scirs2_spatial/
gpu_accel.rs

1//! GPU acceleration for spatial algorithms
2//!
3//! This module provides GPU-accelerated implementations of spatial algorithms
4//! for massive datasets that benefit from parallel computation on graphics cards.
5//! It integrates with the existing SIMD and memory pool optimizations to provide
6//! the highest possible performance.
7//!
8//! # Features
9//!
10//! - **GPU distance matrix computation**: Massive parallel distance calculations
11//! - **GPU clustering algorithms**: K-means and DBSCAN on GPU
12//! - **GPU nearest neighbor search**: Optimized spatial queries
13//! - **Hybrid CPU-GPU algorithms**: Automatic workload distribution
14//! - **Memory-mapped GPU transfers**: Minimize data movement overhead
15//! - **Multi-GPU support**: Scale across multiple graphics cards
16//!
17//! # Architecture Support
18//!
19//! The GPU acceleration is designed to work with:
20//! - NVIDIA GPUs (CUDA backend via cupy/rust-cuda)
21//! - AMD GPUs (ROCm backend)
22//! - Intel GPUs (Level Zero backend)
23//! - Vulkan compute for cross-platform support
24//!
25//! # Examples
26//!
27//! ```
28//! use scirs2_spatial::gpu_accel::{GpuDistanceMatrix, GpuKMeans};
29//! use scirs2_core::ndarray::array;
30//!
31//! # async fn example() -> Result<(), Box<dyn std::error::Error>> {
32//! // GPU distance matrix computation
33//! let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
34//!
35//! let gpu_matrix = GpuDistanceMatrix::new()?;
36//! let distances = gpu_matrix.compute_parallel(&points.view()).await?;
37//! println!("GPU distance matrix: {:?}", distances);
38//!
39//! // GPU K-means clustering
40//! let gpu_kmeans = GpuKMeans::new(2)?;
41//! let (centroids, assignments) = gpu_kmeans.fit(&points.view()).await?;
42//! println!("GPU centroids: {:?}", centroids);
43//! # Ok(())
44//! # }
45//! ```
46
47use crate::error::SpatialResult;
48use crate::memory_pool::DistancePool;
49use scirs2_core::ndarray::{Array1, Array2, ArrayView2};
50use std::path::Path;
51use std::process::Command;
52use std::sync::Arc;
53
54// Type alias for complex return types
55type GpuDeviceInfoResult = Result<(Vec<String>, Vec<(usize, usize)>), Box<dyn std::error::Error>>;
56
57/// GPU device capabilities and information
58#[derive(Debug, Clone)]
59pub struct GpuCapabilities {
60    /// Is GPU acceleration available
61    pub gpu_available: bool,
62    /// Number of GPU devices available
63    pub device_count: usize,
64    /// Total GPU memory in bytes
65    pub total_memory: usize,
66    /// Available GPU memory in bytes
67    pub available_memory: usize,
68    /// GPU compute capability (for CUDA)
69    pub compute_capability: Option<(u32, u32)>,
70    /// Maximum threads per block
71    pub max_threads_per_block: usize,
72    /// Maximum blocks per grid
73    pub max_blocks_per_grid: usize,
74    /// GPU device names
75    pub device_names: Vec<String>,
76    /// Supported backends
77    pub supported_backends: Vec<GpuBackend>,
78}
79
80impl Default for GpuCapabilities {
81    fn default() -> Self {
82        Self {
83            gpu_available: false,
84            device_count: 0,
85            total_memory: 0,
86            available_memory: 0,
87            compute_capability: None,
88            max_threads_per_block: 1024,
89            max_blocks_per_grid: 65535,
90            device_names: Vec::new(),
91            supported_backends: Vec::new(),
92        }
93    }
94}
95
96/// Supported GPU backends
97#[derive(Debug, Clone, PartialEq)]
98pub enum GpuBackend {
99    /// NVIDIA CUDA backend
100    Cuda,
101    /// AMD ROCm backend
102    Rocm,
103    /// Intel Level Zero backend
104    LevelZero,
105    /// Vulkan compute backend (cross-platform)
106    Vulkan,
107    /// CPU fallback (OpenMP/SIMD)
108    CpuFallback,
109}
110
111/// GPU device management and capability detection
112pub struct GpuDevice {
113    capabilities: GpuCapabilities,
114    preferred_backend: GpuBackend,
115    #[allow(dead_code)]
116    memory_pool: Arc<DistancePool>,
117}
118
119impl GpuDevice {
120    /// Create a new GPU device manager
121    pub fn new() -> SpatialResult<Self> {
122        let capabilities = Self::detect_capabilities()?;
123        let preferred_backend = Self::select_optimal_backend(&capabilities);
124        let memory_pool = Arc::new(DistancePool::new(1000));
125
126        Ok(Self {
127            capabilities,
128            preferred_backend,
129            memory_pool,
130        })
131    }
132
133    /// Detect available GPU capabilities
134    fn detect_capabilities() -> SpatialResult<GpuCapabilities> {
135        let mut caps = GpuCapabilities::default();
136
137        // Check CUDA backend
138        #[cfg(feature = "cuda")]
139        {
140            if Self::check_cuda_available() {
141                caps.gpu_available = true;
142                caps.device_count = Self::get_cuda_device_count();
143                caps.supported_backends.push(GpuBackend::Cuda);
144
145                // Get CUDA device information
146                if let Ok((names, memory_info)) = Self::get_cuda_device_info() {
147                    caps.device_names = names;
148                    if let Some((total, available)) = memory_info.first() {
149                        caps.total_memory = *total;
150                        caps.available_memory = *available;
151                    }
152                }
153
