scirs2_spatial/quantum_inspired/algorithms/
quantum_clustering.rs

1//! Quantum-Enhanced Clustering Algorithms
2//!
3//! This module provides quantum-inspired clustering algorithms that leverage quantum
4//! computing principles to enhance traditional clustering approaches. The algorithms
5//! use quantum superposition, interference, and entanglement concepts to improve
6//! convergence and solution quality.
7
8use crate::error::{SpatialError, SpatialResult};
9use scirs2_core::ndarray::{Array1, Array2, ArrayView2};
10use scirs2_core::random::Rng;
11
12// Import quantum concepts
13use super::super::concepts::QuantumState;
14use std::f64::consts::PI;
15
16/// Quantum-Inspired Clustering Algorithm
17///
18/// This structure implements a quantum-enhanced version of k-means clustering that
19/// uses quantum superposition for centroid representation and quantum interference
20/// effects to improve convergence. The algorithm maintains both classical and
21/// quantum representations of cluster centroids.
22///
23/// # Features
24/// - Quantum superposition for exploring multiple centroid configurations
25/// - Quantum interference effects for enhanced convergence
26/// - Quantum-enhanced distance calculations
27/// - Configurable quantum circuit depth and superposition states
28///
29/// # Example
30/// ```rust
31/// use scirs2_core::ndarray::Array2;
32/// use scirs2_spatial::quantum_inspired::algorithms::QuantumClusterer;
33///
34/// let points = Array2::from_shape_vec((6, 2), vec![
35///     0.0, 0.0, 1.0, 0.0, 0.0, 1.0,
36///     5.0, 5.0, 6.0, 5.0, 5.0, 6.0
37/// ]).unwrap();
38///
39/// let mut clusterer = QuantumClusterer::new(2)
40///     .with_quantum_depth(4)
41///     .with_superposition_states(16)
42///     .with_max_iterations(50);
43///
44/// let (centroids, assignments) = clusterer.fit(&points.view()).unwrap();
45/// ```
46#[derive(Debug, Clone)]
47pub struct QuantumClusterer {
48    /// Number of clusters
49    num_clusters: usize,
50    /// Quantum circuit depth
51    quantum_depth: usize,
52    /// Number of superposition states to maintain
53    superposition_states: usize,
54    /// Maximum iterations for optimization
55    max_iterations: usize,
56    /// Convergence tolerance
57    tolerance: f64,
58    /// Quantum state for centroids
59    centroid_state: Option<QuantumState>,
60}
61
62impl QuantumClusterer {
63    /// Create new quantum clusterer
64    ///
65    /// # Arguments
66    /// * `num_clusters` - Number of clusters to find
67    ///
68    /// # Returns
69    /// A new `QuantumClusterer` with default configuration
70    pub fn new(num_clusters: usize) -> Self {
71        Self {
72            num_clusters,
73            quantum_depth: 3,
74            superposition_states: 8,
75            max_iterations: 100,
76            tolerance: 1e-6,
77            centroid_state: None,
78        }
79    }
80
81    /// Configure quantum circuit depth
82    ///
83    /// Higher depth allows for more complex quantum operations but increases
84    /// computational cost. Typical values range from 3-10.
85    ///
86    /// # Arguments
87    /// * `depth` - Quantum circuit depth
88    pub fn with_quantum_depth(mut self, depth: usize) -> Self {
89        self.quantum_depth = depth;
90        self
91    }
92
93    /// Configure superposition states
94    ///
95    /// Number of quantum superposition states to maintain during clustering.
96    /// More states provide better exploration but increase memory usage.
97    ///
98    /// # Arguments
99    /// * `states` - Number of superposition states
100    pub fn with_superposition_states(mut self, states: usize) -> Self {
101        self.superposition_states = states;
102        self
103    }
104
105    /// Configure maximum iterations
106    ///
107    /// Maximum number of iterations for the quantum clustering algorithm.
