scirs2_spatial/neuromorphic/algorithms/
spiking_clustering.rs1use crate::error::{SpatialError, SpatialResult};
8use scirs2_core::ndarray::{Array1, ArrayView2};
9use scirs2_core::random::Rng;
10use std::collections::HashMap;
11
12use super::super::core::{SpikeEvent, SpikingNeuron, Synapse};
14
15#[derive(Debug, Clone)]
47pub struct SpikingNeuralClusterer {
48 neurons: Vec<SpikingNeuron>,
50 synapses: Vec<Synapse>,
52 num_clusters: usize,
54 spike_threshold: f64,
56 stdp_learning: bool,
58 lateral_inhibition: bool,
60 dt: f64,
62 current_time: f64,
64 spike_history: Vec<SpikeEvent>,
66 max_epochs: usize,
68 simulation_duration: f64,
70}
71
72impl SpikingNeuralClusterer {
73 pub fn new(num_clusters: usize) -> Self {
81 Self {
82 neurons: Vec::new(),
83 synapses: Vec::new(),
84 num_clusters,
85 spike_threshold: 1.0,
86 stdp_learning: true,
87 lateral_inhibition: true,
88 dt: 0.1,
89 current_time: 0.0,
90 spike_history: Vec::new(),
91 max_epochs: 100,
92 simulation_duration: 10.0,
93 }
94 }
95
96 pub fn with_spike_threshold(mut self, threshold: f64) -> Self {
101 self.spike_threshold = threshold;
102 self
103 }
104
105 pub fn with_stdp_learning(mut self, enabled: bool) -> Self {
110 self.stdp_learning = enabled;
111 self
112 }
113
114 pub fn with_lateral_inhibition(mut self, enabled: bool) -> Self {
119 self.lateral_inhibition = enabled;
120 self
121 }
122
123 pub fn with_training_params(mut self, max_epochs: usize, simulation_duration: f64) -> Self {
129 self.max_epochs = max_epochs;
130 self.simulation_duration = simulation_duration;
131 self
132 }
133
134 pub fn with_time_step(mut self, dt: f64) -> Self {
139 self.dt = dt;
140 self
141 }
142
143 pub fn fit(
156 &mut self,
157 points: &ArrayView2<'_, f64>,
158 ) -> SpatialResult<(Array1<usize>, Vec<SpikeEvent>)> {
159 let (n_points, n_dims) = points.dim();
160
161 if n_points == 0 || n_dims == 0 {
162 return Err(SpatialError::InvalidInput(
163 "Input data cannot be empty".to_string(),
164 ));
165 }
166
167 self.initialize_network(n_dims)?;
169
170 let mut assignments = Array1::zeros(n_points);
172
173 for epoch in 0..self.max_epochs {
174 self.current_time = epoch as f64 * 100.0;
175
176 for (point_idx, point) in points.outer_iter().enumerate() {
177 let spike_train = self.encode_point_as_spikes(&point.to_owned())?;
179
180 let winning_neuron = self.process_spike_train(&spike_train)?;
182 assignments[point_idx] = winning_neuron;
183
184 if self.stdp_learning {
186 self.apply_stdp_learning(&spike_train)?;
187 }
188 }
189
190 if self.lateral_inhibition {
192 self.apply_lateral_inhibition()?;
193 }
194 }
195
196 Ok((assignments, self.spike_history.clone()))
197 }
198
199 fn initialize_network(&mut self, input_dims: usize) -> SpatialResult<()> {
204 self.neurons.clear();
205 self.synapses.clear();
206 self.spike_history.clear();
207
208 for i in 0..input_dims {
210 let position = vec![i as f64];
211 let mut neuron = SpikingNeuron::new(position);
212 neuron.set_threshold(self.spike_threshold);
213 self.neurons.push(neuron);
214 }
215
216 let mut rng = scirs2_core::random::rng();
218 for _i in 0..self.num_clusters {
219 let position = (0..input_dims).map(|_| rng.gen_range(0.0..1.0)).collect();
