scirs2_spatial/neuromorphic/algorithms/
memristive_learning.rs

1//! Advanced Memristive Learning for Neuromorphic Computing
2//!
3//! This module implements sophisticated memristive computing paradigms including
4//! crossbar arrays with multiple device types, advanced plasticity mechanisms,
5//! homeostatic regulation, metaplasticity, and neuromodulation for spatial learning.
6
7use crate::error::SpatialResult;
8use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2};
9use scirs2_core::random::Rng;
10use std::collections::VecDeque;
11
12/// Advanced memristive learning system with synaptic plasticity and homeostasis
13///
14/// This system implements a comprehensive memristive computing framework with
15/// multiple types of plasticity, homeostatic regulation, and neuromodulation.
16/// It supports various memristive device types and advanced learning dynamics.
17///
18/// # Features
19/// - Multiple memristive device types (TiO2, HfO2, Phase Change, etc.)
20/// - Advanced plasticity mechanisms (STDP, homeostatic scaling, etc.)
21/// - Homeostatic regulation for stable learning
22/// - Metaplasticity for learning-to-learn capabilities
23/// - Neuromodulation systems (dopamine, serotonin, etc.)
24/// - Memory consolidation and forgetting protection
25/// - Comprehensive learning history tracking
26///
27/// # Example
28/// ```rust
29/// use scirs2_core::ndarray::{Array1, Array2};
30/// use scirs2_spatial::neuromorphic::algorithms::AdvancedMemristiveLearning;
31/// use scirs2_spatial::neuromorphic::MemristiveDeviceType;
32///
33/// let mut learning_system = AdvancedMemristiveLearning::new(4, 2, MemristiveDeviceType::TitaniumDioxide)
34///     .with_forgetting_protection(true);
35///
36/// // Training data
37/// let spatial_data = Array2::from_shape_vec((4, 4), vec![
38///     0.0, 0.0, 1.0, 1.0,
39///     1.0, 0.0, 0.0, 1.0,
40///     0.0, 1.0, 1.0, 0.0,
41///     1.0, 1.0, 0.0, 0.0
42/// ]).unwrap();
43/// let targets = Array1::from_vec(vec![0.0, 1.0, 1.0, 0.0]);
44///
45/// // Train the system
46/// # tokio_test::block_on(async {
47/// let result = learning_system.train_spatial_data(&spatial_data.view(), &targets.view(), 50).await.unwrap();
48/// println!("Final accuracy: {:.2}", result.training_metrics.last().unwrap().accuracy);
49/// # });
50/// ```
51#[derive(Debug, Clone)]
52pub struct AdvancedMemristiveLearning {
53    /// Memristive crossbar array
54    crossbar_array: MemristiveCrossbar,
55    /// Synaptic plasticity mechanisms
56    plasticity_mechanisms: Vec<PlasticityMechanism>,
57    /// Homeostatic regulation system
58    homeostatic_system: HomeostaticSystem,
59    /// Metaplasticity rules
60    metaplasticity: MetaplasticityRules,
61    /// Neuromodulation system
62    neuromodulation: NeuromodulationSystem,
63    /// Learning history
64    learning_history: LearningHistory,
65    /// Enable online learning
66    #[allow(dead_code)]
67    online_learning: bool,
68    /// Enable catastrophic forgetting protection
69    forgetting_protection: bool,
70}
71
72/// Memristive crossbar array with advanced properties
73///
74/// Represents a physical memristive crossbar array with realistic device
75/// characteristics including conductance, resistance, switching dynamics,
76/// and aging effects.
77#[derive(Debug, Clone)]
78pub struct MemristiveCrossbar {
79    /// Device conductances
80    pub conductances: Array2<f64>,
81    /// Device resistances
82    pub resistances: Array2<f64>,
83    /// Switching thresholds
84    pub switching_thresholds: Array2<f64>,
85    /// Retention times
86    pub retention_times: Array2<f64>,
87    /// Endurance cycles
88    pub endurance_cycles: Array2<usize>,
89    /// Programming voltages
90    pub programming_voltages: Array2<f64>,
91    /// Temperature effects
92    pub temperature_coefficients: Array2<f64>,
93    /// Device variability
94    pub device_variability: Array2<f64>,
95    /// Crossbar dimensions
96    pub dimensions: (usize, usize),
97    /// Device type
98    pub device_type: MemristiveDeviceType,
99}
100
101/// Types of memristive devices
102///
103/// Different memristive technologies have distinct switching characteristics,
104/// speed, endurance, and non-linearity properties that affect learning dynamics.
105#[derive(Debug, Clone)]
106pub enum MemristiveDeviceType {
107    /// Titanium dioxide (TiO2) - Classic memristor with exponential switching
108    TitaniumDioxide,
109    /// Hafnium oxide (HfO2) - High endurance with steep switching
110    HafniumOxide,
111    /// Tantalum oxide (Ta2O5) - Moderate switching characteristics
112    TantalumOxide,
113    /// Silver sulfide (Ag2S) - Fast switching, lower endurance
114    SilverSulfide,
115    /// Organic memristor - Biocompatible, variable characteristics
116    Organic,
117    /// Phase change memory - Binary switching with high contrast
118    PhaseChange,
119    /// Magnetic tunnel junction - Non-volatile, spin-based switching
120    MagneticTunnelJunction,
121}
122
123/// Synaptic plasticity mechanisms
124///
125/// Encapsulates different types of synaptic plasticity with their
126/// associated parameters and learning dynamics.
127#[derive(Debug, Clone)]
128pub struct PlasticityMechanism {
129    /// Mechanism type
130    pub mechanism_type: PlasticityType,
131    /// Time constants
132    pub time_constants: PlasticityTimeConstants,
133    /// Learning rates
134    pub learning_rates: PlasticityLearningRates,
135    /// Threshold parameters
136    pub thresholds: PlasticityThresholds,
137    /// Enable state
138    pub enabled: bool,
139    /// Weight scaling factors
140    pub weight_scaling: f64,
141}
142
143/// Types of synaptic plasticity
144///
145/// Different plasticity mechanisms that can be enabled individually
146/// or in combination for complex learning dynamics.
147#[derive(Debug, Clone)]
148pub enum PlasticityType {
149    /// Spike-timing dependent plasticity
150    STDP,
151    /// Homeostatic synaptic scaling
152    HomeostaticScaling,
153    /// Intrinsic plasticity
154    IntrinsicPlasticity,
155    /// Heterosynaptic plasticity
156    HeterosynapticPlasticity,
157    /// Metaplasticity
158    Metaplasticity,
159    /// Calcium-dependent plasticity
160    CalciumDependent,
161    /// Voltage-dependent plasticity
162    VoltageDependent,
163    /// Frequency-dependent plasticity
164    FrequencyDependent,
165}
166
167/// Time constants for plasticity mechanisms
168#[derive(Debug, Clone)]
169pub struct PlasticityTimeConstants {
170    /// Fast component time constant
171    pub tau_fast: f64,
172    /// Slow component time constant
173    pub tau_slow: f64,
174    /// STDP time window
175    pub stdp_window: f64,
176    /// Homeostatic time constant
177    pub tau_homeostatic: f64,
178    /// Calcium decay time
179    pub tau_calcium: f64,
180}
181
182/// Learning rates for different plasticity components
183#[derive(Debug, Clone)]
184pub struct PlasticityLearningRates {
185    /// Potentiation learning rate
186    pub potentiation_rate: f64,
187    /// Depression learning rate
188    pub depression_rate: f64,
189    /// Homeostatic learning rate
190    pub homeostatic_rate: f64,
191    /// Metaplastic learning rate
192    pub metaplastic_rate: f64,
193    /// Intrinsic plasticity rate
194    pub intrinsic_rate: f64,
195}
196
197/// Threshold parameters for plasticity
198#[derive(Debug, Clone)]
199pub struct PlasticityThresholds {
200    /// LTP threshold
201    pub ltp_threshold: f64,
202    /// LTD threshold
203    pub ltd_threshold: f64,
204    /// Homeostatic target activity
205    pub target_activity: f64,
206    /// Metaplasticity threshold
207    pub metaplasticity_threshold: f64,
208    /// Saturation threshold
209    pub saturation_threshold: f64,
210}
211
212/// Homeostatic regulation system
213///
214/// Maintains stable neural activity levels through multiple homeostatic
215/// mechanisms including synaptic scaling and intrinsic excitability adjustment.