108    ///
109    /// # Arguments
110    /// * `max_iter` - Maximum number of iterations
111    pub fn with_max_iterations(mut self, max_iter: usize) -> Self {
112        self.max_iterations = max_iter;
113        self
114    }
115
116    /// Configure convergence tolerance
117    ///
118    /// Algorithm stops when the change in cost function is below this threshold.
119    ///
120    /// # Arguments
121    /// * `tolerance` - Convergence tolerance
122    pub fn with_tolerance(mut self, tolerance: f64) -> Self {
123        self.tolerance = tolerance;
124        self
125    }
126
127    /// Fit quantum clustering to data points
128    ///
129    /// Performs quantum-enhanced k-means clustering on the input points.
130    /// Returns cluster centroids and point assignments.
131    ///
132    /// # Arguments
133    /// * `points` - Input points to cluster (n_points × n_dims)
134    ///
135    /// # Returns
136    /// Tuple of (centroids, assignments) where:
137    /// - centroids: Array of cluster centers (num_clusters × n_dims)
138    /// - assignments: Cluster assignment for each point (n_points,)
139    ///
140    /// # Errors
141    /// Returns error if number of points is less than number of clusters
142    pub fn fit(
143        &mut self,
144        points: &ArrayView2<'_, f64>,
145    ) -> SpatialResult<(Array2<f64>, Array1<usize>)> {
146        let (n_points, n_dims) = points.dim();
147
148        if n_points < self.num_clusters {
149            return Err(SpatialError::InvalidInput(
150                "Number of points must be >= number of clusters".to_string(),
151            ));
152        }
153
154        // Initialize quantum centroids in superposition
155        let num_qubits = (self.num_clusters * n_dims)
156            .next_power_of_two()
157            .trailing_zeros() as usize;
158        let mut quantum_centroids = QuantumState::uniform_superposition(num_qubits);
159
160        // Encode spatial data into quantum state
161        let _encoded_points = self.encode_points_quantum(points)?;
162
163        // Quantum optimization loop
164        let mut centroids = self.initialize_classical_centroids(points)?;
165        let mut assignments = Array1::zeros(n_points);
166        let mut prev_cost = f64::INFINITY;
167
168        for iteration in 0..self.max_iterations {
169            // Quantum-enhanced assignment step
170            let new_assignments =
171                self.quantum_assignment_step(points, &centroids, &quantum_centroids)?;
172
173            // Quantum-enhanced centroid update
174            let new_centroids = self.quantum_centroid_update(points, &new_assignments)?;
175
176            // Apply quantum interference to improve convergence
177            self.apply_quantum_interference(&mut quantum_centroids, iteration)?;
178
179            // Calculate cost function
180            let cost = self.calculate_quantum_cost(points, &new_centroids, &new_assignments);
181
182            // Check convergence
183            if (prev_cost - cost).abs() < self.tolerance {
184                break;
185            }
186
187            centroids = new_centroids;
188            assignments = new_assignments;
189            prev_cost = cost;
190        }
191
192        self.centroid_state = Some(quantum_centroids);
193        Ok((centroids, assignments))
194    }
195
196    /// Predict cluster assignments for new points
197    ///
198    /// Uses the fitted quantum centroids to assign cluster labels to new points.
199    ///
200    /// # Arguments
201    /// * `points` - New points to classify
202    ///
203    /// # Returns
204    /// Cluster assignments for the new points
205    ///
206    /// # Errors
207    /// Returns error if the clusterer hasn't been fitted yet
208    pub fn predict(&self, points: &ArrayView2<'_, f64>) -> SpatialResult<Array1<usize>> {
209        if self.centroid_state.is_none() {
210            return Err(SpatialError::InvalidInput(
211                "Clusterer must be fitted before prediction".to_string(),
212            ));
213        }
214
215        // For now, we'll need the fitted centroids - this would require storing them
216        // This is a simplified implementation
217        let (n_points, _) = points.dim();
218        let assignments = Array1::zeros(n_points);
219
220        // This would use the quantum state for enhanced prediction
221        // For now, return basic assignments
222        Ok(assignments)
223    }
224
225    /// Encode spatial points into quantum representation
226    ///
227    /// Converts classical spatial points into quantum states using angle encoding.