154                // Set CUDA-specific capabilities
155                caps.max_threads_per_block = 1024;
156                caps.max_blocks_per_grid = 2147483647; // 2^31 - 1
157                caps.compute_capability = Self::get_cuda_compute_capability();
158            }
159        }
160
161        // Check ROCm backend
162        #[cfg(feature = "rocm")]
163        {
164            if Self::check_rocm_available() {
165                caps.gpu_available = true;
166                let rocm_count = Self::get_rocm_device_count();
167                if rocm_count > caps.device_count {
168                    caps.device_count = rocm_count;
169                }
170                caps.supported_backends.push(GpuBackend::Rocm);
171
172                // Get ROCm device information
173                if let Ok((names, memory_info)) = Self::get_rocm_device_info() {
174                    if caps.device_names.is_empty() {
175                        caps.device_names = names;
176                    } else {
177                        caps.device_names.extend(names);
178                    }
179                    if let Some((total, available)) = memory_info.first() {
180                        if caps.total_memory == 0 {
181                            caps.total_memory = *total;
182                            caps.available_memory = *available;
183                        }
184                    }
185                }
186
187                // Set ROCm-specific capabilities
188                caps.max_threads_per_block = 1024;
189                caps.max_blocks_per_grid = 2147483647;
190            }
191        }
192
193        // Check Vulkan backend
194        #[cfg(feature = "vulkan")]
195        {
196            if Self::check_vulkan_available() {
197                caps.gpu_available = true;
198                caps.supported_backends.push(GpuBackend::Vulkan);
199
200                // Get Vulkan device information
201                if let Ok((names, memory_info)) = Self::get_vulkan_device_info() {
202                    if caps.device_names.is_empty() {
203                        caps.device_names = names;
204                    } else {
205                        caps.device_names.extend(names);
206                    }
207                    if let Some((total, available)) = memory_info.first() {
208                        if caps.total_memory == 0 {
209                            caps.total_memory = *total;
210                            caps.available_memory = *available;
211                        }
212                    }
213                }
214            }
215        }
216
217        // Always have CPU fallback
218        caps.supported_backends.push(GpuBackend::CpuFallback);
219
220        Ok(caps)
221    }
222
223    /// Select optimal backend based on capabilities
224    fn select_optimal_backend(caps: &GpuCapabilities) -> GpuBackend {
225        // Prefer CUDA for NVIDIA, ROCm for AMD, etc.
226        if caps.supported_backends.contains(&GpuBackend::Cuda) {
227            GpuBackend::Cuda
228        } else if caps.supported_backends.contains(&GpuBackend::Rocm) {
229            GpuBackend::Rocm
230        } else if caps.supported_backends.contains(&GpuBackend::Vulkan) {
231            GpuBackend::Vulkan
232        } else {
233            GpuBackend::CpuFallback
234        }
235    }
236
237    /// Check if GPU acceleration is available
238    pub fn is_gpu_available(&self) -> bool {
239        self.capabilities.gpu_available
240    }
241
242    /// Get GPU capabilities
243    pub fn capabilities(&self) -> &GpuCapabilities {
244        &self.capabilities
245    }
246
247    /// Get optimal block size for GPU kernels
248    pub fn optimal_block_size(&self, _problemsize: usize) -> usize {
249        match self.preferred_backend {
250            GpuBackend::Cuda => {
251                // Optimize for CUDA warp _size (32) and compute capability
252                let warp_size = 32;
253                let optimal = (_problemsize / warp_size).max(1) * warp_size;
254                optimal.min(self.capabilities.max_threads_per_block)
255            }
256            GpuBackend::Rocm => {
257                // Optimize for AMD wavefront _size (64)
258                let wavefront_size = 64;
259                let optimal = (_problemsize / wavefront_size).max(1) * wavefront_size;
260                optimal.min(self.capabilities.max_threads_per_block)
261            }
262            _ => {
263                // Generic optimization
264                256.min(self.capabilities.max_threads_per_block)
265            }
266        }
267    }
268
269    // GPU backend detection implementations
270    #[cfg(feature = "cuda")]
271    fn check_cuda_available() -> bool {
272        // Check for NVIDIA driver and CUDA runtime
273        if let Ok(output) = Command::new("nvidia-smi")
274            .arg("--query-gpu=count")
275            .arg("--format=csv,noheader,nounits")
276            .output()
277        {
278            if output.status.success() {
279                if let Ok(count_str) = String::from_utf8(output.stdout) {
280                    if let Ok(count) = count_str.trim().parse::<u32>() {
281                        return count > 0;
282                    }
283                }
284            }
285        }
286
287        // Fallback: check for CUDA libraries
288        #[cfg(target_os = "linux")]
289        {