216#[derive(Debug, Clone)]
217pub struct HomeostaticSystem {
218    /// Target firing rates
219    pub target_firing_rates: Array1<f64>,
220    /// Current firing rates
221    pub current_firing_rates: Array1<f64>,
222    /// Homeostatic time constants
223    pub time_constants: Array1<f64>,
224    /// Regulation mechanisms
225    pub mechanisms: Vec<HomeostaticMechanism>,
226    /// Adaptation rates
227    pub adaptation_rates: Array1<f64>,
228    /// Activity history
229    pub activity_history: VecDeque<Array1<f64>>,
230    /// History window size
231    pub history_window: usize,
232}
233
234/// Types of homeostatic mechanisms
235#[derive(Debug, Clone)]
236pub enum HomeostaticMechanism {
237    /// Synaptic scaling
238    SynapticScaling,
239    /// Intrinsic excitability adjustment
240    IntrinsicExcitability,
241    /// Structural plasticity
242    StructuralPlasticity,
243    /// Inhibitory plasticity
244    InhibitoryPlasticity,
245    /// Metaplastic regulation
246    MetaplasticRegulation,
247}
248
249/// Metaplasticity rules for learning-to-learn
250///
251/// Implements meta-learning capabilities where the learning process
252/// itself adapts based on experience and performance history.
253#[derive(Debug, Clone)]
254pub struct MetaplasticityRules {
255    /// Learning rate adaptation rules
256    pub learning_rate_adaptation: LearningRateAdaptation,
257    /// Threshold adaptation rules
258    pub threshold_adaptation: ThresholdAdaptation,
259    /// Memory consolidation rules
260    pub consolidation_rules: ConsolidationRules,
261    /// Forgetting protection rules
262    pub forgetting_protection: ForgettingProtectionRules,
263}
264
265/// Learning rate adaptation mechanisms
266#[derive(Debug, Clone)]
267pub struct LearningRateAdaptation {
268    /// Base learning rate
269    pub base_rate: f64,
270    /// Adaptation factor
271    pub adaptation_factor: f64,
272    /// Performance history
273    pub performance_history: VecDeque<f64>,
274    /// Adaptation threshold
275    pub adaptation_threshold: f64,
276    /// Maximum learning rate
277    pub max_rate: f64,
278    /// Minimum learning rate
279    pub min_rate: f64,
280}
281
282/// Threshold adaptation for dynamic learning
283#[derive(Debug, Clone)]
284pub struct ThresholdAdaptation {
285    /// Adaptive thresholds
286    pub adaptive_thresholds: Array1<f64>,
287    /// Threshold update rates
288    pub update_rates: Array1<f64>,
289    /// Target activation levels
290    pub target_activations: Array1<f64>,
291    /// Threshold bounds
292    pub threshold_bounds: Vec<(f64, f64)>,
293}
294
295/// Memory consolidation rules
296#[derive(Debug, Clone)]
297pub struct ConsolidationRules {
298    /// Consolidation time windows
299    pub time_windows: Vec<f64>,
300    /// Consolidation strengths
301    pub consolidation_strengths: Array1<f64>,
302    /// Replay mechanisms
303    pub replay_enabled: bool,
304    /// Replay patterns
305    pub replay_patterns: Vec<Array1<f64>>,
306    /// Systems consolidation
307    pub systems_consolidation: bool,
308}
309
310/// Forgetting protection mechanisms
311#[derive(Debug, Clone)]
312pub struct ForgettingProtectionRules {
313    /// Elastic weight consolidation
314    pub ewc_enabled: bool,
315    /// Fisher information matrix
316    pub fisher_information: Array2<f64>,
317    /// Synaptic intelligence
318    pub synaptic_intelligence: bool,
319    /// Importance weights
320    pub importance_weights: Array1<f64>,
321    /// Protection strength
322    pub protection_strength: f64,
323}
324
325/// Neuromodulation system for context-dependent learning
326///
327/// Models the effects of neuromodulators on learning and plasticity,
328/// enabling context-dependent adaptation of learning parameters.
329#[derive(Debug, Clone)]
330pub struct NeuromodulationSystem {
331    /// Dopamine levels
332    pub dopamine_levels: Array1<f64>,
333    /// Serotonin levels
334    pub serotonin_levels: Array1<f64>,
335    /// Acetylcholine levels
336    pub acetylcholine_levels: Array1<f64>,
337    /// Noradrenaline levels
338    pub noradrenaline_levels: Array1<f64>,
339    /// Modulation effects
340    pub modulation_effects: NeuromodulationEffects,
341    /// Release patterns
342    pub release_patterns: NeuromodulatorReleasePatterns,
343}
344
345/// Effects of neuromodulation on plasticity
346#[derive(Debug, Clone)]
347pub struct NeuromodulationEffects {
348    /// Effect on learning rate
349    pub learning_rate_modulation: Array1<f64>,
350    /// Effect on thresholds
351    pub threshold_modulation: Array1<f64>,
352    /// Effect on excitability
353    pub excitability_modulation: Array1<f64>,
354    /// Effect on attention
355    pub attention_modulation: Array1<f64>,
356}
357
358/// Neuromodulator release patterns
359#[derive(Debug, Clone)]
360pub struct NeuromodulatorReleasePatterns {
361    /// Phasic dopamine release
362    pub phasic_dopamine: Vec<(f64, f64)>, // (time, amplitude)
363    /// Tonic serotonin level
364    pub tonic_serotonin: f64,
365    /// Cholinergic attention signals
366    pub cholinergic_attention: Array1<f64>,
367    /// Stress-related noradrenaline
368    pub stress_noradrenaline: f64,
369}
370
371/// Learning history tracking
372///
373/// Comprehensive tracking of learning progress, weight changes,
374/// and important events during training.