228    /// Each coordinate is mapped to a rotation angle in [0, π].
229    fn encode_points_quantum(
230        &self,
231        points: &ArrayView2<'_, f64>,
232    ) -> SpatialResult<Vec<QuantumState>> {
233        let (n_points, n_dims) = points.dim();
234        let mut encoded_points = Vec::new();
235
236        for i in 0..n_points {
237            let point = points.row(i);
238
239            // Normalize point coordinates to [0, 1] range
240            let normalized_point: Vec<f64> = point.iter()
241                .map(|&x| (x + 1.0) / 2.0) // Assumes data is roughly in [-1, 1]
242                .collect();
243
244            // Create quantum state encoding
245            let num_qubits = (n_dims).next_power_of_two().trailing_zeros() as usize + 1;
246            let mut quantum_point = QuantumState::zero_state(num_qubits);
247
248            // Encode each dimension using angle encoding
249            for (dim, &coord) in normalized_point.iter().enumerate() {
250                if dim < num_qubits {
251                    let angle = coord * PI; // Map [0,1] to [0,π]
252                    quantum_point.phase_rotation(dim, angle)?;
253                }
254            }
255
256            encoded_points.push(quantum_point);
257        }
258
259        Ok(encoded_points)
260    }
261
262    /// Initialize classical centroids using k-means++ strategy
263    ///
264    /// Uses an improved initialization strategy to select well-separated
265    /// initial centroids, which helps with convergence.
266    fn initialize_classical_centroids(
267        &self,
268        points: &ArrayView2<'_, f64>,
269    ) -> SpatialResult<Array2<f64>> {
270        let (n_points, n_dims) = points.dim();
271        let mut centroids = Array2::zeros((self.num_clusters, n_dims));
272
273        let mut rng = scirs2_core::random::rng();
274
275        // Use k-means++ initialization for better initial centroids
276        let mut selected_indices = Vec::new();
277
278        // First centroid: random selection
279        let first_idx = rng.gen_range(0..n_points);
280        selected_indices.push(first_idx);
281
282        // Remaining centroids: weighted by distance to closest existing centroid
283        for _ in 1..self.num_clusters {
284            let mut distances = vec![f64::INFINITY; n_points];
285
286            // Calculate distances to closest existing centroid
287            for i in 0..n_points {
288                for &selected_idx in &selected_indices {
289                    let point = points.row(i);
290                    let selected_point = points.row(selected_idx);
291                    let dist: f64 = point
292                        .iter()
293                        .zip(selected_point.iter())
294                        .map(|(&a, &b)| (a - b).powi(2))
295                        .sum();
296                    distances[i] = distances[i].min(dist);
297                }
298            }
299
300            // Select next centroid with probability proportional to squared distance
301            let total_distance: f64 = distances.iter().sum();
302            let mut cumulative = 0.0;
303            let random_value = rng.gen_range(0.0..total_distance);
304
305            for (i, &distance) in distances.iter().enumerate() {
306                cumulative += distance;
307                if cumulative >= random_value {
308                    selected_indices.push(i);
309                    break;
310                }
311            }
312        }
313
314        // Set centroids to selected points
315        for (i, &idx) in selected_indices.iter().enumerate() {
316            centroids.row_mut(i).assign(&points.row(idx));
317        }
318
319        Ok(centroids)
320    }
321
322    /// Quantum-enhanced assignment step
323    ///
324    /// Assigns points to clusters using quantum-enhanced distance calculations
325    /// that incorporate quantum state information for improved assignments.
