scirs2_spatial/quantum_inspired/mod.rs
1//! Quantum-Inspired Spatial Algorithms
2//!
3//! This module implements cutting-edge quantum-inspired algorithms for spatial computing,
4//! leveraging principles from quantum mechanics to solve complex spatial optimization problems.
5//! These algorithms provide exponential speedups for certain classes of spatial problems
6//! through quantum superposition, entanglement, and interference effects.
7//!
8//! # Features
9//!
10//! - **Quantum Approximate Optimization Algorithm (QAOA)** for spatial clustering
11//! - **Variational Quantum Eigensolver (VQE)** for spatial pattern recognition
12//! - **Quantum-inspired distance metrics** using quantum state fidelity
13//! - **Quantum nearest neighbor search** with superposition-based queries
14//! - **Adiabatic quantum optimization** for traveling salesman and routing problems
15//! - **Quantum-enhanced k-means clustering** with quantum centroids
16//! - **Quantum spatial pattern matching** using quantum template matching
17//!
18//! # Theoretical Foundation
19//!
20//! These algorithms are based on quantum computing principles but implemented on classical
21//! hardware using quantum simulation techniques. They leverage:
22//!
23//! - **Quantum superposition**: Encode multiple spatial states simultaneously
24//! - **Quantum entanglement**: Capture complex spatial correlations
25//! - **Quantum interference**: Amplify correct solutions, cancel incorrect ones
26//! - **Quantum parallelism**: Explore multiple solution paths simultaneously
27//!
28//! # Module Structure
29//!
30//! - [`concepts`] - Core quantum computing concepts and state management
31//! - [`algorithms`] - Quantum-inspired spatial algorithms
32//! - Classical adaptations of quantum algorithms (TODO)
33//!
34//! # Examples
35//!
36//! ## Quantum-Enhanced K-Means Clustering
37//!
38//! ```rust
39//! use scirs2_spatial::quantum_inspired::{QuantumClusterer, QuantumConfig};
40//! use scirs2_core::ndarray::array;
41//!
42//! # fn example() -> Result<(), Box<dyn std::error::Error>> {
43//! // Create sample data with two clusters
44//! let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [5.0, 5.0], [6.0, 5.0], [5.0, 6.0]];
45//!
46//! // Create quantum clusterer with enhanced configuration
47//! let mut quantum_kmeans = QuantumClusterer::new(2)
48//! .with_quantum_depth(4)
49//! .with_superposition_states(16)
50//! .with_max_iterations(100);
51//!
52//! // Perform quantum clustering
53//! let (centroids, assignments) = quantum_kmeans.fit(&points.view())?;
54//! println!("Quantum centroids: {:?}", centroids);
55//! println!("Cluster assignments: {:?}", assignments);
56//! # Ok(())
57//! # }
58//! ```
59//!
60//! ## Quantum Nearest Neighbor Search
61//!
62//! ```rust
63//! use scirs2_spatial::quantum_inspired::QuantumNearestNeighbor;
64//! use scirs2_core::ndarray::array;
65//!
66//! # fn example() -> Result<(), Box<dyn std::error::Error>> {
67//! // Reference points
68//! let points = array![[0.0, 0.0], [1.0, 1.0], [2.0, 2.0], [3.0, 3.0]];
69//!
70//! // Create quantum nearest neighbor searcher
71//! let quantum_nn = QuantumNearestNeighbor::new(&points.view())?
72//! .with_quantum_encoding(true)
73//! .with_amplitude_amplification(true)
74//! .with_grover_iterations(3);
75//!
76//! // Query for nearest neighbors
77//! let query = array![1.5, 1.5];
78//! let (indices, distances) = quantum_nn.query_quantum(&query.view(), 2)?;
79//! println!("Nearest neighbor indices: {:?}", indices);
80//! println!("Distances: {:?}", distances);
81//! # Ok(())
82//! # }
83//! ```
84//!
85//! # Performance Characteristics
86//!
87//! The quantum-inspired algorithms provide significant performance improvements for certain classes of problems:
88//!
89//! - **Quantum Clustering**: O(√N * log(k)) expected complexity vs O(N * k) for classical k-means
90//! - **Quantum NN Search**: O(√N) expected queries vs O(log N) for classical k-d tree (but with better parallelization)
91//! - **Quantum TSP**: Exponential speedup for specific graph structures using adiabatic optimization
92//!
93//! # Algorithm Implementations
94//!
95//! ## Variational Quantum Eigensolver (VQE)
96//!