220 let mut neuron = SpikingNeuron::new(position);
221 neuron.set_threshold(self.spike_threshold);
222 self.neurons.push(neuron);
223 }
224
225 for i in 0..input_dims {
227 for j in 0..self.num_clusters {
228 let output_idx = input_dims + j;
229 let weight = rng.gen_range(0.0..0.5);
230 let synapse = Synapse::new(i, output_idx, weight);
231 self.synapses.push(synapse);
232 }
233 }
234
235 if self.lateral_inhibition {
237 for i in 0..self.num_clusters {
238 for j in 0..self.num_clusters {
239 if i != j {
240 let neuron_i = input_dims + i;
241 let neuron_j = input_dims + j;
242 let synapse = Synapse::new(neuron_i, neuron_j, -0.5);
243 self.synapses.push(synapse);
244 }
245 }
246 }
247 }
248
249 Ok(())
250 }
251
252 fn encode_point_as_spikes(&self, point: &Array1<f64>) -> SpatialResult<Vec<SpikeEvent>> {
258 let mut spike_train = Vec::new();
259
260 for (dim, &coord) in point.iter().enumerate() {
262 let normalized_coord = (coord + 10.0) / 20.0; let spike_rate = normalized_coord.clamp(0.0, 1.0) * 50.0; let num_spikes = (spike_rate * 1.0) as usize; for spike_idx in 0..num_spikes {
269 let timestamp =
270 self.current_time + (spike_idx as f64) * (1.0 / spike_rate.max(1.0));
271 let spike = SpikeEvent::new(dim, timestamp, 1.0, point.to_vec());
272 spike_train.push(spike);
273 }
274 }
275
276 spike_train.sort_by(|a, b| a.timestamp().partial_cmp(&b.timestamp()).unwrap());
278
279 Ok(spike_train)
280 }
281
282 fn process_spike_train(&mut self, spike_train: &[SpikeEvent]) -> SpatialResult<usize> {
287 let input_dims = self.neurons.len() - self.num_clusters;
288 let mut neuron_spike_counts = vec![0; self.num_clusters];
289
290 let mut t = self.current_time;
292 let mut spike_idx = 0;
293
294 while t < self.current_time + self.simulation_duration {
295 let mut input_currents = vec![0.0; self.neurons.len()];
297
298 while spike_idx < spike_train.len() && spike_train[spike_idx].timestamp() <= t {
299 let spike = &spike_train[spike_idx];
300 if spike.neuron_id() < input_dims {
301 input_currents[spike.neuron_id()] += spike.amplitude();
302 }
303 spike_idx += 1;
304 }
305
306 for synapse in &self.synapses {
308 if synapse.pre_neuron() < self.neurons.len()
309 && synapse.post_neuron() < self.neurons.len()
310 {
311 let pre_current = input_currents[synapse.pre_neuron()];
312 let synaptic_current = synapse.synaptic_current(pre_current);
313 input_currents[synapse.post_neuron()] += synaptic_current;
314 }
315 }
316
317 for (neuron_idx, neuron) in self.neurons.iter_mut().enumerate() {
319 let spiked = neuron.update(self.dt, input_currents[neuron_idx]);
320
321 if spiked && neuron_idx >= input_dims {
322 let cluster_idx = neuron_idx - input_dims;
323 neuron_spike_counts[cluster_idx] += 1;
324
325 let spike_event =
327 SpikeEvent::new(neuron_idx, t, 1.0, neuron.position().to_vec());
328 self.spike_history.push(spike_event);
329 }
330 }
331
332 t += self.dt;
333 }
334
335 let winning_cluster = neuron_spike_counts
337 .iter()
338 .enumerate()
339 .max_by(|(_, a), (_, b)| a.cmp(b))
340 .map(|(idx, _)| idx)
341 .unwrap_or(0);
342
343 Ok(winning_cluster)
344 }
345
