!(metrics.condition_number, 1.0);
2647        assert_eq!(metrics.relative_error, 0.0);
2648        assert_eq!(metrics.stability_level, StabilityLevel::Excellent);
2649        assert!(metrics.error_types.is_empty());
2650    }
2651
2652    #[test]
2653    fn test_stability_level_update() {
2654        let mut metrics = StabilityMetrics::new();
2655
2656        // Test critical stability
2657        metrics.condition_number = 1e15;
2658        metrics.update_stability_level();
2659        assert_eq!(metrics.stability_level, StabilityLevel::Critical);
2660
2661        // Test poor stability
2662        metrics.condition_number = 1e9;
2663        metrics.relative_error = 1e-7;
2664        metrics.update_stability_level();
2665        assert_eq!(metrics.stability_level, StabilityLevel::Poor);
2666
2667        // Test good stability
2668        metrics.condition_number = 1e3;
2669        metrics.relative_error = 1e-10;
2670        metrics.update_stability_level();
2671        assert_eq!(metrics.stability_level, StabilityLevel::Good);
2672    }
2673
2674    #[test]
2675    fn test_error_detection() {
2676        let mut metrics = StabilityMetrics::new();
2677
2678        // Test NaN detection
2679        let data_with_nan = array![[1.0, 2.0], [f64::NAN, 4.0]];
2680        metrics.detect_errors(&data_with_nan);
2681        assert!(metrics
2682            .error_types
2683            .contains(&NumericalErrorType::InvalidValues));
2684
2685        // Test overflow detection
2686        let data_with_overflow = array![[1e150, 2.0], [3.0, 4.0]];
2687        metrics.detect_errors(&data_with_overflow);
2688        assert!(metrics.error_types.contains(&NumericalErrorType::Overflow));
2689
2690        // Test underflow detection - all values must be small for underflow detection
2691        let data_with_underflow = array![[1e-150, 1e-120], [1e-130, 1e-140]];
2692        metrics.detect_errors(&data_with_underflow);
2693        assert!(metrics.error_types.contains(&NumericalErrorType::Underflow));
2694    }
2695
2696    #[test]
2697    fn test_dynamic_precision_config() {
2698        let config = DynamicPrecisionConfig::default();
2699        assert_eq!(config.strategy, ScalingStrategy::Balanced);
2700        assert_eq!(config.min_precision, PrecisionMode::Int8Dynamic);
2701        assert_eq!(config.max_precision, PrecisionMode::Full32);
2702        assert_eq!(config.performance_weight, 0.6);
2703        assert_eq!(config.accuracy_weight, 0.4);
2704    }
2705
2706    #[test]
2707    fn test_numerical_stability_monitor_creation() {
2708        let config = DynamicPrecisionConfig::default();
2709        let monitor = NumericalStabilityMonitor::new(config);
2710
2711        assert_eq!(monitor.current_precision, PrecisionMode::Mixed16);
2712        assert!(monitor.stability_history.is_empty());
2713        assert_eq!(monitor.recovery_attempts, 0);
2714    }
2715
2716    #[test]
2717    fn test_precision_increase_decrease() {
2718        let config = DynamicPrecisionConfig::default();
2719        let monitor = NumericalStabilityMonitor::new(config);
2720
2721        // Test precision increase
2722        let increased = NumericalStabilityMonitor::increase_precision(PrecisionMode::Int8Dynamic);
2723        assert_eq!(increased, PrecisionMode::Mixed16);
2724
2725        let max_increased = NumericalStabilityMonitor::increase_precision(PrecisionMode::Full32);
2726        assert_eq!(max_increased, PrecisionMode::Full32); // Should stay at max
2727
2728        // Test precision decrease
2729        let decreased = NumericalStabilityMonitor::decrease_precision(PrecisionMode::Mixed16);
2730        assert_eq!(decreased, PrecisionMode::Int8Dynamic);
2731
2732        let min_decreased =
2733            NumericalStabilityMonitor::decrease_precision(PrecisionMode::Int4Advanced);
2734        assert_eq!(min_decreased, PrecisionMode::Int4Advanced); // Should stay at min
2735    }
2736
2737    #[test]