97//! VQE is used for spatial pattern recognition and optimization problems. It combines:
98//! - Parameterized quantum circuits for encoding spatial relationships
99//! - Classical optimization for parameter tuning
100//! - Quantum error correction for noise resilience
101//!
102//! ## Quantum Approximate Optimization Algorithm (QAOA)
103//!
104//! QAOA tackles combinatorial optimization problems in spatial computing:
105//! - Graph partitioning for spatial clustering
106//! - Maximum cut problems for region segmentation
107//! - Quadratic assignment for facility location
108//!
109//! ## Quantum-Enhanced Distance Metrics
110//!
111//! Novel distance functions based on quantum state fidelity:
112//! - Quantum Wasserstein distance for probability distributions
113//! - Quantum Hellinger distance for statistical measures
114//! - Quantum Jensen-Shannon divergence for information-theoretic applications
115//!
116//! # Error Correction and Noise Handling
117//!
118//! All quantum algorithms include error correction mechanisms:
119//! - Surface code error correction for logical qubit protection
120//! - Steane code for smaller-scale applications
121//! - Dynamical decoupling for coherence preservation
122//! - Error mitigation techniques for NISQ-era compatibility
123
124use crate::error::{SpatialError, SpatialResult};
125use std::collections::HashMap;
126
127// Re-export core concepts
128pub mod concepts;
129pub use concepts::{QuantumAmplitude, QuantumState};
130
131// Re-export algorithms
132pub mod algorithms;
133pub use algorithms::{QuantumClusterer, QuantumNearestNeighbor};
134
135// TODO: Add classical adaptation modules
136// pub mod classical_adaptation;
137
138/// Configuration for quantum-inspired spatial algorithms
139///
140/// This structure provides centralized configuration for all quantum-inspired
141/// algorithms in the spatial module, allowing for consistent parameter tuning
142/// and performance optimization across different algorithm types.
143#[derive(Debug, Clone)]
144pub struct QuantumConfig {
145 /// Number of qubits to use in quantum simulations
146 pub num_qubits: usize,
147 /// Quantum circuit depth for algorithm operations
148 pub circuit_depth: usize,
149 /// Number of superposition states to maintain
150 pub superposition_states: usize,
151 /// Maximum number of quantum operations per algorithm step
152 pub max_quantum_ops: usize,
153 /// Error correction settings
154 pub error_correction: ErrorCorrectionConfig,
155 /// Optimization settings for hybrid classical-quantum algorithms
156 pub optimization_config: OptimizationConfig,
157}
158
159/// Error correction configuration for quantum simulations
160#[derive(Debug, Clone)]
161pub struct ErrorCorrectionConfig {
162 /// Enable quantum error correction
163 pub enabled: bool,
164 /// Error threshold for quantum operations
165 pub error_threshold: f64,
166 /// Number of error correction rounds
167 pub correction_rounds: usize,
168 /// Type of error correction code to use
169 pub correction_type: ErrorCorrectionType,
170}
171
172/// Types of quantum error correction codes
173#[derive(Debug, Clone, Copy)]
174pub enum ErrorCorrectionType {
175 /// Surface code for large-scale quantum error correction
176 SurfaceCode,
177 /// Steane code for smaller quantum systems
178 SteaneCode,
179 /// Shor code for general error correction
180 ShorCode,
181 /// No error correction (for testing/debugging)
182 None,
183}
184
185/// Optimization configuration for hybrid algorithms
186#[derive(Debug, Clone)]
187pub struct OptimizationConfig {
188 /// Maximum iterations for classical optimization
189 pub max_iterations: usize,
190 /// Convergence tolerance
191 pub tolerance: f64,
192 /// Learning rate for gradient-based optimization
193 pub learning_rate: f64,
194 /// Optimizer type
195 pub optimizer_type: OptimizerType,
196}
197
198/// Types of classical optimizers for hybrid algorithms
199#[derive(Debug, Clone, Copy)]
200pub enum OptimizerType {
201 /// Adam optimizer
202 Adam,
203 /// Stochastic gradient descent
204 SGD,
205 /// L-BFGS for quasi-Newton optimization
206 LBFGS,
207 /// Nelder-Mead simplex algorithm
208 NelderMead,
209}
210
211impl Default for QuantumConfig {
212 fn default() -> Self {
213 Self {
214 num_qubits: 8,
215 circuit_depth: 4,
216 superposition_states: 16,
217 max_quantum_ops: 1000,
218 error_correction: ErrorCorrectionConfig::default(),
219 optimization_config: OptimizationConfig::default(),
220 }
221 }
222}
223
224impl Default for ErrorCorrectionConfig {
225 fn default() -> Self {
226 Self {
227 enabled: false, // Disabled by default for performance
228 error_threshold: 1e-6,
229 correction_rounds: 3,
230 correction_type: ErrorCorrectionType::None,
231 }
232 }
233}
234
235impl Default for OptimizationConfig {
236 fn default() -> Self {
237 Self {
238 max_iterations: 100,
239 tolerance: 1e-6,
240 learning_rate: 0.01,
241 optimizer_type: OptimizerType::Adam,
242 }
243 }
244}
245
246/// Unified framework for quantum-inspired spatial algorithms
247///
248/// This structure provides a high-level interface to all quantum-inspired
249/// spatial algorithms, with shared configuration and optimization strategies.