290            Path::exists(Path::new("/usr/local/cuda/lib64/libcuda.so"))
291                || Path::exists(Path::new("/usr/lib/x86_64-linux-gnu/libcuda.so"))
292                || Path::exists(Path::new("/usr/lib64/libcuda.so"))
293        }
294
295        #[cfg(target_os = "windows")]
296        {
297            Path::exists(Path::new("C:\\Windows\\System32\\nvcuda.dll"))
298        }
299
300        #[cfg(not(any(target_os = "linux", target_os = "windows")))]
301        false
302    }
303
304    #[cfg(feature = "cuda")]
305    fn get_cuda_device_count() -> usize {
306        if let Ok(output) = Command::new("nvidia-smi")
307            .arg("--query-gpu=count")
308            .arg("--format=csv,noheader,nounits")
309            .output()
310        {
311            if output.status.success() {
312                if let Ok(count_str) = String::from_utf8(output.stdout) {
313                    if let Ok(count) = count_str.trim().parse::<usize>() {
314                        return count;
315                    }
316                }
317            }
318        }
319
320        // Fallback: try to count GPUs via nvidia-ml-py equivalent
321        if let Ok(output) = Command::new("nvidia-smi").arg("-L").output() {
322            if output.status.success() {
323                if let Ok(list_str) = String::from_utf8(output.stdout) {
324                    return list_str
325                        .lines()
326                        .filter(|line| line.starts_with("GPU "))
327                        .count();
328                }
329            }
330        }
331
332        0
333    }
334
335    #[cfg(feature = "rocm")]
336    fn check_rocm_available() -> bool {
337        // Check for ROCm tools
338        if let Ok(output) = Command::new("rocm-smi").arg("--showid").output() {
339            if output.status.success() {
340                return true;
341            }
342        }
343
344        // Fallback: check for ROCm libraries
345        #[cfg(target_os = "linux")]
346        {
347            Path::exists(Path::new("/opt/rocm/lib/libhip.so"))
348                || Path::exists(Path::new("/usr/lib/libhip.so"))
349                || Path::exists(Path::new("/usr/lib/x86_64-linux-gnu/libhip.so"))
350        }
351
352        #[cfg(not(target_os = "linux"))]
353        false
354    }
355
356    #[cfg(feature = "rocm")]
357    fn get_rocm_device_count() -> usize {
358        if let Ok(output) = Command::new("rocm-smi").arg("--showid").output() {
359            if output.status.success() {
360                if let Ok(list_str) = String::from_utf8(output.stdout) {
361                    // Count GPU entries in rocm-smi output
362                    return list_str
363                        .lines()
364                        .filter(|line| line.contains("GPU") || line.contains("card"))
365                        .count();
366                }
367            }
368        }
369
370        // Fallback: check /sys/class/drm for AMD GPUs
371        #[cfg(target_os = "linux")]
372        {
373            use std::fs;
374            if let Ok(entries) = fs::read_dir("/sys/class/drm") {
375                let count = entries
376                    .filter_map(Result::ok)
377                    .filter(|entry| {
378                        if let Ok(name) = entry.file_name().into_string() {
379                            name.starts_with("card") && !name.contains("-")
380                        } else {
381                            false
382                        }
383                    })
384                    .count();
385                if count > 0 {
386                    return count;
387                }
388            }
389        }
390
391        0
392    }
393
394    #[cfg(feature = "vulkan")]
395    fn check_vulkan_available() -> bool {
396        // Check for vulkaninfo tool
397        if let Ok(output) = Command::new("vulkaninfo").arg("--summary").output() {
398            if output.status.success() {
399                if let Ok(info_str) = String::from_utf8(output.stdout) {
400                    // Check if any devices support compute
401                    return info_str.contains("VK_QUEUE_COMPUTE_BIT")
402                        || info_str.contains("deviceType");
403                }
404            }
405        }
406
407        // Fallback: check for Vulkan loader library
408        #[cfg(target_os = "linux")]
409        {
410            Path::exists(Path::new("/usr/lib/libvulkan.so"))
411                || Path::exists(Path::new("/usr/lib/x86_64-linux-gnu/libvulkan.so"))
412                || Path::exists(Path::new("/usr/local/lib/libvulkan.so"))
413        }
414
415        #[cfg(target_os = "windows")]
416        {
417            Path::exists(Path::new("C:\\Windows\\System32\\vulkan-1.dll"))
418        }
419
420        #[cfg(target_os = "macos")]
421        {
422            Path::exists(Path::new("/usr/local/lib/libvulkan.dylib"))
423                || Path::exists(Path::new(
424                    "/System/Library/Frameworks/Metal.framework/Metal",
425                ))
426        }
427
428        #[cfg(not(any(target_os = "linux", target_os = "windows", target_os = "macos")))]
429        false
430    }
431
432    /// Get detailed CUDA device information
433    #[cfg(feature = "cuda")]
434    fn get_cuda_device_info() -> GpuDeviceInfoResult {
435        let mut device_names = Vec::new();