375#[derive(Debug, Clone)]
376pub struct LearningHistory {
377    /// Weight change history
378    pub weight_changes: VecDeque<Array2<f64>>,
379    /// Performance metrics
380    pub performance_metrics: VecDeque<PerformanceMetrics>,
381    /// Plasticity events
382    pub plasticity_events: VecDeque<PlasticityEvent>,
383    /// Consolidation events
384    pub consolidation_events: VecDeque<ConsolidationEvent>,
385    /// Maximum history length
386    pub max_history_length: usize,
387}
388
389/// Performance metrics for learning assessment
390#[derive(Debug, Clone)]
391pub struct PerformanceMetrics {
392    /// Accuracy
393    pub accuracy: f64,
394    /// Learning speed
395    pub learning_speed: f64,
396    /// Stability
397    pub stability: f64,
398    /// Generalization
399    pub generalization: f64,
400    /// Timestamp
401    pub timestamp: f64,
402}
403
404/// Plasticity event recording
405#[derive(Debug, Clone)]
406pub struct PlasticityEvent {
407    /// Event type
408    pub event_type: PlasticityEventType,
409    /// Synapses involved
410    pub synapses: Vec<(usize, usize)>,
411    /// Magnitude of change
412    pub magnitude: f64,
413    /// Timestamp
414    pub timestamp: f64,
415    /// Context information
416    pub context: String,
417}
418
419/// Types of plasticity events
420#[derive(Debug, Clone)]
421pub enum PlasticityEventType {
422    LongTermPotentiation,
423    LongTermDepression,
424    HomeostaticScaling,
425    StructuralPlasticity,
426    MetaplasticChange,
427}
428
429/// Memory consolidation event
430#[derive(Debug, Clone)]
431pub struct ConsolidationEvent {
432    /// Consolidation type
433    pub consolidation_type: ConsolidationType,
434    /// Memory patterns consolidated
435    pub patterns: Vec<Array1<f64>>,
436    /// Consolidation strength
437    pub strength: f64,
438    /// Timestamp
439    pub timestamp: f64,
440}
441
442/// Types of memory consolidation
443#[derive(Debug, Clone)]
444pub enum ConsolidationType {
445    SynapticConsolidation,
446    SystemsConsolidation,
447    ReconsolidationUpdate,
448    OfflineReplay,
449}
450
451/// Training result structure
452#[derive(Debug, Clone)]
453pub struct TrainingResult {
454    /// Final weight matrix
455    pub final_weights: Array2<f64>,
456    /// Training metrics over time
457    pub training_metrics: Vec<PerformanceMetrics>,
458    /// Recorded plasticity events
459    pub plasticity_events: VecDeque<PlasticityEvent>,
460    /// Recorded consolidation events
461    pub consolidation_events: VecDeque<ConsolidationEvent>,
462}
463
464impl AdvancedMemristiveLearning {
465    /// Create new advanced memristive learning system
466    ///
467    /// # Arguments
468    /// * `rows` - Number of rows in crossbar array
469    /// * `cols` - Number of columns in crossbar array
470    /// * `device_type` - Type of memristive device to simulate
471    ///
472    /// # Returns
473    /// A new `AdvancedMemristiveLearning` system with default parameters
474    pub fn new(rows: usize, cols: usize, device_type: MemristiveDeviceType) -> Self {
475        let crossbar_array = MemristiveCrossbar::new(rows, cols, device_type);
476
477        let plasticity_mechanisms = vec![
478            PlasticityMechanism::new(PlasticityType::STDP),
479            PlasticityMechanism::new(PlasticityType::HomeostaticScaling),
480            PlasticityMechanism::new(PlasticityType::IntrinsicPlasticity),
481        ];
482
483        let homeostatic_system = HomeostaticSystem::new(rows);
484        let metaplasticity = MetaplasticityRules::new();
485        let neuromodulation = NeuromodulationSystem::new(rows);
486        let learning_history = LearningHistory::new();
487
488        Self {
489            crossbar_array,
490            plasticity_mechanisms,
491            homeostatic_system,
492            metaplasticity,
493            neuromodulation,
494            learning_history,
495            online_learning: true,
496            forgetting_protection: true,
497        }
498    }
499
500    /// Enable specific plasticity mechanism
501    ///
502    /// # Arguments
503    /// * `plasticity_type` - Type of plasticity to enable
504    pub fn enable_plasticity(mut self, plasticity_type: PlasticityType) -> Self {
505        for mechanism in &mut self.plasticity_mechanisms {
506            if std::mem::discriminant(&mechanism.mechanism_type)
507                == std::mem::discriminant(&plasticity_type)
508            {
509                mechanism.enabled = true;
510            }
511        }
512        self
513    }
514
515    /// Configure homeostatic regulation
516    ///
517    /// # Arguments
518    /// * `target_rates` - Target firing rates for each neuron
519    pub fn with_homeostatic_regulation(mut self, target_rates: Array1<f64>) -> Self {
520        self.homeostatic_system.target_firing_rates = target_rates;
521        self
522    }
523
524    /// Enable catastrophic forgetting protection
525    ///
526    /// # Arguments
527    /// * `enabled` - Whether to enable forgetting protection mechanisms
528    pub fn with_forgetting_protection(mut self, enabled: bool) -> Self {
529        self.forgetting_protection = enabled;
530        self.metaplasticity.forgetting_protection.ewc_enabled = enabled;
531        self
532    }
533
534    /// Train on spatial data with advanced plasticity
535    ///
536    /// Performs training using all enabled plasticity mechanisms,
537    /// homeostatic regulation, and neuromodulation.
538    ///
539    /// # Arguments
540    /// * `spatial_data` - Input spatial data (n_samples × n_features)
541    /// * `target_outputs` - Target outputs for each sample
542    /// * `epochs` - Number of training epochs
543    ///
544    /// # Returns
545    /// Training results including final weights and learning history
546    pub async fn train_spatial_data(
547        &mut self,
548        spatial_data: &ArrayView2<'_, f64>,
549        target_outputs: &ArrayView1<'_, f64>,
550        epochs: usize,
551    ) -> SpatialResult<TrainingResult> {
552        let mut training_metrics = Vec::new();
553
554        for epoch in 0..epochs {
555            // Process each spatial pattern
556            let epoch_metrics = self.process_epoch(spatial_data, target_outputs).await?;
557
558            // Apply homeostatic regulation
559            self.apply_homeostatic_regulation().await?;
560
561            // Apply metaplasticity updates
562            self.apply_metaplasticity_updates(&epoch_metrics).await?;
563
564            // Update neuromodulation
565            self.update_neuromodulation(&epoch_metrics).await?;
566
567            // Record learning history
568            self.record_learning_history(&epoch_metrics, epoch as f64)
569                .await?;
570
571            training_metrics.push(epoch_metrics);
572
573            // Check for consolidation triggers
574            if self.should_trigger_consolidation(epoch) {
575                self.trigger_memory_consolidation().await?;
576            }
577        }
578
579        let final_weights = self.crossbar_array.conductances.clone();
580
581        Ok(TrainingResult {
582            final_weights,
583            training_metrics,
584            plasticity_events: self.learning_history.plasticity_events.clone(),
585            consolidation_events: self.learning_history.consolidation_events.clone(),
586        })
587    }
588
589    /// Process single training epoch
590    async fn process_epoch(
591        &mut self,
592        spatial_data: &ArrayView2<'_, f64>,
593        target_outputs: &ArrayView1<'_, f64>,
594    ) -> SpatialResult<PerformanceMetrics> {
595        let n_samples = spatial_data.dim().0;
596        let mut total_error = 0.0;
597        let mut correct_predictions = 0;
598
599        for i in 0..n_samples {
600            let input = spatial_data.row(i);
601            let target = target_outputs[i];
602
603            // Forward pass through memristive crossbar
604            let output = self.forward_pass(&input).await?;
605
606            // Compute error
607            let error = target - output;
608            total_error += error.abs();
609
610            if error.abs() < 0.1 {
611                correct_predictions += 1;
612            }
613
614            // Apply plasticity mechanisms
615            self.apply_plasticity_mechanisms(&input, output, target, error)
616                .await?;
617
618            // Update device characteristics
619            self.update_memristive_devices(&input, error).await?;
620        }
621
622        let accuracy = correct_predictions as f64 / n_samples as f64;
623        let average_error = total_error / n_samples as f64;
624
625        Ok(PerformanceMetrics {
626            accuracy,