2738    fn test_condition_number_estimation() {
2739        let config = DynamicPrecisionConfig::default();
2740        let monitor = NumericalStabilityMonitor::new(config);
2741
2742        // Well-conditioned data
2743        let well_conditioned = array![[1.0, 2.0], [3.0, 4.0]];
2744        let condition_1 = NumericalStabilityMonitor::estimate_condition_number(&well_conditioned);
2745        assert!(condition_1 > 1.0 && condition_1 < 100.0);
2746
2747        // Ill-conditioned data (large range)
2748        let ill_conditioned = array![[1e-10, 2.0], [3.0, 1e10]];
2749        let condition_2 = NumericalStabilityMonitor::estimate_condition_number(&ill_conditioned);
2750        assert!(condition_2 > 1e15);
2751    }
2752
2753    #[test]
2754    fn test_error_recovery_system_creation() {
2755        let recovery_system = ErrorRecoverySystem::new();
2756
2757        // Check that recovery strategies are defined
2758        assert!(!recovery_system.recovery_strategies.is_empty());
2759        assert!(recovery_system
2760            .recovery_strategies
2761            .contains_key(&NumericalErrorType::Overflow));
2762        assert!(recovery_system
2763            .recovery_strategies
2764            .contains_key(&NumericalErrorType::IllConditioned));
2765        assert_eq!(recovery_system.max_recovery_attempts, 3);
2766    }
2767
2768    #[tokio::test]
2769    async fn test_recovery_action_selection() {
2770        let mut recovery_system = ErrorRecoverySystem::new();
2771
2772        let action = recovery_system
2773            .attempt_recovery(NumericalErrorType::Overflow)
2774            .await;
2775        assert!(action.is_ok());
2776
2777        let recovery_action = action.unwrap();
2778        assert!(matches!(
2779            recovery_action,
2780            RecoveryAction::IncreasePrecision
2781                | RecoveryAction::ReduceTileSize
2782                | RecoveryAction::NumericalStabilization
2783        ));
2784    }
2785
2786    #[test]
2787    fn test_success_rate_update() {
2788        let mut recovery_system = ErrorRecoverySystem::new();
2789
2790        // Test successful recovery
2791        recovery_system.update_success_rate(RecoveryAction::IncreasePrecision, true);
2792        let rate = recovery_system
2793            .success_rates
2794            .get(&RecoveryAction::IncreasePrecision);
2795        assert!(rate.is_some());
2796        assert!(*rate.unwrap() > 0.5);
2797
2798        // Test failed recovery
2799        recovery_system.update_success_rate(RecoveryAction::ReduceTileSize, false);
2800        let rate = recovery_system
2801            .success_rates
2802            .get(&RecoveryAction::ReduceTileSize);
2803        assert!(rate.is_some());
2804        assert!(*rate.unwrap() < 0.5);
2805    }
2806
2807    #[test]
2808    fn test_performance_accuracy_analyzer() {
2809        let params = TradeOffParams {
2810            performance_weight: 0.7,
2811            accuracy_weight: 0.3,
2812            energy_weight: 0.0,
2813            min_accuracy: 0.9,
2814            max_time: Duration::from_secs(10),
2815            objective: OptimizationObjective::Balanced,
2816        };
2817
2818        let mut analyzer = PerformanceAccuracyAnalyzer::new(params);
2819
2820        // Record some performance data
2821        analyzer.record_performance(PrecisionMode::Mixed16, Duration::from_millis(100));
2822        analyzer.record_performance(PrecisionMode::Full32, Duration::from_millis(200));
2823
2824        // Record some accuracy data
2825        analyzer.record_accuracy(PrecisionMode::Mixed16, 0.95);
2826        analyzer.record_accuracy(PrecisionMode::Full32, 0.99);
2827
2828        // Test optimization
2829        let optimal_precision = analyzer.optimize_precision();
2830        assert!(matches!(
2831            optimal_precision,
2832            PrecisionMode::Mixed16 | PrecisionMode::Full32
2833        ));
2834    }
2835
2836    #[test]