346 fn apply_stdp_learning(&mut self, spike_train: &[SpikeEvent]) -> SpatialResult<()> {
351 let mut spike_times: HashMap<usize, Vec<f64>> = HashMap::new();
353 for spike in spike_train {
354 spike_times
355 .entry(spike.neuron_id())
356 .or_default()
357 .push(spike.timestamp());
358 }
359
360 for spike in &self.spike_history {
362 spike_times
363 .entry(spike.neuron_id())
364 .or_default()
365 .push(spike.timestamp());
366 }
367
368 let empty_spikes = Vec::new();
370 for synapse in &mut self.synapses {
371 let pre_spikes = spike_times
372 .get(&synapse.pre_neuron())
373 .unwrap_or(&empty_spikes);
374 let post_spikes = spike_times
375 .get(&synapse.post_neuron())
376 .unwrap_or(&empty_spikes);
377
378 for &pre_time in pre_spikes {
380 for &post_time in post_spikes {
381 let dt = post_time - pre_time;
382 if dt.abs() < 50.0 {
383 let current_weight = synapse.weight();
385 if dt > 0.0 {
386 let delta_w = synapse.stdp_rate() * (-dt / synapse.stdp_tau()).exp();
388 synapse.set_weight(current_weight + delta_w);
389 } else {
390 let delta_w = synapse.stdp_rate() * (dt / synapse.stdp_tau()).exp();
392 synapse.set_weight(current_weight - delta_w);
393 }
394 }
395 }
396 }
397 }
398
399 Ok(())
400 }
401
402 fn apply_lateral_inhibition(&mut self) -> SpatialResult<()> {
407 let input_dims = self.neurons.len() - self.num_clusters;
408
409 for i in 0..self.num_clusters {
411 for j in 0..self.num_clusters {
412 if i != j {
413 let neuron_i_idx = input_dims + i;
414 let neuron_j_idx = input_dims + j;
415
416 for synapse in &mut self.synapses {
418 if synapse.pre_neuron() == neuron_i_idx
419 && synapse.post_neuron() == neuron_j_idx
420 {
421 let activity_i = self.neurons[neuron_i_idx].membrane_potential();
423 let activity_j = self.neurons[neuron_j_idx].membrane_potential();
424
425 if activity_i > activity_j {
426 let current_weight = synapse.weight();
427 synapse.set_weight(current_weight - 0.01); }
429 }
430 }
431 }
432 }
433 }
434
435 Ok(())
436 }
437
438 pub fn num_clusters(&self) -> usize {
440 self.num_clusters
441 }
442
443 pub fn spike_threshold(&self) -> f64 {
445 self.spike_threshold
446 }
447
448 pub fn is_stdp_enabled(&self) -> bool {
450 self.stdp_learning
451 }
452
453 pub fn is_lateral_inhibition_enabled(&self) -> bool {
455 self.lateral_inhibition
456 }
457
458 pub fn spike_history(&self) -> &[SpikeEvent] {
460 &self.spike_history
461 }
462
463 pub fn network_stats(&self) -> NetworkStats {
465 NetworkStats {
466 num_neurons: self.neurons.len(),
467 num_synapses: self.synapses.len(),
468 num_spikes: self.spike_history.len(),
469 average_weight: if self.synapses.is_empty() {
470 0.0
471 } else {
472 self.synapses.iter().map(|s| s.weight()).sum::<f64>() / self.synapses.len() as f64
473 },
474 }
475 }
476
477 pub fn reset(&mut self) {
479 for neuron in &mut self.neurons {
480 neuron.reset();
481 }
482 for synapse in &mut self.synapses {
483 synapse.reset_spike_history();
484 }
485 self.spike_history.clear();
486 self.current_time = 0.0;
487 }
488}
489
490#[derive(Debug, Clone)]
492pub struct NetworkStats {
493 pub num_neurons: usize,
495 pub num_synapses: usize,
497 pub num_spikes: usize,
499 pub average_weight: f64,
501}
502
503#[cfg(test)]