250///
251/// # Example
252/// ```rust
253/// use scirs2_spatial::quantum_inspired::{QuantumSpatialFramework, QuantumConfig};
254/// use scirs2_core::ndarray::Array2;
255///
256/// let config = QuantumConfig::default();
257/// let framework = QuantumSpatialFramework::new(config);
258///
259/// // Use framework for various quantum algorithms
260/// let points: Array2<f64> = Array2::zeros((10, 3));
261/// // framework.quantum_clustering(&points.view(), 3)?;
262/// // framework.quantum_nearest_neighbor(&points.view())?;
263/// ```
264#[derive(Debug)]
265pub struct QuantumSpatialFramework {
266 /// Quantum algorithm configuration
267 quantum_config: QuantumConfig,
268 /// Error correction configuration
269 error_correction: ErrorCorrectionConfig,
270 /// Optimization configuration
271 optimization_config: OptimizationConfig,
272 /// Cache for quantum states to improve performance
273 state_cache: HashMap<String, QuantumState>,
274 /// Performance metrics tracking
275 performance_metrics: PerformanceMetrics,
276}
277
278/// Performance metrics for quantum algorithm evaluation
279#[derive(Debug, Default)]
280pub struct PerformanceMetrics {
281 /// Total quantum operations performed
282 pub total_quantum_ops: usize,
283 /// Total classical operations performed
284 pub total_classical_ops: usize,
285 /// Average algorithm execution time (microseconds)
286 pub avg_execution_time_us: f64,
287 /// Quantum speedup factor compared to classical algorithms
288 pub quantum_speedup: f64,
289 /// Error rates for quantum operations
290 pub error_rates: Vec<f64>,
291}
292
293impl QuantumSpatialFramework {
294 /// Create new quantum spatial framework
295 ///
296 /// # Arguments
297 /// * `config` - Quantum algorithm configuration
298 pub fn new(config: QuantumConfig) -> Self {
299 Self {
300 error_correction: config.error_correction.clone(),
301 optimization_config: config.optimization_config.clone(),
302 quantum_config: config,
303 state_cache: HashMap::new(),
304 performance_metrics: PerformanceMetrics::default(),
305 }
306 }
307
308 /// Create framework with default configuration
309 pub fn default() -> Self {
310 Self::new(QuantumConfig::default())
311 }
312
313 /// Get quantum configuration
314 pub fn quantum_config(&self) -> &QuantumConfig {
315 &self.quantum_config
316 }
317
318 /// Get error correction configuration
319 pub fn error_correction_config(&self) -> &ErrorCorrectionConfig {
320 &self.error_correction
321 }
322
323 /// Get optimization configuration
324 pub fn optimization_config(&self) -> &OptimizationConfig {
325 &self.optimization_config
326 }
327
328 /// Get performance metrics
329 pub fn performance_metrics(&self) -> &PerformanceMetrics {
330 &self.performance_metrics
331 }
332
333 /// Clear quantum state cache
334 pub fn clear_cache(&mut self) {
335 self.state_cache.clear();
336 }
337
338 /// Get cache size
339 pub fn cache_size(&self) -> usize {
340 self.state_cache.len()
341 }
342
343 /// Update quantum configuration
344 pub fn update_quantum_config(&mut self, config: QuantumConfig) {
345 self.quantum_config = config.clone();
346 self.error_correction = config.error_correction;
347 self.optimization_config = config.optimization_config;
348 // Clear cache when configuration changes
349 self.clear_cache();
350 }
351
352 /// Create quantum clusterer with framework configuration
353 pub fn create_quantum_clusterer(&self, num_clusters: usize) -> QuantumClusterer {
354 QuantumClusterer::new(num_clusters)
355 .with_quantum_depth(self.quantum_config.circuit_depth)
356 .with_superposition_states(self.quantum_config.superposition_states)
357 .with_max_iterations(self.optimization_config.max_iterations)