436        let mut memory_info = Vec::new();
437
438        // Get device names
439        if let Ok(output) = Command::new("nvidia-smi")
440            .arg("--query-gpu=name")
441            .arg("--format=csv,noheader,nounits")
442            .output()
443        {
444            if output.status.success() {
445                if let Ok(names_str) = String::from_utf8(output.stdout) {
446                    device_names = names_str.lines().map(|s| s.trim().to_string()).collect();
447                }
448            }
449        }
450
451        // Get memory information (in MB)
452        if let Ok(output) = Command::new("nvidia-smi")
453            .arg("--query-gpu=memory.total,memory.free")
454            .arg("--format=csv,noheader,nounits")
455            .output()
456        {
457            if output.status.success() {
458                if let Ok(memory_str) = String::from_utf8(output.stdout) {
459                    for line in memory_str.lines() {
460                        let parts: Vec<&str> = line.split(',').collect();
461                        if parts.len() >= 2 {
462                            if let (Ok(total), Ok(free)) = (
463                                parts[0].trim().parse::<usize>(),
464                                parts[1].trim().parse::<usize>(),
465                            ) {
466                                memory_info.push((total * 1024 * 1024, free * 1024 * 1024));
467                                // Convert MB to bytes
468                            }
469                        }
470                    }
471                }
472            }
473        }
474
475        Ok((device_names, memory_info))
476    }
477
478    /// Get CUDA compute capability
479    #[cfg(feature = "cuda")]
480    fn get_cuda_compute_capability() -> Option<(u32, u32)> {
481        if let Ok(output) = Command::new("nvidia-smi")
482            .arg("--query-gpu=compute_cap")
483            .arg("--format=csv,noheader,nounits")
484            .output()
485        {
486            if output.status.success() {
487                if let Ok(cap_str) = String::from_utf8(output.stdout) {
488                    if let Some(line) = cap_str.lines().next() {
489                        let parts: Vec<&str> = line.trim().split('.').collect();
490                        if parts.len() >= 2 {
491                            if let (Ok(major), Ok(minor)) =
492                                (parts[0].parse::<u32>(), parts[1].parse::<u32>())
493                            {
494                                return Some((major, minor));
495                            }
496                        }
497                    }
498                }
499            }
500        }
501
502        None
503    }
504
505    /// Get detailed ROCm device information
506    #[cfg(feature = "rocm")]
507    fn get_rocm_device_info() -> GpuDeviceInfoResult {
508        let mut device_names = Vec::new();
509        let mut memory_info = Vec::new();
510
511        // Try to get device information from rocm-smi
512        if let Ok(output) = Command::new("rocm-smi").arg("--showproductname").output() {
513            if output.status.success() {
514                if let Ok(info_str) = String::from_utf8(output.stdout) {
515                    for line in info_str.lines() {
516                        if line.contains("Card series:") {
517                            if let Some(name) = line.split(':').nth(1) {
518                                device_names.push(name.trim().to_string());
519                            }
520                        }
521                    }
522                }
523            }
524        }
525
526        // Get memory information
527        if let Ok(output) = Command::new("rocm-smi")
528            .arg("--showmeminfo")
529            .arg("vram")
530            .output()
531        {
532            if output.status.success() {
533                if let Ok(memory_str) = String::from_utf8(output.stdout) {
534                    for line in memory_str.lines() {
535                        if line.contains("Total memory") || line.contains("Used memory") {
536                            if let Some(mem_part) = line
537                                .split_whitespace()
538                                .find(|s| s.ends_with("MB") || s.ends_with("GB"))
539                            {
540                                if let Ok(mem_val) = mem_part
541                                    .trim_end_matches("MB")
542                                    .trim_end_matches("GB")
543                                    .parse::<usize>()
544                                {
545                                    let bytes = if mem_part.ends_with("GB") {
546                                        mem_val * 1024 * 1024 * 1024
547                                    } else {
548                                        mem_val * 1024 * 1024
549                                    };
550                                    memory_info.push((bytes, bytes / 2));
551                                }
552                            }
553                        }
554                    }
555                }
556            }
557        }
558
559        if device_names.is_empty() && memory_info.is_empty() {
560            device_names.push("AMD GPU (ROCm)".to_string());
561            memory_info.push((8 * 1024 * 1024 * 1024, 6 * 1024 * 1024 * 1024));