627            learning_speed: 1.0 / (average_error + 1e-8),
628            stability: self.compute_weight_stability(),
629            generalization: self.estimate_generalization(),
630            timestamp: std::time::SystemTime::now()
631                .duration_since(std::time::UNIX_EPOCH)
632                .unwrap()
633                .as_secs_f64(),
634        })
635    }
636
637    /// Forward pass through memristive crossbar
638    async fn forward_pass(&self, input: &ArrayView1<'_, f64>) -> SpatialResult<f64> {
639        let mut output = 0.0;
640
641        for (i, &input_val) in input.iter().enumerate() {
642            if i < self.crossbar_array.dimensions.0 {
643                for j in 0..self.crossbar_array.dimensions.1 {
644                    let conductance = self.crossbar_array.conductances[[i, j]];
645                    let current = input_val * conductance;
646
647                    // Apply device non-linearity
648                    let nonlinear_current = self.apply_device_nonlinearity(current, i, j);
649
650                    output += nonlinear_current;
651                }
652            }
653        }
654
655        // Apply activation function
656        Ok(Self::sigmoid(output))
657    }
658
659    /// Apply device-specific non-linearity
660    fn apply_device_nonlinearity(&self, current: f64, row: usize, col: usize) -> f64 {
661        match self.crossbar_array.device_type {
662            MemristiveDeviceType::TitaniumDioxide => {
663                // TiO2 exponential switching
664                let threshold = self.crossbar_array.switching_thresholds[[row, col]];
665                if current.abs() > threshold {
666                    current * (1.0 + 0.1 * (current / threshold).ln())
667                } else {
668                    current
669                }
670            }
671            MemristiveDeviceType::HafniumOxide => {
672                // HfO2 with steep switching
673                let threshold = self.crossbar_array.switching_thresholds[[row, col]];
674                current * (1.0 + 0.2 * (current / threshold).tanh())
675            }
676            MemristiveDeviceType::PhaseChange => {
677                // Phase change memory with threshold switching
678                let threshold = self.crossbar_array.switching_thresholds[[row, col]];
679                if current.abs() > threshold {
680                    current * 2.0
681                } else {
682                    current * 0.1
683                }
684            }
685            _ => current, // Linear for other types
686        }
687    }
688
689    /// Apply all enabled plasticity mechanisms
690    async fn apply_plasticity_mechanisms(
691        &mut self,
692        input: &ArrayView1<'_, f64>,
693        output: f64,
694        target: f64,
695        error: f64,
696    ) -> SpatialResult<()> {
697        let mechanisms = self.plasticity_mechanisms.clone();
698        for mechanism in &mechanisms {
699            if mechanism.enabled {
700                match mechanism.mechanism_type {
701                    PlasticityType::STDP => {
702                        self.apply_stdp_plasticity(input, output, mechanism).await?;
703                    }
704                    PlasticityType::HomeostaticScaling => {
705                        self.apply_homeostatic_scaling(input, output, mechanism)
706                            .await?;
707                    }
708                    PlasticityType::CalciumDependent => {
709                        self.apply_calcium_dependent_plasticity(input, output, target, mechanism)
710                            .await?;
711                    }
712                    PlasticityType::VoltageDependent => {
713                        self.apply_voltage_dependent_plasticity(input, error, mechanism)
714                            .await?;
715                    }
716                    _ => {
717                        // Default plasticity rule
718                        self.apply_error_based_plasticity(input, error, mechanism)
719                            .await?;
720                    }
721                }
722            }
723        }
724
725        Ok(())
726    }
727
728    /// Apply STDP plasticity with advanced timing rules
729    async fn apply_stdp_plasticity(
730        &mut self,
731        input: &ArrayView1<'_, f64>,
732        output: f64,
733        mechanism: &PlasticityMechanism,
734    ) -> SpatialResult<()> {
735        let tau_plus = mechanism.time_constants.tau_fast;
736        let tau_minus = mechanism.time_constants.tau_slow;
737        let a_plus = mechanism.learning_rates.potentiation_rate;
738        let a_minus = mechanism.learning_rates.depression_rate;
739
740        // Simplified STDP implementation
741        for (i, &input_val) in input.iter().enumerate() {
742            if i < self.crossbar_array.dimensions.0 {
743                for j in 0..self.crossbar_array.dimensions.1 {
744                    // Compute timing difference (simplified)
745                    let dt = if input_val > 0.5 && output > 0.5 {
746                        1.0 // Pre before post
747                    } else if input_val <= 0.5 && output > 0.5 {
748                        -1.0 // Post before pre
749                    } else {
750                        0.0 // No timing relationship
751                    };
752
753                    let weight_change = if dt > 0.0 {
754                        a_plus * (-dt / tau_plus).exp()
755                    } else if dt < 0.0 {
756                        -a_minus * (dt / tau_minus).exp()
757                    } else {
758                        0.0
759                    };
760
761                    self.crossbar_array.conductances[[i, j]] +=
762                        weight_change * mechanism.weight_scaling;
763                    self.crossbar_array.conductances[[i, j]] =
764                        self.crossbar_array.conductances[[i, j]].clamp(0.0, 1.0);
765                }
766            }
767        }
768
769        Ok(())
770    }
771
772    /// Apply homeostatic scaling
773    async fn apply_homeostatic_scaling(
774        &mut self,
775        _input: &ArrayView1<'_, f64>,
776        output: f64,
777        mechanism: &PlasticityMechanism,
778    ) -> SpatialResult<()> {
779        let target_activity = mechanism.thresholds.target_activity;
780        let scaling_rate = mechanism.learning_rates.homeostatic_rate;
781
782        // Global scaling based on overall activity
783        let activity_error = output - target_activity;
784        let scaling_factor = 1.0 - scaling_rate * activity_error;
785
786        // Apply scaling to all weights
787        for i in 0..self.crossbar_array.dimensions.0 {
788            for j in 0..self.crossbar_array.dimensions.1 {
789                self.crossbar_array.conductances[[i, j]] *= scaling_factor;
790                self.crossbar_array.conductances[[i, j]] =
791                    self.crossbar_array.conductances[[i, j]].clamp(0.0, 1.0);
792            }
793        }
794
795        Ok(())
796    }
797
798    /// Apply calcium-dependent plasticity
799    async fn apply_calcium_dependent_plasticity(
800        &mut self,
801        input: &ArrayView1<'_, f64>,
802        output: f64,
803        target: f64,
804        mechanism: &PlasticityMechanism,
805    ) -> SpatialResult<()> {
806        // Simulate calcium dynamics
807        let calcium_level = Self::compute_calcium_level(input, output, target);
808
809        let ltp_threshold = mechanism.thresholds.ltp_threshold;
810        let ltd_threshold = mechanism.thresholds.ltd_threshold;
811
812        for (i, &input_val) in input.iter().enumerate() {
813            if i < self.crossbar_array.dimensions.0 {
814                for j in 0..self.crossbar_array.dimensions.1 {
815                    let local_calcium = calcium_level * input_val;
816
817                    let weight_change = if local_calcium > ltp_threshold {
818                        mechanism.learning_rates.potentiation_rate * (local_calcium - ltp_threshold)
819                    } else if local_calcium < ltd_threshold {
820                        -mechanism.learning_rates.depression_rate * (ltd_threshold - local_calcium)
821                    } else {
822                        0.0
823                    };
824
825                    self.crossbar_array.conductances[[i, j]] += weight_change;
826                    self.crossbar_array.conductances[[i, j]] =
827                        self.crossbar_array.conductances[[i, j]].clamp(0.0, 1.0);
828                }
829            }
830        }
831
832        Ok(())
833    }
834
835    /// Apply voltage-dependent plasticity
836    async fn apply_voltage_dependent_plasticity(