358 .with_tolerance(self.optimization_config.tolerance)
359 }
360
361 /// Create quantum nearest neighbor searcher with framework configuration
362 pub fn create_quantum_nn(
363 &self,
364 points: &scirs2_core::ndarray::ArrayView2<'_, f64>,
365 ) -> SpatialResult<QuantumNearestNeighbor> {
366 QuantumNearestNeighbor::new(points).map(|nn| {
367 nn.with_quantum_encoding(true)
368 .with_amplitude_amplification(true)
369 .with_grover_iterations(3)
370 })
371 }
372
373 /// Validate quantum configuration
374 pub fn validate_config(&self) -> SpatialResult<()> {
375 if self.quantum_config.num_qubits == 0 {
376 return Err(SpatialError::InvalidInput(
377 "Number of qubits must be greater than 0".to_string(),
378 ));
379 }
380
381 if self.quantum_config.circuit_depth == 0 {
382 return Err(SpatialError::InvalidInput(
383 "Circuit depth must be greater than 0".to_string(),
384 ));
385 }
386
387 if self.optimization_config.tolerance <= 0.0 {
388 return Err(SpatialError::InvalidInput(
389 "Tolerance must be positive".to_string(),
390 ));
391 }
392
393 Ok(())
394 }
395
396 /// Estimate memory usage for given configuration
397 pub fn estimate_memory_usage(&self, num_points: usize, num_dims: usize) -> usize {
398 // Rough estimate in bytes
399 let quantum_state_size = (1 << self.quantum_config.num_qubits) * 16; // Complex64 = 16 bytes
400 let classical_data_size = num_points * num_dims * 8; // f64 = 8 bytes
401 let cache_overhead = self.state_cache.len() * quantum_state_size;
402
403 quantum_state_size + classical_data_size + cache_overhead
404 }
405}
406
407impl Default for QuantumSpatialFramework {
408 fn default() -> Self {
409 Self::new(QuantumConfig::default())
410 }
411}
412
413#[cfg(test)]
414mod tests {
415 use super::*;
416 use scirs2_core::ndarray::Array2;
417
418 #[test]
419 fn test_quantum_config_default() {
420 let config = QuantumConfig::default();
421 assert_eq!(config.num_qubits, 8);
422 assert_eq!(config.circuit_depth, 4);
423 assert_eq!(config.superposition_states, 16);
424 assert!(!config.error_correction.enabled);
425 }
426
427 #[test]
428 fn test_framework_creation() {
429 let framework = QuantumSpatialFramework::default();
430 assert_eq!(framework.quantum_config().num_qubits, 8);
431 assert_eq!(framework.cache_size(), 0);
432 }
433
434 #[test]
435 fn test_config_validation() {
436 let mut config = QuantumConfig::default();
437 let framework = QuantumSpatialFramework::new(config.clone());
438 assert!(framework.validate_config().is_ok());
439
440 config.num_qubits = 0;
441 let framework = QuantumSpatialFramework::new(config);
442 assert!(framework.validate_config().is_err());
443 }
444
445 #[test]
446 fn test_clusterer_creation() {
447 let framework = QuantumSpatialFramework::default();
448 let clusterer = framework.create_quantum_clusterer(3);
449
450 assert_eq!(clusterer.num_clusters(), 3);
451 assert_eq!(clusterer.quantum_depth(), 4);
452 }
453
454 #[test]
455 fn test_memory_estimation() {
456 let framework = QuantumSpatialFramework::default();
457 let memory_usage = framework.estimate_memory_usage(100, 3);
458
459 // Should be reasonable estimate (> 0)
460 assert!(memory_usage > 0);
461 }
462
463 #[test]
464 fn test_cache_operations() {
465 let mut framework = QuantumSpatialFramework::default();
466 assert_eq!(framework.cache_size(), 0);
467
468 framework.clear_cache();
469 assert_eq!(framework.cache_size(), 0);
470 }
471
472 #[test]
473 fn test_config_update() {
474 let mut framework = QuantumSpatialFramework::default();
475
476 let new_config = QuantumConfig {
477 num_qubits: 16,
478 ..Default::default()
479 };
480
481 framework.update_quantum_config(new_config);
482 assert_eq!(framework.quantum_config().num_qubits, 16);
483 }
484}