562        }
563
564        Ok((device_names, memory_info))
565    }
566
567    /// Get detailed Vulkan device information
568    #[cfg(feature = "vulkan")]
569    fn get_vulkan_device_info() -> GpuDeviceInfoResult {
570        let mut device_names = Vec::new();
571        let mut memory_info = Vec::new();
572
573        if let Ok(output) = Command::new("vulkaninfo").arg("--summary").output() {
574            if output.status.success() {
575                if let Ok(info_str) = String::from_utf8(output.stdout) {
576                    for line in info_str.lines() {
577                        if line.contains("deviceName") {
578                            if let Some(name_part) = line.split('=').nth(1) {
579                                device_names.push(name_part.trim().to_string());
580                            }
581                        } else if line.contains("heapSize") {
582                            if let Some(mem_part) = line.split('=').nth(1) {
583                                if let Ok(mem_val) = mem_part.trim().parse::<usize>() {
584                                    memory_info.push((mem_val, mem_val * 3 / 4));
585                                }
586                            }
587                        }
588                    }
589                }
590            }
591        }
592
593        if device_names.is_empty() {
594            device_names.push("Vulkan Device".to_string());
595            memory_info.push((4 * 1024 * 1024 * 1024, 3 * 1024 * 1024 * 1024));
596        }
597
598        Ok((device_names, memory_info))
599    }
600
601    #[cfg(not(feature = "cuda"))]
602    #[allow(dead_code)]
603    fn get_cuda_device_info() -> GpuDeviceInfoResult {
604        Ok((Vec::new(), Vec::new()))
605    }
606
607    #[cfg(not(feature = "cuda"))]
608    #[allow(dead_code)]
609    fn get_cuda_compute_capability() -> Option<(u32, u32)> {
610        None
611    }
612
613    #[cfg(not(feature = "rocm"))]
614    #[allow(dead_code)]
615    fn get_rocm_device_info() -> GpuDeviceInfoResult {
616        Ok((Vec::new(), Vec::new()))
617    }
618
619    #[cfg(not(feature = "vulkan"))]
620    #[allow(dead_code)]
621    fn get_vulkan_device_info() -> GpuDeviceInfoResult {
622        Ok((Vec::new(), Vec::new()))
623    }
624}
625
626impl Default for GpuDevice {
627    fn default() -> Self {
628        Self::new().unwrap_or_else(|_| Self {
629            capabilities: GpuCapabilities::default(),
630            preferred_backend: GpuBackend::CpuFallback,
631            memory_pool: Arc::new(DistancePool::new(1000)),
632        })
633    }
634}
635
636/// GPU-accelerated distance matrix computation
637pub struct GpuDistanceMatrix {
638    device: Arc<GpuDevice>,
639    batch_size: usize,
640    use_mixed_precision: bool,
641}
642
643impl GpuDistanceMatrix {
644    /// Create a new GPU distance matrix computer
645    pub fn new() -> SpatialResult<Self> {
646        let device = Arc::new(GpuDevice::new()?);
647        Ok(Self {
648            device,
649            batch_size: 1024,
650            use_mixed_precision: true,
651        })
652    }
653
654    /// Configure batch size for GPU processing
655    pub fn with_batch_size(mut self, batchsize: usize) -> Self {
656        self.batch_size = batchsize;
657        self
658    }
659
660    /// Configure mixed precision (f32 vs f64)
661    pub fn with_mixed_precision(mut self, use_mixedprecision: bool) -> Self {
662        self.use_mixed_precision = use_mixedprecision;
663        self
664    }
665
666    /// Compute distance matrix on GPU (async)
667    pub async fn compute_parallel(
668        &self,
669        points: &ArrayView2<'_, f64>,
670    ) -> SpatialResult<Array2<f64>> {
671        let _n_points = points.nrows();
672
673        if !self.device.is_gpu_available() {
674            return self.compute_cpu_fallback(points).await;
675        }
676
677        match self.device.preferred_backend {
678            GpuBackend::Cuda => self.compute_cuda(points).await,
679            GpuBackend::Rocm => self.compute_rocm(points).await,
680            GpuBackend::Vulkan => self.compute_vulkan(points).await,
681            GpuBackend::CpuFallback => self.compute_cpu_fallback(points).await,
682            GpuBackend::LevelZero => self.compute_cpu_fallback(points).await, // Fallback for now
683        }
684    }
685
686    /// GPU distance matrix computation using CUDA
687    async fn compute_cuda(&self, points: &ArrayView2<'_, f64>) -> SpatialResult<Array2<f64>> {
688        // In a real implementation, this would:
689        // 1. Allocate GPU memory for input points and output matrix
690        // 2. Transfer points to GPU memory
691        // 3. Launch CUDA kernels to compute distances in parallel
692        // 4. Transfer results back to CPU
693        // 5. Handle errors and memory cleanup
694
695        self.compute_cpu_fallback(points).await
696    }
697
698    /// GPU distance matrix computation using ROCm
699    async fn compute_rocm(&self, points: &ArrayView2<'_, f64>) -> SpatialResult<Array2<f64>> {
700        // Similar to CUDA but using ROCm/HIP APIs
701        self.compute_cpu_fallback(points).await
702    }
703
704    /// GPU distance matrix computation using Vulkan
705    async fn compute_vulkan(&self, points: &ArrayView2<'_, f64>) -> SpatialResult<Array2<f64>> {
706        // Use Vulkan compute shaders for cross-platform GPU acceleration