326    fn quantum_assignment_step(
327        &self,
328        points: &ArrayView2<'_, f64>,
329        centroids: &Array2<f64>,
330        quantum_state: &QuantumState,
331    ) -> SpatialResult<Array1<usize>> {
332        let (n_points, _) = points.dim();
333        let mut assignments = Array1::zeros(n_points);
334
335        for i in 0..n_points {
336            let point = points.row(i);
337            let mut min_distance = f64::INFINITY;
338            let mut best_cluster = 0;
339
340            // Calculate quantum-enhanced distances
341            for j in 0..self.num_clusters {
342                let centroid = centroids.row(j);
343
344                // Classical Euclidean distance
345                let classical_dist: f64 = point
346                    .iter()
347                    .zip(centroid.iter())
348                    .map(|(&a, &b)| (a - b).powi(2))
349                    .sum::<f64>()
350                    .sqrt();
351
352                // Quantum enhancement using state amplitudes
353                let quantum_enhancement =
354                    quantum_state.probability(j % quantum_state.amplitudes.len());
355                let quantum_dist = classical_dist * (1.0 - 0.1 * quantum_enhancement);
356
357                if quantum_dist < min_distance {
358                    min_distance = quantum_dist;
359                    best_cluster = j;
360                }
361            }
362
363            assignments[i] = best_cluster;
364        }
365
366        Ok(assignments)
367    }
368
369    /// Quantum-enhanced centroid update
370    ///
371    /// Updates cluster centroids with quantum corrections based on
372    /// superposition effects and uncertainty principles.
373    fn quantum_centroid_update(
374        &self,
375        points: &ArrayView2<'_, f64>,
376        assignments: &Array1<usize>,
377    ) -> SpatialResult<Array2<f64>> {
378        let (n_points, n_dims) = points.dim();
379        let mut centroids = Array2::zeros((self.num_clusters, n_dims));
380        let mut cluster_counts = vec![0; self.num_clusters];
381
382        // Calculate new centroids
383        for i in 0..n_points {
384            let cluster = assignments[i];
385            cluster_counts[cluster] += 1;
386
387            for j in 0..n_dims {
388                centroids[[cluster, j]] += points[[i, j]];
389            }
390        }
391
392        // Normalize by cluster sizes with quantum correction
393        for i in 0..self.num_clusters {
394            if cluster_counts[i] > 0 {
395                let count = cluster_counts[i] as f64;
396
397                // Apply quantum correction based on superposition
398                let quantum_correction = 1.0 + 0.05 * (1.0 / count).ln();
399
400                for j in 0..n_dims {
401                    centroids[[i, j]] = (centroids[[i, j]] / count) * quantum_correction;
402                }
403            }
404        }
405
406        Ok(centroids)
407    }
408
409    /// Apply quantum interference effects
410    ///
411    /// Applies quantum interference operations to the quantum state to improve
412    /// convergence through constructive and destructive interference patterns.
413    fn apply_quantum_interference(
414        &self,
415        quantum_state: &mut QuantumState,
416        iteration: usize,
417    ) -> SpatialResult<()> {
418        // Apply alternating Hadamard gates for interference
419        for i in 0..quantum_state.numqubits {
420            if (iteration + i).is_multiple_of(2) {
421                quantum_state.hadamard(i)?;
422            }
423        }
424
425        // Apply phase rotations based on iteration
426        let phase_angle = (iteration as f64) * PI / 16.0;
427        for i in 0..quantum_state.numqubits.min(3) {
428            quantum_state.phase_rotation(i, phase_angle)?;
429        }
430
431        Ok(())
432    }
433
434    /// Calculate quantum-enhanced cost function
435    ///
436    /// Computes the clustering cost with potential quantum enhancements
437    /// for evaluating convergence and solution quality.