837        &mut self,
838        input: &ArrayView1<'_, f64>,
839        error: f64,
840        mechanism: &PlasticityMechanism,
841    ) -> SpatialResult<()> {
842        let voltage_threshold = mechanism.thresholds.ltd_threshold;
843
844        for (i, &input_val) in input.iter().enumerate() {
845            if i < self.crossbar_array.dimensions.0 {
846                for j in 0..self.crossbar_array.dimensions.1 {
847                    let local_voltage = input_val * error.abs();
848
849                    if local_voltage > voltage_threshold {
850                        let weight_change = mechanism.learning_rates.potentiation_rate
851                            * (local_voltage - voltage_threshold)
852                            * error.signum();
853
854                        self.crossbar_array.conductances[[i, j]] += weight_change;
855                        self.crossbar_array.conductances[[i, j]] =
856                            self.crossbar_array.conductances[[i, j]].clamp(0.0, 1.0);
857                    }
858                }
859            }
860        }
861
862        Ok(())
863    }
864
865    /// Apply error-based plasticity (default)
866    async fn apply_error_based_plasticity(
867        &mut self,
868        input: &ArrayView1<'_, f64>,
869        error: f64,
870        mechanism: &PlasticityMechanism,
871    ) -> SpatialResult<()> {
872        let learning_rate = mechanism.learning_rates.potentiation_rate;
873
874        for (i, &input_val) in input.iter().enumerate() {
875            if i < self.crossbar_array.dimensions.0 {
876                for j in 0..self.crossbar_array.dimensions.1 {
877                    let weight_change = learning_rate * error * input_val;
878
879                    self.crossbar_array.conductances[[i, j]] += weight_change;
880                    self.crossbar_array.conductances[[i, j]] =
881                        self.crossbar_array.conductances[[i, j]].clamp(0.0, 1.0);
882                }
883            }
884        }
885
886        Ok(())
887    }
888
889    /// Compute calcium level for calcium-dependent plasticity
890    fn compute_calcium_level(input: &ArrayView1<'_, f64>, output: f64, target: f64) -> f64 {
891        let input_activity = input.iter().map(|&x| x.max(0.0)).sum::<f64>();
892        let output_activity = output.max(0.0);
893        let target_activity = target.max(0.0);
894
895        // Simplified calcium dynamics
896        (input_activity * 0.3 + output_activity * 0.4 + target_activity * 0.3).min(1.0)
897    }
898
899    /// Update memristive device characteristics
900    async fn update_memristive_devices(
901        &mut self,
902        input: &ArrayView1<'_, f64>,
903        _error: f64,
904    ) -> SpatialResult<()> {
905        for (i, &input_val) in input.iter().enumerate() {
906            if i < self.crossbar_array.dimensions.0 {
907                for j in 0..self.crossbar_array.dimensions.1 {
908                    // Update resistance based on conductance
909                    let conductance = self.crossbar_array.conductances[[i, j]];
910                    self.crossbar_array.resistances[[i, j]] = if conductance > 1e-12 {
911                        1.0 / conductance
912                    } else {
913                        1e12
914                    };
915
916                    // Update endurance cycles
917                    if input_val > 0.1 {
918                        self.crossbar_array.endurance_cycles[[i, j]] += 1;
919                    }
920
921                    // Apply device aging effects
922                    self.apply_device_aging(i, j);
923
924                    // Apply variability
925                    self.apply_device_variability(i, j);
926                }
927            }
928        }
929
930        Ok(())
931    }
932
933    /// Apply device aging effects
934    fn apply_device_aging(&mut self, row: usize, col: usize) {
935        let cycles = self.crossbar_array.endurance_cycles[[row, col]];
936        let aging_factor = 1.0 - (cycles as f64) * 1e-8; // Small aging effect
937
938        self.crossbar_array.conductances[[row, col]] *= aging_factor.max(0.1);
939    }
940
941    /// Apply device-to-device variability
942    fn apply_device_variability(&mut self, row: usize, col: usize) {
943        let variability = self.crossbar_array.device_variability[[row, col]];
944        let mut rng = scirs2_core::random::rng();
945        let noise = (rng.gen_range(0.0..1.0) - 0.5) * variability;
946
947        self.crossbar_array.conductances[[row, col]] += noise;
948        self.crossbar_array.conductances[[row, col]] =
949            self.crossbar_array.conductances[[row, col]].clamp(0.0, 1.0);
950    }
951
952    /// Apply homeostatic regulation
953    async fn apply_homeostatic_regulation(&mut self) -> SpatialResult<()> {
954        // Update firing rate history
955        let current_rates = self.compute_current_firing_rates();
956        self.homeostatic_system
957            .activity_history
958            .push_back(current_rates);
959
960        // Maintain history window
961        if self.homeostatic_system.activity_history.len() > self.homeostatic_system.history_window {
962            self.homeostatic_system.activity_history.pop_front();
963        }
964
965        // Apply homeostatic mechanisms
966        self.apply_synaptic_scaling().await?;
967        self.apply_intrinsic_excitability_adjustment().await?;
968
969        Ok(())
970    }
971
972    /// Compute current firing rates
973    fn compute_current_firing_rates(&self) -> Array1<f64> {
974        // Simplified firing rate computation based on conductance sums
975        let mut rates = Array1::zeros(self.crossbar_array.dimensions.1);
976
977        for j in 0..self.crossbar_array.dimensions.1 {
978            let total_conductance: f64 = (0..self.crossbar_array.dimensions.0)
979                .map(|i| self.crossbar_array.conductances[[i, j]])
980                .sum();
981            rates[j] = Self::sigmoid(total_conductance);
982        }
983
984        rates
985    }
986
987    /// Apply synaptic scaling homeostasis
988    async fn apply_synaptic_scaling(&mut self) -> SpatialResult<()> {
989        let current_rates = self.compute_current_firing_rates();
990
991        for j in 0..self.crossbar_array.dimensions.1 {
992            let target_rate = self.homeostatic_system.target_firing_rates[j];
993            let current_rate = current_rates[j];
994            let adaptation_rate = self.homeostatic_system.adaptation_rates[j];
995
996            let scaling_factor = 1.0 + adaptation_rate * (target_rate - current_rate);
997
998            // Apply scaling to all incoming synapses
999            for i in 0..self.crossbar_array.dimensions.0 {
1000                self.crossbar_array.conductances[[i, j]] *= scaling_factor;
1001                self.crossbar_array.conductances[[i, j]] =
1002                    self.crossbar_array.conductances[[i, j]].clamp(0.0, 1.0);
1003            }
1004        }
1005
1006        Ok(())
1007    }
1008
1009    /// Apply intrinsic excitability adjustment
1010    async fn apply_intrinsic_excitability_adjustment(&mut self) -> SpatialResult<()> {
1011        // Adjust switching thresholds based on activity
1012        let current_rates = self.compute_current_firing_rates();
1013
1014        for j in 0..self.crossbar_array.dimensions.1 {
1015            let target_rate = self.homeostatic_system.target_firing_rates[j];
1016            let current_rate = current_rates[j];
1017            let adaptation_rate = self.homeostatic_system.adaptation_rates[j];
1018
1019            let threshold_adjustment = adaptation_rate * (current_rate - target_rate);
1020
1021            for i in 0..self.crossbar_array.dimensions.0 {
1022                self.crossbar_array.switching_thresholds[[i, j]] += threshold_adjustment;
1023                self.crossbar_array.switching_thresholds[[i, j]] =
1024                    self.crossbar_array.switching_thresholds[[i, j]].clamp(0.1, 2.0);
1025            }
1026        }
1027
1028        Ok(())
1029    }
1030
1031    /// Apply metaplasticity updates
1032    async fn apply_metaplasticity_updates(
1033        &mut self,
1034        metrics: &PerformanceMetrics,
1035    ) -> SpatialResult<()> {
1036        // Update learning rate adaptation
1037        self.metaplasticity
1038            .learning_rate_adaptation
1039            .performance_history
1040            .push_back(metrics.accuracy);
1041
1042        if self
1043            .metaplasticity
1044            .learning_rate_adaptation
1045            .performance_history
1046            .len()
1047            > 100
1048        {
1049            self.metaplasticity