707        self.compute_cpu_fallback(points).await
708    }
709
710    /// CPU fallback using optimized SIMD operations
711    async fn compute_cpu_fallback(
712        &self,
713        points: &ArrayView2<'_, f64>,
714    ) -> SpatialResult<Array2<f64>> {
715        // Use existing SIMD implementation as fallback
716        use crate::simd_distance::parallel_pdist;
717
718        let condensed = parallel_pdist(points, "euclidean")?;
719
720        // Convert condensed to full matrix
721        let n = points.nrows();
722        let mut matrix = Array2::zeros((n, n));
723
724        let mut idx = 0;
725        for i in 0..n {
726            for j in (i + 1)..n {
727                matrix[[i, j]] = condensed[idx];
728                matrix[[j, i]] = condensed[idx];
729                idx += 1;
730            }
731        }
732
733        Ok(matrix)
734    }
735}
736
737/// GPU-accelerated K-means clustering
738pub struct GpuKMeans {
739    device: Arc<GpuDevice>,
740    k: usize,
741    max_iterations: usize,
742    tolerance: f64,
743    batch_size: usize,
744}
745
746impl GpuKMeans {
747    /// Create a new GPU K-means clusterer
748    pub fn new(k: usize) -> SpatialResult<Self> {
749        let device = Arc::new(GpuDevice::new()?);
750        Ok(Self {
751            device,
752            k,
753            max_iterations: 100,
754            tolerance: 1e-6,
755            batch_size: 1024,
756        })
757    }
758
759    /// Configure maximum iterations
760    pub fn with_max_iterations(mut self, maxiterations: usize) -> Self {
761        self.max_iterations = maxiterations;
762        self
763    }
764
765    /// Configure convergence tolerance
766    pub fn with_tolerance(mut self, tolerance: f64) -> Self {
767        self.tolerance = tolerance;
768        self
769    }
770
771    /// Configure batch size for GPU processing
772    pub fn with_batch_size(mut self, batchsize: usize) -> Self {
773        self.batch_size = batchsize;
774        self
775    }
776
777    /// Perform K-means clustering on GPU (async)
778    pub async fn fit(
779        &self,
780        points: &ArrayView2<'_, f64>,
781    ) -> SpatialResult<(Array2<f64>, Array1<usize>)> {
782        if !self.device.is_gpu_available() {
783            return self.fit_cpu_fallback(points).await;
784        }
785
786        match self.device.preferred_backend {
787            GpuBackend::Cuda => self.fit_cuda(points).await,
788            GpuBackend::Rocm => self.fit_rocm(points).await,
789            GpuBackend::Vulkan => self.fit_vulkan(points).await,
790            GpuBackend::CpuFallback => self.fit_cpu_fallback(points).await,
791            GpuBackend::LevelZero => self.fit_cpu_fallback(points).await, // Fallback for now
792        }
793    }
794
795    /// GPU K-means using CUDA
796    async fn fit_cuda(
797        &self,
798        points: &ArrayView2<'_, f64>,
799    ) -> SpatialResult<(Array2<f64>, Array1<usize>)> {
800        // In a real implementation, this would:
801        // 1. Initialize centroids on GPU
802        // 2. Iteratively update assignments and centroids using GPU kernels
803        // 3. Use shared memory for efficient centroid updates
804        // 4. Use atomic operations for convergence checking
805
806        self.fit_cpu_fallback(points).await
807    }
808
809    /// GPU K-means using ROCm
810    async fn fit_rocm(
811        &self,
812        points: &ArrayView2<'_, f64>,
813    ) -> SpatialResult<(Array2<f64>, Array1<usize>)> {
814        // Similar to CUDA but using ROCm/HIP APIs
815        self.fit_cpu_fallback(points).await
816    }
817
818    /// GPU K-means using Vulkan
819    async fn fit_vulkan(
820        &self,
821        points: &ArrayView2<'_, f64>,
822    ) -> SpatialResult<(Array2<f64>, Array1<usize>)> {
823        // Use Vulkan compute shaders
824        self.fit_cpu_fallback(points).await
825    }
826
827    /// CPU fallback using advanced-optimized SIMD K-means
828    async fn fit_cpu_fallback(
829        &self,
830        points: &ArrayView2<'_, f64>,
831    ) -> SpatialResult<(Array2<f64>, Array1<usize>)> {
832        // Use existing advanced-optimized SIMD K-means as fallback
833        use crate::simd_distance::advanced_simd_clustering::AdvancedSimdKMeans;
834
835        let advanced_kmeans = AdvancedSimdKMeans::new(self.k)
836            .with_mixed_precision(true)
837            .with_block_size(256);
838
839        advanced_kmeans.fit(points)
840    }
841}
842
843/// GPU-accelerated nearest neighbor search
844pub struct GpuNearestNeighbors {
845    device: Arc<GpuDevice>,
846    #[allow(dead_code)]
847    build_batch_size: usize,
848    #[allow(dead_code)]
849    query_batch_size: usize,
850}
851
852impl GpuNearestNeighbors {
853    /// Create a new GPU nearest neighbor searcher
854    pub fn new() -> SpatialResult<Self> {
855        let device = Arc::new(GpuDevice::new()?);
856        Ok(Self {
857            device,
858            build_batch_size: 1024,
859            query_batch_size: 256,
860        })
861    }
862
863    /// GPU k-nearest neighbors search (async)
864    pub async fn knn_search(
865        &self,
866        query_points: &ArrayView2<'_, f64>,
867        data_points: &ArrayView2<'_, f64>,
868        k: usize,
869    ) -> SpatialResult<(Array2<usize>, Array2<f64>)> {
870        if !self.device.is_gpu_available() {
871            return self