2837    fn test_pareto_frontier_update() {
2838        let params = TradeOffParams {
2839            performance_weight: 0.5,
2840            accuracy_weight: 0.5,
2841            energy_weight: 0.0,
2842            min_accuracy: 0.8,
2843            max_time: Duration::from_secs(5),
2844            objective: OptimizationObjective::Balanced,
2845        };
2846
2847        let mut analyzer = PerformanceAccuracyAnalyzer::new(params);
2848
2849        // Add data for multiple precision modes
2850        analyzer.record_performance(PrecisionMode::Int8Dynamic, Duration::from_millis(50));
2851        analyzer.record_accuracy(PrecisionMode::Int8Dynamic, 0.85);
2852
2853        analyzer.record_performance(PrecisionMode::Mixed16, Duration::from_millis(100));
2854        analyzer.record_accuracy(PrecisionMode::Mixed16, 0.95);
2855
2856        analyzer.record_performance(PrecisionMode::Full32, Duration::from_millis(200));
2857        analyzer.record_accuracy(PrecisionMode::Full32, 0.99);
2858
2859        analyzer.update_pareto_frontier();
2860        assert!(!analyzer.pareto_frontier.is_empty());
2861        assert_eq!(analyzer.pareto_frontier.len(), 3);
2862    }
2863
2864    #[test]
2865    fn test_weighted_score_computation() {
2866        let params = TradeOffParams {
2867            performance_weight: 0.6,
2868            accuracy_weight: 0.4,
2869            energy_weight: 0.0,
2870            min_accuracy: 0.8,
2871            max_time: Duration::from_secs(5),
2872            objective: OptimizationObjective::Custom,
2873        };
2874
2875        let mut analyzer = PerformanceAccuracyAnalyzer::new(params);
2876
2877        // Test different performance-accuracy combinations
2878        let score1 = analyzer.compute_weighted_score(0.1, 0.9); // Fast, accurate
2879        let score2 = analyzer.compute_weighted_score(0.2, 0.95); // Slower, more accurate
2880
2881        assert!(score1 > 0.0);
2882        assert!(score2 > 0.0);
2883    }
2884
2885    #[test]
2886    fn test_advanced_tensor_core_distance_matrix_creation() {
2887        let result = AdvancedTensorCoreDistanceMatrix::new();
2888        assert!(result.is_ok());
2889
2890        let advanced_computer = result.unwrap();
2891        assert!(advanced_computer.dynamic_precision_enabled);
2892        assert!(advanced_computer.auto_recovery_enabled);
2893    }
2894
2895    #[tokio::test]
2896    #[ignore]
2897    async fn test_stability_monitoring_computation() {
2898        let mut advanced_computer = AdvancedTensorCoreDistanceMatrix::new().unwrap();
2899        let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0]];
2900
2901        let result = advanced_computer
2902            .compute_with_stability_monitoring(&points.view())
2903            .await;
2904        assert!(result.is_ok());
2905
2906        let distances = result.unwrap();
2907        assert_eq!(distances.shape(), &[3, 3]);
2908
2909        // Check that stability monitoring was performed
2910        let monitor = advanced_computer.stability_monitor.lock().unwrap();
2911        assert!(!monitor.stability_history.is_empty());
2912    }
2913
2914    #[tokio::test]
2915    async fn test_recovery_action_application() {
2916        let mut advanced_computer = AdvancedTensorCoreDistanceMatrix::new().unwrap();
2917        let original_precision = advanced_computer.base_computer.precision_mode;
2918
2919        // Test precision increase recovery
2920        let result = advanced_computer
2921            .apply_recovery_action(RecoveryAction::IncreasePrecision)
2922            .await;
2923        assert!(result.is_ok());
2924
2925        // Precision should have increased (unless already at max)
2926        if original_precision != PrecisionMode::Full32 {
2927            assert_ne!(
2928                advanced_computer.base_computer.precision_mode,
2929                original_precision
2930            );
2931        }
2932
2933        // Test tile size reduction recovery