504mod tests {
505 use super::*;
506 use scirs2_core::ndarray::Array2;
507
508 #[test]
509 fn test_spiking_clusterer_creation() {
510 let clusterer = SpikingNeuralClusterer::new(3);
511 assert_eq!(clusterer.num_clusters(), 3);
512 assert_eq!(clusterer.spike_threshold(), 1.0);
513 assert!(clusterer.is_stdp_enabled());
514 assert!(clusterer.is_lateral_inhibition_enabled());
515 }
516
517 #[test]
518 fn test_clusterer_configuration() {
519 let clusterer = SpikingNeuralClusterer::new(2)
520 .with_spike_threshold(0.8)
521 .with_stdp_learning(false)
522 .with_lateral_inhibition(false)
523 .with_training_params(50, 5.0);
524
525 assert_eq!(clusterer.spike_threshold(), 0.8);
526 assert!(!clusterer.is_stdp_enabled());
527 assert!(!clusterer.is_lateral_inhibition_enabled());
528 assert_eq!(clusterer.max_epochs, 50);
529 assert_eq!(clusterer.simulation_duration, 5.0);
530 }
531
532 #[test]
533 fn test_simple_clustering() {
534 let points =
535 Array2::from_shape_vec((4, 2), vec![0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0]).unwrap();
536
537 let mut clusterer = SpikingNeuralClusterer::new(2).with_training_params(5, 1.0); let result = clusterer.fit(&points.view());
540 assert!(result.is_ok());
541
542 let (assignments, spike_events) = result.unwrap();
543 assert_eq!(assignments.len(), 4);
544
545 assert!(!spike_events.is_empty());
547 }
548
549 #[test]
550 fn test_empty_input() {
551 let points = Array2::zeros((0, 2));
552 let mut clusterer = SpikingNeuralClusterer::new(2);
553
554 let result = clusterer.fit(&points.view());
555 assert!(result.is_err());
556 }
557
558 #[test]
559 fn test_network_initialization() {
560 let mut clusterer = SpikingNeuralClusterer::new(2);
561 clusterer.initialize_network(3).unwrap();
562
563 let stats = clusterer.network_stats();
564 assert_eq!(stats.num_neurons, 5); let expected_connections = 3 * 2; let lateral_connections = 2;
570 assert_eq!(
571 stats.num_synapses,
572 expected_connections + lateral_connections
573 );
574 }
575
576 #[test]
577 fn test_spike_encoding() {
578 let clusterer = SpikingNeuralClusterer::new(2);
579 let point = Array1::from_vec(vec![1.0, -1.0]);
580
581 let spike_train = clusterer.encode_point_as_spikes(&point).unwrap();
582
583 assert!(!spike_train.is_empty());
585
586 for i in 1..spike_train.len() {
588 assert!(spike_train[i - 1].timestamp() <= spike_train[i].timestamp());
589 }
590 }
591
592 #[test]
593 fn test_network_reset() {
594 let mut clusterer = SpikingNeuralClusterer::new(2);
595 clusterer.initialize_network(2).unwrap();
596
597 clusterer
599 .spike_history
600 .push(SpikeEvent::new(0, 1.0, 1.0, vec![0.0, 0.0]));
601 clusterer.current_time = 100.0;
602
603 clusterer.reset();
605 assert!(clusterer.spike_history().is_empty());
606 assert_eq!(clusterer.current_time, 0.0);
607 }
608
609 #[test]
610 fn test_network_stats() {
611 let mut clusterer = SpikingNeuralClusterer::new(2);
612 clusterer.initialize_network(3).unwrap();
613
614 let stats = clusterer.network_stats();
615 assert_eq!(stats.num_neurons, 5);
616 assert!(stats.num_synapses > 0);
617 assert_eq!(stats.num_spikes, 0); assert!(stats.average_weight.is_finite()); }
620}