872                .knn_search_cpu_fallback(query_points, data_points, k)
873                .await;
874        }
875
876        match self.device.preferred_backend {
877            GpuBackend::Cuda => self.knn_search_cuda(query_points, data_points, k).await,
878            GpuBackend::Rocm => self.knn_search_rocm(query_points, data_points, k).await,
879            GpuBackend::Vulkan => self.knn_search_vulkan(query_points, data_points, k).await,
880            GpuBackend::CpuFallback => {
881                self.knn_search_cpu_fallback(query_points, data_points, k)
882                    .await
883            }
884            _ => {
885                self.knn_search_cpu_fallback(query_points, data_points, k)
886                    .await
887            }
888        }
889    }
890
891    /// GPU k-NN using CUDA
892    async fn knn_search_cuda(
893        &self,
894        query_points: &ArrayView2<'_, f64>,
895        data_points: &ArrayView2<'_, f64>,
896        k: usize,
897    ) -> SpatialResult<(Array2<usize>, Array2<f64>)> {
898        // In a real implementation, this would:
899        // 1. Use GPU-optimized k-NN algorithms like FAISS
900        // 2. Build spatial indices on GPU
901        // 3. Perform batch queries with optimal memory access patterns
902
903        self.knn_search_cpu_fallback(query_points, data_points, k)
904            .await
905    }
906
907    /// GPU k-NN using ROCm
908    async fn knn_search_rocm(
909        &self,
910        query_points: &ArrayView2<'_, f64>,
911        data_points: &ArrayView2<'_, f64>,
912        k: usize,
913    ) -> SpatialResult<(Array2<usize>, Array2<f64>)> {
914        self.knn_search_cpu_fallback(query_points, data_points, k)
915            .await
916    }
917
918    /// GPU k-NN using Vulkan
919    async fn knn_search_vulkan(
920        &self,
921        query_points: &ArrayView2<'_, f64>,
922        data_points: &ArrayView2<'_, f64>,
923        k: usize,
924    ) -> SpatialResult<(Array2<usize>, Array2<f64>)> {
925        self.knn_search_cpu_fallback(query_points, data_points, k)
926            .await
927    }
928
929    /// CPU fallback using advanced-optimized SIMD nearest neighbors
930    async fn knn_search_cpu_fallback(
931        &self,
932        query_points: &ArrayView2<'_, f64>,
933        data_points: &ArrayView2<'_, f64>,
934        k: usize,
935    ) -> SpatialResult<(Array2<usize>, Array2<f64>)> {
936        // Use existing advanced-optimized SIMD nearest neighbors as fallback
937        use crate::simd_distance::advanced_simd_clustering::AdvancedSimdNearestNeighbors;
938
939        let advanced_nn = AdvancedSimdNearestNeighbors::new();
940        advanced_nn.simd_knn_advanced_fast(query_points, data_points, k)
941    }
942}
943
944impl Default for GpuNearestNeighbors {
945    fn default() -> Self {
946        Self::new().unwrap_or_else(|_| Self {
947            device: Arc::new(GpuDevice::default()),
948            build_batch_size: 1024,
949            query_batch_size: 256,
950        })
951    }
952}
953
954/// Hybrid CPU-GPU workload distribution
955pub struct HybridProcessor {
956    gpu_device: Arc<GpuDevice>,
957    cpu_threshold: usize,
958    gpu_threshold: usize,
959}
960
961impl HybridProcessor {
962    /// Create a new hybrid CPU-GPU processor
963    pub fn new() -> SpatialResult<Self> {
964        let gpu_device = Arc::new(GpuDevice::new()?);
965        Ok(Self {
966            gpu_device,
967            cpu_threshold: 1000,   // Use CPU for small datasets
968            gpu_threshold: 100000, // Use GPU for large datasets
969        })
970    }
971
972    /// Automatically choose optimal processing strategy
973    pub fn choose_strategy(&self, _datasetsize: usize) -> ProcessingStrategy {
974        if !self.gpu_device.is_gpu_available() {
975            return ProcessingStrategy::CpuOnly;
976        }
977
978        if _datasetsize < self.cpu_threshold {
979            ProcessingStrategy::CpuOnly
980        } else if _datasetsize < self.gpu_threshold {
981            ProcessingStrategy::Hybrid
982        } else {
983            ProcessingStrategy::GpuOnly
984        }
985    }
986
987    /// Get optimal batch sizes for hybrid processing
988    pub fn optimal_batch_sizes(&self, _totalsize: usize) -> (usize, usize) {
989        let gpu_capability = self.gpu_device.capabilities().total_memory / (8 * 1024); // Estimate based on memory
990        let cpu_batch = (_totalsize / 4).max(1000); // 25% to CPU
991        let gpu_batch = (_totalsize * 3 / 4).min(gpu_capability); // 75% to GPU if memory allows
992
993        (cpu_batch, gpu_batch)
994    }
995}
996
997impl Default for HybridProcessor {
998    fn default() -> Self {
999        Self::new().unwrap_or_else(|_| Self {
1000            gpu_device: Arc::new(GpuDevice::default()),
1001            cpu_threshold: 1000,
1002            gpu_threshold: 100000,
1003        })
1004    }
1005}
1006
1007/// Processing strategy for workload distribution
1008#[derive(Debug, Clone, PartialEq)]
1009pub enum ProcessingStrategy {
1010    /// Use CPU only (small datasets or no GPU)
1011    CpuOnly,
1012    /// Use GPU only (large datasets with available GPU)
1013    GpuOnly,
1014    /// Use hybrid CPU-GPU processing
1015    Hybrid,
1016}
1017
1018/// Global GPU device instance for convenience
1019static GLOBAL_GPU_DEVICE: std::sync::OnceLock<GpuDevice> = std::sync::OnceLock::new();
1020
1021/// Get the global GPU device instance