2934        let original_tile_size = advanced_computer.base_computer.tile_size;
2935        let result = advanced_computer
2936            .apply_recovery_action(RecoveryAction::ReduceTileSize)
2937            .await;
2938        assert!(result.is_ok());
2939
2940        let new_tile_size = advanced_computer.base_computer.tile_size;
2941        assert!(new_tile_size.0 <= original_tile_size.0);
2942        assert!(new_tile_size.1 <= original_tile_size.1);
2943    }
2944
2945    #[test]
2946    fn test_result_accuracy_estimation() {
2947        let advanced_computer = AdvancedTensorCoreDistanceMatrix::new().unwrap();
2948
2949        // Test with valid data
2950        let valid_result = array![[0.0, 1.0], [1.0, 0.0]];
2951        let accuracy = advanced_computer.estimate_result_accuracy(&valid_result);
2952        assert!(accuracy > 0.8 && accuracy <= 1.0);
2953
2954        // Test with invalid data (NaN)
2955        let invalid_result = array![[0.0, f64::NAN], [1.0, 0.0]];
2956        let accuracy = advanced_computer.estimate_result_accuracy(&invalid_result);
2957        assert_eq!(accuracy, 0.0);
2958
2959        // Test with high dynamic range data
2960        let high_range_result = array![[1e-10, 1e10], [1e5, 1e-5]];
2961        let accuracy = advanced_computer.estimate_result_accuracy(&high_range_result);
2962        assert!(accuracy > 0.0 && accuracy < 1.0);
2963    }
2964
2965    #[test]
2966    fn test_precision_mode_ordering() {
2967        // Test AdvancedAdaptive mode
2968        assert!(matches!(
2969            PrecisionMode::AdvancedAdaptive,
2970            PrecisionMode::AdvancedAdaptive
2971        ));
2972        assert_ne!(PrecisionMode::AdvancedAdaptive, PrecisionMode::Adaptive);
2973    }
2974
2975    #[test]
2976    fn test_stability_levels() {
2977        assert!(matches!(StabilityLevel::Critical, StabilityLevel::Critical));
2978        assert_ne!(StabilityLevel::Critical, StabilityLevel::Excellent);
2979    }
2980
2981    #[test]
2982    fn test_error_types() {
2983        let error_types = [
2984            NumericalErrorType::Overflow,
2985            NumericalErrorType::Underflow,
2986            NumericalErrorType::PrecisionLoss,
2987            NumericalErrorType::ConvergenceFailure,
2988            NumericalErrorType::IllConditioned,
2989            NumericalErrorType::InvalidValues,
2990        ];
2991
2992        assert_eq!(error_types.len(), 6);
2993        assert!(error_types.contains(&NumericalErrorType::Overflow));
2994    }
2995
2996    #[test]
2997    fn test_scaling_strategies() {
2998        let strategies = [
2999            ScalingStrategy::Conservative,
3000            ScalingStrategy::Balanced,
3001            ScalingStrategy::Aggressive,
3002            ScalingStrategy::Custom,
3003        ];
3004
3005        assert_eq!(strategies.len(), 4);
3006        assert!(strategies.contains(&ScalingStrategy::Balanced));
3007    }
3008
3009    #[test]
3010    fn test_recovery_actions() {
3011        let actions = [
3012            RecoveryAction::IncreasePrecision,
3013            RecoveryAction::ReduceTileSize,
3014            RecoveryAction::FallbackAlgorithm,
3015            RecoveryAction::NumericalStabilization,
3016            RecoveryAction::RetryWithNewParams,
3017            RecoveryAction::SwitchToCPU,
3018        ];
3019
3020        assert_eq!(actions.len(), 6);
3021        assert!(actions.contains(&RecoveryAction::IncreasePrecision));
3022    }
3023
3024    #[test]
3025    fn test_optimization_objectives() {
3026        let objectives = [
3027            OptimizationObjective::MaxPerformance,
3028            OptimizationObjective::MaxAccuracy,
3029            OptimizationObjective::Balanced,
3030            OptimizationObjective::MinEnergy,
3031            OptimizationObjective::Custom,
3032        ];
3033
3034        assert_eq!(objectives.len(), 5);
3035        assert!(objectives.contains(&OptimizationObjective::Balanced));
3036    }
3037}