1050                .learning_rate_adaptation
1051                .performance_history
1052                .pop_front();
1053        }
1054
1055        // Adapt learning rates based on performance
1056        self.adapt_learning_rates(metrics).await?;
1057
1058        // Update thresholds
1059        self.adapt_thresholds(metrics).await?;
1060
1061        // Apply consolidation if needed
1062        if metrics.accuracy > 0.9 {
1063            self.trigger_memory_consolidation().await?;
1064        }
1065
1066        Ok(())
1067    }
1068
1069    /// Adapt learning rates based on performance
1070    async fn adapt_learning_rates(&mut self, _metrics: &PerformanceMetrics) -> SpatialResult<()> {
1071        let performance_trend = self.compute_performance_trend();
1072
1073        for mechanism in &mut self.plasticity_mechanisms {
1074            if performance_trend > 0.0 {
1075                // Performance improving, maintain or slightly increase learning rate
1076                mechanism.learning_rates.potentiation_rate *= 1.01;
1077                mechanism.learning_rates.depression_rate *= 1.01;
1078            } else {
1079                // Performance declining, reduce learning rate
1080                mechanism.learning_rates.potentiation_rate *= 0.99;
1081                mechanism.learning_rates.depression_rate *= 0.99;
1082            }
1083
1084            // Clamp learning rates
1085            mechanism.learning_rates.potentiation_rate =
1086                mechanism.learning_rates.potentiation_rate.clamp(1e-6, 0.1);
1087            mechanism.learning_rates.depression_rate =
1088                mechanism.learning_rates.depression_rate.clamp(1e-6, 0.1);
1089        }
1090
1091        Ok(())
1092    }
1093
1094    /// Compute performance trend
1095    fn compute_performance_trend(&self) -> f64 {
1096        let history = &self
1097            .metaplasticity
1098            .learning_rate_adaptation
1099            .performance_history;
1100
1101        if history.len() < 10 {
1102            return 0.0;
1103        }
1104
1105        let recent_performance: f64 = history.iter().rev().take(5).sum::<f64>() / 5.0;
1106        let older_performance: f64 = history.iter().rev().skip(5).take(5).sum::<f64>() / 5.0;
1107
1108        recent_performance - older_performance
1109    }
1110
1111    /// Adapt thresholds based on performance
1112    async fn adapt_thresholds(&mut self, metrics: &PerformanceMetrics) -> SpatialResult<()> {
1113        // Adjust plasticity thresholds based on learning progress
1114        for mechanism in &mut self.plasticity_mechanisms {
1115            if metrics.learning_speed > 1.0 {
1116                // Fast learning, can afford higher thresholds
1117                mechanism.thresholds.ltp_threshold *= 1.001;
1118                mechanism.thresholds.ltd_threshold *= 1.001;
1119            } else {
1120                // Slow learning, lower thresholds to increase plasticity
1121                mechanism.thresholds.ltp_threshold *= 0.999;
1122                mechanism.thresholds.ltd_threshold *= 0.999;
1123            }
1124
1125            // Clamp thresholds
1126            mechanism.thresholds.ltp_threshold = mechanism.thresholds.ltp_threshold.clamp(0.1, 2.0);
1127            mechanism.thresholds.ltd_threshold = mechanism.thresholds.ltd_threshold.clamp(0.1, 2.0);
1128        }
1129
1130        Ok(())
1131    }
1132
1133    /// Update neuromodulation system
1134    async fn update_neuromodulation(&mut self, metrics: &PerformanceMetrics) -> SpatialResult<()> {
1135        // Update dopamine based on performance
1136        let performance_change = metrics.accuracy - 0.5; // Baseline accuracy
1137        self.neuromodulation
1138            .dopamine_levels
1139            .mapv_inplace(|x| x + 0.1 * performance_change);
1140
1141        // Update serotonin based on stability
1142        let stability_change = metrics.stability - 0.5;
1143        self.neuromodulation
1144            .serotonin_levels
1145            .mapv_inplace(|x| x + 0.05 * stability_change);
1146
1147        // Clamp neurotransmitter levels
1148        self.neuromodulation
1149            .dopamine_levels
1150            .mapv_inplace(|x| x.clamp(0.0, 1.0));
1151        self.neuromodulation
1152            .serotonin_levels
1153            .mapv_inplace(|x| x.clamp(0.0, 1.0));
1154
1155        Ok(())
1156    }
1157
1158    /// Record learning history
1159    async fn record_learning_history(
1160        &mut self,
1161        metrics: &PerformanceMetrics,
1162        _timestamp: f64,
1163    ) -> SpatialResult<()> {
1164        // Record performance metrics
1165        self.learning_history
1166            .performance_metrics
1167            .push_back(metrics.clone());
1168
1169        // Record weight changes
1170        self.learning_history
1171            .weight_changes
1172            .push_back(self.crossbar_array.conductances.clone());
1173
1174        // Maintain history size
1175        if self.learning_history.performance_metrics.len()
1176            > self.learning_history.max_history_length
1177        {
1178            self.learning_history.performance_metrics.pop_front();
1179            self.learning_history.weight_changes.pop_front();
1180        }
1181
1182        Ok(())
1183    }
1184
1185    /// Check if memory consolidation should be triggered
1186    fn should_trigger_consolidation(&self, epoch: usize) -> bool {
1187        // Trigger consolidation every 100 epochs or when performance is high
1188        epoch.is_multiple_of(100)
1189            || self
1190                .learning_history
1191                .performance_metrics
1192                .back()
1193                .map(|m| m.accuracy > 0.95)
1194                .unwrap_or(false)
1195    }
1196
1197    /// Trigger memory consolidation
1198    async fn trigger_memory_consolidation(&mut self) -> SpatialResult<()> {
1199        // Systems consolidation: strengthen important connections
1200        self.strengthen_important_connections().await?;
1201
1202        // Record consolidation event
1203        let consolidation_event = ConsolidationEvent {
1204            consolidation_type: ConsolidationType::SynapticConsolidation,
1205            patterns: vec![], // Would store relevant patterns
1206            strength: 1.0,
1207            timestamp: std::time::SystemTime::now()
1208                .duration_since(std::time::UNIX_EPOCH)
1209                .unwrap()
1210                .as_secs_f64(),
1211        };
1212
1213        self.learning_history
1214            .consolidation_events
1215            .push_back(consolidation_event);
1216
1217        Ok(())
1218    }
1219
1220    /// Strengthen important connections during consolidation
1221    async fn strengthen_important_connections(&mut self) -> SpatialResult<()> {
1222        // Calculate connection importance based on usage and performance contribution
1223        let mut importance_matrix = Array2::zeros(self.crossbar_array.dimensions);
1224
1225        for i in 0..self.crossbar_array.dimensions.0 {
1226            for j in 0..self.crossbar_array.dimensions.1 {
1227                let conductance = self.crossbar_array.conductances[[i, j]];
1228                let usage = self.crossbar_array.endurance_cycles[[i, j]] as f64;
1229
1230                // Importance based on conductance and usage
1231                importance_matrix[[i, j]] = conductance * (1.0 + 0.1 * usage.ln_1p());
1232            }
1233        }
1234
1235        // Strengthen top 20% most important connections
1236        let threshold = self.compute_importance_threshold(&importance_matrix, 0.8);
1237
1238        for i in 0..self.crossbar_array.dimensions.0 {
1239            for j in 0..self.crossbar_array.dimensions.1 {
1240                if importance_matrix[[i, j]] > threshold {
1241                    self.crossbar_array.conductances[[i, j]] *= 1.05; // 5% strengthening
1242                    self.crossbar_array.conductances[[i, j]] =
1243                        self.crossbar_array.conductances[[i, j]].min(1.0);
1244                }
1245            }
1246        }
1247
1248        Ok(())
1249    }
1250
1251    /// Compute importance threshold for top percentage
1252    fn compute_importance_threshold(
1253        &self,
1254        importance_matrix: &Array2<f64>,
1255        percentile: f64,
1256    ) -> f64 {
1257        let mut values: Vec<f64> = importance_matrix.iter().cloned().collect();
1258        values.sort_by(|a, b| a.partial_cmp(b).unwrap());
1259
1260        let index = (values.len() as f64 * percentile) as usize;
1261        values.get(index).cloned().unwrap_or(0.0)
1262    }
1263
1264    /// Helper functions
1265    fn sigmoid(x: f64) -> f64 {
1266        1.0 / (1.0 + (-x).exp())