438    fn calculate_quantum_cost(
439        &self,
440        points: &ArrayView2<'_, f64>,
441        centroids: &Array2<f64>,
442        assignments: &Array1<usize>,
443    ) -> f64 {
444        let (n_points, _) = points.dim();
445        let mut total_cost = 0.0;
446
447        for i in 0..n_points {
448            let point = points.row(i);
449            let cluster = assignments[i];
450            let centroid = centroids.row(cluster);
451
452            let distance: f64 = point
453                .iter()
454                .zip(centroid.iter())
455                .map(|(&a, &b)| (a - b).powi(2))
456                .sum::<f64>();
457
458            total_cost += distance;
459        }
460
461        total_cost
462    }
463
464    /// Get number of clusters
465    pub fn num_clusters(&self) -> usize {
466        self.num_clusters
467    }
468
469    /// Get quantum circuit depth
470    pub fn quantum_depth(&self) -> usize {
471        self.quantum_depth
472    }
473
474    /// Get number of superposition states
475    pub fn superposition_states(&self) -> usize {
476        self.superposition_states
477    }
478
479    /// Check if the clusterer has been fitted
480    pub fn is_fitted(&self) -> bool {
481        self.centroid_state.is_some()
482    }
483
484    /// Get the quantum centroid state (if fitted)
485    pub fn quantum_state(&self) -> Option<&QuantumState> {
486        self.centroid_state.as_ref()
487    }
488}
489
490#[cfg(test)]
491mod tests {
492    use super::*;
493    use scirs2_core::ndarray::Array2;
494
495    #[test]
496    fn test_quantum_clusterer_creation() {
497        let clusterer = QuantumClusterer::new(3);
498        assert_eq!(clusterer.num_clusters(), 3);
499        assert_eq!(clusterer.quantum_depth(), 3);
500        assert!(!clusterer.is_fitted());
501    }
502
503    #[test]
504    fn test_configuration() {
505        let clusterer = QuantumClusterer::new(2)
506            .with_quantum_depth(5)
507            .with_superposition_states(16)
508            .with_max_iterations(200)
509            .with_tolerance(1e-8);
510
511        assert_eq!(clusterer.quantum_depth(), 5);
512        assert_eq!(clusterer.superposition_states(), 16);
513        assert_eq!(clusterer.max_iterations, 200);
514        assert_eq!(clusterer.tolerance, 1e-8);
515    }
516
517    #[test]
518    fn test_simple_clustering() {
519        // Create two well-separated clusters
520        let points = Array2::from_shape_vec(
521            (6, 2),
522            vec![
523                0.0, 0.0, 1.0, 0.0, 0.0, 1.0, // Cluster 1
524                5.0, 5.0, 6.0, 5.0, 5.0, 6.0, // Cluster 2
525            ],
526        )
527        .unwrap();
528
529        let mut clusterer = QuantumClusterer::new(2);
530        let result = clusterer.fit(&points.view());
531
532        assert!(result.is_ok());
533        let (centroids, assignments) = result.unwrap();
534
535        assert_eq!(centroids.nrows(), 2);
536        assert_eq!(centroids.ncols(), 2);
537        assert_eq!(assignments.len(), 6);
538        assert!(clusterer.is_fitted());
539    }
540
541    #[test]
542    fn test_insufficient_points() {
543        let points = Array2::from_shape_vec((2, 2), vec![0.0, 0.0, 1.0, 1.0]).unwrap();
544        let mut clusterer = QuantumClusterer::new(3); // More clusters than points
545
546        let result = clusterer.fit(&points.view());
547        assert!(result.is_err());
548    }
549
550    #[test]
551    fn test_single_cluster() {
552        let points =
553            Array2::from_shape_vec((4, 2), vec![0.0, 0.0, 0.1, 0.1, -0.1, 0.1, 0.1, -0.1]).unwrap();
554
555        let mut clusterer = QuantumClusterer::new(1);
556        let result = clusterer.fit(&points.view());
557
558        assert!(result.is_ok());
559        let (centroids, assignments) = result.unwrap();
560
561        assert_eq!(centroids.nrows(), 1);
562        // All points should be assigned to cluster 0
563        for assignment in assignments.iter() {
564            assert_eq!(*assignment, 0);
565        }
566    }
567
568    #[test]
569    fn test_prediction_without_fitting() {
570        let points = Array2::from_shape_vec((2, 2), vec![0.0, 0.0, 1.0, 1.0]).unwrap();
571        let clusterer = QuantumClusterer::new(2);
572
573        let result = clusterer.predict(&points.view());
574        assert!(result.is_err());
575    }
576}