1267    }
1268
1269    fn compute_weight_stability(&self) -> f64 {
1270        // Simplified stability measure
1271        let weight_variance = self.crossbar_array.conductances.var(0.0);
1272        1.0 / (1.0 + weight_variance)
1273    }
1274
1275    fn estimate_generalization(&self) -> f64 {
1276        // Simplified generalization estimate
1277        0.8 // Placeholder
1278    }
1279
1280    /// Get crossbar dimensions
1281    pub fn crossbar_dimensions(&self) -> (usize, usize) {
1282        self.crossbar_array.dimensions
1283    }
1284
1285    /// Get device type
1286    pub fn device_type(&self) -> &MemristiveDeviceType {
1287        &self.crossbar_array.device_type
1288    }
1289
1290    /// Get current conductances
1291    pub fn conductances(&self) -> &Array2<f64> {
1292        &self.crossbar_array.conductances
1293    }
1294
1295    /// Get learning history
1296    pub fn learning_history(&self) -> &LearningHistory {
1297        &self.learning_history
1298    }
1299}
1300
1301impl MemristiveCrossbar {
1302    /// Create new memristive crossbar
1303    pub fn new(rows: usize, cols: usize, device_type: MemristiveDeviceType) -> Self {
1304        let mut rng = scirs2_core::random::rng();
1305        let conductances = Array2::from_shape_fn((rows, cols), |_| rng.gen_range(0.0..0.1));
1306        let resistances = conductances.mapv(|g| if g > 1e-12 { 1.0 / g } else { 1e12 });
1307        let switching_thresholds = Array2::from_elem((rows, cols), 0.5);
1308        let retention_times = Array2::from_elem((rows, cols), 1e6);
1309        let endurance_cycles = Array2::zeros((rows, cols));
1310        let programming_voltages = Array2::from_elem((rows, cols), 1.0);
1311        let temperature_coefficients = Array2::from_elem((rows, cols), 0.01);
1312        let device_variability = Array2::from_shape_fn((rows, cols), |_| rng.gen_range(0.0..0.01));
1313
1314        Self {
1315            conductances,
1316            resistances,
1317            switching_thresholds,
1318            retention_times,
1319            endurance_cycles,
1320            programming_voltages,
1321            temperature_coefficients,
1322            device_variability,
1323            dimensions: (rows, cols),
1324            device_type,
1325        }
1326    }
1327}
1328
1329impl PlasticityMechanism {
1330    /// Create new plasticity mechanism
1331    pub fn new(mechanism_type: PlasticityType) -> Self {
1332        let (time_constants, learning_rates, thresholds) = match mechanism_type {
1333            PlasticityType::STDP => (
1334                PlasticityTimeConstants {
1335                    tau_fast: 20.0,
1336                    tau_slow: 40.0,
1337                    stdp_window: 100.0,
1338                    tau_homeostatic: 1000.0,
1339                    tau_calcium: 50.0,
1340                },
1341                PlasticityLearningRates {
1342                    potentiation_rate: 0.01,
1343                    depression_rate: 0.005,
1344                    homeostatic_rate: 0.001,
1345                    metaplastic_rate: 0.0001,
1346                    intrinsic_rate: 0.001,
1347                },
1348                PlasticityThresholds {
1349                    ltp_threshold: 0.6,
1350                    ltd_threshold: 0.4,
1351                    target_activity: 0.5,
1352                    metaplasticity_threshold: 0.8,
1353                    saturation_threshold: 0.95,
1354                },
1355            ),
1356            _ => (
1357                PlasticityTimeConstants {
1358                    tau_fast: 10.0,
1359                    tau_slow: 20.0,
1360                    stdp_window: 50.0,
1361                    tau_homeostatic: 500.0,
1362                    tau_calcium: 25.0,
1363                },
1364                PlasticityLearningRates {
1365                    potentiation_rate: 0.005,
1366                    depression_rate: 0.0025,
1367                    homeostatic_rate: 0.0005,
1368                    metaplastic_rate: 0.00005,
1369                    intrinsic_rate: 0.0005,
1370                },
1371                PlasticityThresholds {
1372                    ltp_threshold: 0.5,
1373                    ltd_threshold: 0.3,
1374                    target_activity: 0.4,
1375                    metaplasticity_threshold: 0.7,
1376                    saturation_threshold: 0.9,
1377                },
1378            ),
1379        };
1380
1381        Self {
1382            mechanism_type,
1383            time_constants,
1384            learning_rates,
1385            thresholds,
1386            enabled: true,
1387            weight_scaling: 1.0,
1388        }
1389    }
1390}
1391
1392impl HomeostaticSystem {
1393    /// Create new homeostatic system
1394    pub fn new(num_neurons: usize) -> Self {
1395        Self {
1396            target_firing_rates: Array1::from_elem(num_neurons, 0.5),
1397            current_firing_rates: Array1::zeros(num_neurons),
1398            time_constants: Array1::from_elem(num_neurons, 1000.0),
1399            mechanisms: vec![
1400                HomeostaticMechanism::SynapticScaling,
1401                HomeostaticMechanism::IntrinsicExcitability,
1402            ],
1403            adaptation_rates: Array1::from_elem(num_neurons, 0.001),
1404            activity_history: VecDeque::new(),
1405            history_window: 100,
1406        }
1407    }
1408}
1409
1410impl Default for MetaplasticityRules {
1411    fn default() -> Self {
1412        Self::new()
1413    }
1414}
1415
1416impl MetaplasticityRules {
1417    /// Create new metaplasticity rules
1418    pub fn new() -> Self {
1419        Self {
1420            learning_rate_adaptation: LearningRateAdaptation {
1421                base_rate: 0.01,
1422                adaptation_factor: 0.1,
1423                performance_history: VecDeque::new(),
1424                adaptation_threshold: 0.1,
1425                max_rate: 0.1,
1426                min_rate: 1e-6,
1427            },
1428            threshold_adaptation: ThresholdAdaptation {
1429                adaptive_thresholds: Array1::from_elem(10, 0.5),
1430                update_rates: Array1::from_elem(10, 0.001),
1431                target_activations: Array1::from_elem(10, 0.5),
1432                threshold_bounds: vec![(0.1, 2.0); 10],
1433            },
1434            consolidation_rules: ConsolidationRules {
1435                time_windows: vec![100.0, 1000.0, 10000.0],
1436                consolidation_strengths: Array1::from_elem(3, 1.0),
1437                replay_enabled: true,
1438                replay_patterns: Vec::new(),
1439                systems_consolidation: true,
1440            },
1441            forgetting_protection: ForgettingProtectionRules {
1442                ewc_enabled: false,
1443                fisher_information: Array2::zeros((10, 10)),
1444                synaptic_intelligence: false,
1445                importance_weights: Array1::zeros(10),
1446                protection_strength: 1.0,
1447            },
1448        }
1449    }
1450}
1451
1452impl NeuromodulationSystem {
1453    /// Create new neuromodulation system
1454    pub fn new(num_neurons: usize) -> Self {
1455        Self {
1456            dopamine_levels: Array1::from_elem(num_neurons, 0.5),
1457            serotonin_levels: Array1::from_elem(num_neurons, 0.5),
1458            acetylcholine_levels: Array1::from_elem(num_neurons, 0.5),
1459            noradrenaline_levels: Array1::from_elem(num_neurons, 0.5),
1460            modulation_effects: NeuromodulationEffects {
1461                learning_rate_modulation: Array1::from_elem(num_neurons, 1.0),
1462                threshold_modulation: Array1::from_elem(num_neurons, 1.0),
1463                excitability_modulation: Array1::from_elem(num_neurons, 1.0),
1464                attention_modulation: Array1::from_elem(num_neurons, 1.0),
1465            },
1466            release_patterns: NeuromodulatorReleasePatterns {
1467                phasic_dopamine: Vec::new(),
1468                tonic_serotonin: 0.5,
1469                cholinergic_attention: Array1::from_elem(num_neurons, 0.5),
1470                stress_noradrenaline: 0.3,
1471            },
1472        }
1473    }
1474}
1475
1476impl Default for LearningHistory {
1477    fn default() -> Self {
1478        Self::new()
1479    }
1480}
1481
1482impl LearningHistory {
1483    /// Create new learning history tracker
1484    pub fn new() -> Self {
1485        Self {
1486            weight_changes: VecDeque::new(),
1487            performance_metrics: VecDeque::new(),
1488            plasticity_events: VecDeque::new(),
1489            consolidation_events: VecDeque::new(),
1490            max_history_length: 1000,
1491        }
1492    }
1493}
1494
1495#[cfg(test)]
1496mod tests {
1497    use super::*;
1498    use scirs2_core::ndarray::array;
1499
1500    #[test]
1501    fn test_advanced_memristive_learning_creation() {
1502        let learning_system =
1503            AdvancedMemristiveLearning::new(8, 4, MemristiveDeviceType::TitaniumDioxide);
1504        assert_eq!(learning_system.crossbar_dimensions(), (8, 4));
1505        assert_eq!(learning_system.plasticity_mechanisms.len(), 3);
1506        assert!(learning_system.forgetting_protection);
1507    }
1508
1509    #[test]
1510    fn test_memristive_device_types() {
1511        let tio2_system =
1512            AdvancedMemristiveLearning::new(4, 4, MemristiveDeviceType::TitaniumDioxide);
1513        let hfo2_system = AdvancedMemristiveLearning::new(4, 4, MemristiveDeviceType::HafniumOxide);
1514        let pcm_system = AdvancedMemristiveLearning::new(4, 4, MemristiveDeviceType::PhaseChange);
1515
1516        assert!(matches!(
1517            tio2_system.device_type(),
1518            MemristiveDeviceType::TitaniumDioxide
1519        ));
1520        assert!(matches!(
1521            hfo2_system.device_type(),
1522            MemristiveDeviceType::HafniumOxide
1523        ));
1524        assert!(matches!(
1525            pcm_system.device_type(),
1526            MemristiveDeviceType::PhaseChange
1527        ));
1528    }
1529
1530    #[test]
1531    fn test_plasticity_mechanism_creation() {
1532        let stdp_mechanism = PlasticityMechanism::new(PlasticityType::STDP);
1533        assert!(stdp_mechanism.enabled);
1534        assert!(matches!(
1535            stdp_mechanism.mechanism_type,
1536            PlasticityType::STDP
1537        ));
1538        assert!(stdp_mechanism.learning_rates.potentiation_rate > 0.0);
1539    }
1540
1541    #[test]
1542    fn test_homeostatic_regulation() {
1543        let target_rates = Array1::from_vec(vec![0.3, 0.7, 0.5, 0.8]);
1544        let learning_system =
1545            AdvancedMemristiveLearning::new(4, 4, MemristiveDeviceType::HafniumOxide)
1546                .with_homeostatic_regulation(target_rates.clone());
1547        assert_eq!(
1548            learning_system.homeostatic_system.target_firing_rates,
1549            target_rates
1550        );
1551    }
1552
1553    #[test]
1554    fn test_forgetting_protection() {
1555        let learning_system =
1556            AdvancedMemristiveLearning::new(4, 4, MemristiveDeviceType::PhaseChange)
1557                .with_forgetting_protection(true);
1558        assert!(learning_system.forgetting_protection);
1559        assert!(
1560            learning_system
1561                .metaplasticity
1562                .forgetting_protection
1563                .ewc_enabled
1564        );
1565
1566        let no_protection_system =
1567            AdvancedMemristiveLearning::new(4, 4, MemristiveDeviceType::PhaseChange)
1568                .with_forgetting_protection(false);
1569        assert!(!no_protection_system.forgetting_protection);
1570        assert!(
1571            !no_protection_system
1572                .metaplasticity
1573                .forgetting_protection
1574                .ewc_enabled
1575        );
1576    }
1577
1578    #[tokio::test]
1579    async fn test_memristive_forward_pass() {
1580        let learning_system =
1581            AdvancedMemristiveLearning::new(3, 2, MemristiveDeviceType::TitaniumDioxide);
1582        let input = array![0.5, 0.8, 0.3];
1583        let result = learning_system.forward_pass(&input.view()).await;
1584        assert!(result.is_ok());
1585        let output = result.unwrap();
1586        assert!((0.0..=1.0).contains(&output)); // Sigmoid output
1587    }
1588
1589    #[test]
1590    fn test_device_nonlinearity() {
1591        let learning_system =
1592            AdvancedMemristiveLearning::new(2, 2, MemristiveDeviceType::TitaniumDioxide);
1593
1594        // Test TiO2 nonlinearity
1595        let linear_current = 0.1;
1596        let nonlinear_current = learning_system.apply_device_nonlinearity(linear_current, 0, 0);
1597        assert!(nonlinear_current.is_finite());
1598
1599        // Test with HfO2
1600        let hfo2_system = AdvancedMemristiveLearning::new(2, 2, MemristiveDeviceType::HafniumOxide);
1601        let hfo2_output = hfo2_system.apply_device_nonlinearity(linear_current, 0, 0);
1602        assert!(hfo2_output.is_finite());
1603
1604        // Test with Phase Change Memory
1605        let pcm_system = AdvancedMemristiveLearning::new(2, 2, MemristiveDeviceType::PhaseChange);
1606        let pcm_output = pcm_system.apply_device_nonlinearity(linear_current, 0, 0);
1607        assert!(pcm_output.is_finite());
1608    }
1609
1610    #[tokio::test]
1611    async fn test_memristive_training() {
1612        let mut learning_system =
1613            AdvancedMemristiveLearning::new(2, 1, MemristiveDeviceType::TitaniumDioxide);
1614
1615        let spatial_data = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
1616        let target_outputs = array![0.0, 1.0, 1.0, 0.0]; // XOR pattern
1617
1618        let result = learning_system
1619            .train_spatial_data(&spatial_data.view(), &target_outputs.view(), 5)
1620            .await;
1621
1622        assert!(result.is_ok());
1623        let training_result = result.unwrap();
1624        assert_eq!(training_result.training_metrics.len(), 5);
1625        assert!(!training_result.final_weights.is_empty());
1626    }
1627
1628    #[test]
1629    fn test_memristive_crossbar_creation() {
1630        let crossbar = MemristiveCrossbar::new(4, 3, MemristiveDeviceType::SilverSulfide);
1631        assert_eq!(crossbar.dimensions, (4, 3));
1632        assert_eq!(crossbar.conductances.shape(), &[4, 3]);
1633        assert_eq!(crossbar.resistances.shape(), &[4, 3]);
1634        assert_eq!(crossbar.switching_thresholds.shape(), &[4, 3]);
1635        assert!(matches!(
1636            crossbar.device_type,
1637            MemristiveDeviceType::SilverSulfide
1638        ));
1639
1640        // Check that resistances are inverse of conductances (approximately)
1641        for i in 0..4 {
1642            for j in 0..3 {
1643                let conductance = crossbar.conductances[[i, j]];
1644                let resistance = crossbar.resistances[[i, j]];
1645                if conductance > 1e-12 {
1646                    assert!((resistance * conductance - 1.0).abs() < 1e-6);
1647                }
1648            }
1649        }
1650    }
1651
1652    #[test]
1653    fn test_device_aging_and_variability() {
1654        let mut learning_system =
1655            AdvancedMemristiveLearning::new(2, 2, MemristiveDeviceType::Organic);
1656
1657        // Store initial conductance
1658        let initial_conductance = learning_system.crossbar_array.conductances[[0, 0]];
1659
1660        // Apply aging
1661        learning_system.apply_device_aging(0, 0);
1662        let aged_conductance = learning_system.crossbar_array.conductances[[0, 0]];
1663
1664        // Conductance should be equal or slightly reduced (aging effect is small)
1665        assert!(aged_conductance <= initial_conductance);
1666
1667        // Apply variability
1668        let pre_variability = learning_system.crossbar_array.conductances[[0, 0]];
1669        learning_system.apply_device_variability(0, 0);
1670        let post_variability = learning_system.crossbar_array.conductances[[0, 0]];
1671
1672        // Variability should cause some change (might be very small)
1673        assert!((0.0..=1.0).contains(&post_variability));
1674    }
1675
1676    #[test]
1677    fn test_plasticity_mechanisms_configuration() {
1678        let learning_system =
1679            AdvancedMemristiveLearning::new(4, 4, MemristiveDeviceType::TitaniumDioxide)
1680                .enable_plasticity(PlasticityType::CalciumDependent)
1681                .enable_plasticity(PlasticityType::VoltageDependent);
1682
1683        // Check that mechanisms are properly configured
1684        let enabled_mechanisms: Vec<_> = learning_system
1685            .plasticity_mechanisms
1686            .iter()
1687            .filter(|m| m.enabled)
1688            .map(|m| &m.mechanism_type)
1689            .collect();
1690
1691        assert!(!enabled_mechanisms.is_empty());
1692    }
1693
1694    #[test]
1695    fn test_learning_history_tracking() {
1696        let learning_system =
1697            AdvancedMemristiveLearning::new(3, 3, MemristiveDeviceType::MagneticTunnelJunction);
1698
1699        let history = learning_system.learning_history();
1700        assert_eq!(history.max_history_length, 1000);
1701        assert!(history.weight_changes.is_empty());
1702        assert!(history.performance_metrics.is_empty());
1703    }
1704}