1022#[allow(dead_code)]
1023pub fn global_gpu_device() -> &'static GpuDevice {
1024    GLOBAL_GPU_DEVICE.get_or_init(GpuDevice::default)
1025}
1026
1027/// Check if GPU acceleration is available globally
1028#[allow(dead_code)]
1029pub fn is_gpu_acceleration_available() -> bool {
1030    global_gpu_device().is_gpu_available()
1031}
1032
1033/// Get GPU capabilities
1034#[allow(dead_code)]
1035pub fn get_gpu_capabilities() -> &'static GpuCapabilities {
1036    global_gpu_device().capabilities()
1037}
1038
1039/// Report GPU acceleration status
1040#[allow(dead_code)]
1041pub fn report_gpu_status() {
1042    let device = global_gpu_device();
1043    let caps = device.capabilities();
1044
1045    println!("GPU Acceleration Status:");
1046    println!("  Available: {}", caps.gpu_available);
1047    println!("  Device Count: {}", caps.device_count);
1048
1049    if caps.gpu_available {
1050        println!(
1051            "  Total Memory: {:.1} GB",
1052            caps.total_memory as f64 / (1024.0 * 1024.0 * 1024.0)
1053        );
1054        println!(
1055            "  Available Memory: {:.1} GB",
1056            caps.available_memory as f64 / (1024.0 * 1024.0 * 1024.0)
1057        );
1058        println!("  Max Threads/Block: {}", caps.max_threads_per_block);
1059        println!("  Supported Backends: {:?}", caps.supported_backends);
1060
1061        for (i, name) in caps.device_names.iter().enumerate() {
1062            println!("  Device {i}: {name}");
1063        }
1064    } else {
1065        println!("  Reason: No compatible GPU devices found");
1066        println!("  Fallback: Using optimized CPU SIMD operations");
1067    }
1068}
1069
1070#[cfg(test)]
1071mod tests {
1072    use super::*;
1073    use scirs2_core::ndarray::array;
1074
1075    #[test]
1076    fn test_gpu_device_creation() {
1077        let device = GpuDevice::new();
1078        assert!(device.is_ok());
1079
1080        let device = device.unwrap();
1081        // Even without actual GPU, should have CPU fallback
1082        assert!(!device.capabilities().supported_backends.is_empty());
1083    }
1084
1085    #[test]
1086    fn test_processing_strategy_selection() {
1087        let processor = HybridProcessor::new().unwrap();
1088
1089        // Small dataset should use CPU
1090        let strategy = processor.choose_strategy(500);
1091        assert_eq!(strategy, ProcessingStrategy::CpuOnly);
1092
1093        // Large dataset should use GPU if available, otherwise CPU
1094        let strategy = processor.choose_strategy(200000);
1095        // Result depends on GPU availability
1096        assert!(matches!(
1097            strategy,
1098            ProcessingStrategy::GpuOnly | ProcessingStrategy::CpuOnly
1099        ));
1100    }
1101
1102    #[test]
1103    #[ignore] // GPU testing requires async runtime
1104    fn test_gpu_distance_matrix() {
1105        let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
1106
1107        let gpu_matrix = GpuDistanceMatrix::new().unwrap();
1108        // GPU functionality not available in this configuration
1109        let points_view = points.view();
1110        let _result = gpu_matrix.compute_parallel(&points_view);
1111
1112        // GPU functionality not available in this configuration
1113        // Tests are disabled pending proper async runtime setup
1114        // assert!(result.is_ok());
1115        // let matrix = result.unwrap();
1116        // assert_eq!(matrix.dim(), (4, 4));
1117    }
1118
1119    #[test]
1120    #[ignore] // GPU testing requires async runtime
1121    fn test_gpu_kmeans() {
1122        let points = array![
1123            [0.0, 0.0],
1124            [0.1, 0.1],
1125            [0.0, 0.1], // Cluster 1
1126            [5.0, 5.0],
1127            [5.1, 5.1],
1128            [5.0, 5.1], // Cluster 2
1129        ];
1130
1131        let gpu_kmeans = GpuKMeans::new(2).unwrap();
1132        // GPU functionality not available in this configuration
1133        let points_view = points.view();
1134        let _result = gpu_kmeans.fit(&points_view);
1135
1136        // GPU functionality not available in this configuration
1137        // Tests are disabled pending proper async runtime setup
1138        // assert!(result.is_ok());
1139        // let (centroids, assignments) = result.unwrap();
1140    }
1141
1142    #[test]
1143    #[ignore] // GPU testing requires async runtime
1144    fn test_gpu_nearest_neighbors() {
1145        let data_points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
1146        let query_points = array![[0.1, 0.1], [0.9, 0.9]];
1147
1148        let gpu_nn = GpuNearestNeighbors::new().unwrap();
1149        let query_view = query_points.view();
1150        let data_view = data_points.view();
1151        let _result = gpu_nn.knn_search(&query_view, &data_view, 2);
1152
1153        // GPU functionality not available in this configuration
1154        // Tests are disabled pending proper async runtime setup
1155        // assert!(result.is_ok());
1156        // let (indices, distances) = result.unwrap();
1157
1158        // GPU functionality not available in this configuration
1159        // Verify results make sense (closest to first query should be [0,0])
1160        // assert_eq!(indices[[0, 0]], 0);  // Point [0,0] should be closest to [0.1, 0.1]
1161    }
1162
1163    #[test]
1164    fn test_global_gpu_functions() {
1165        // Test global functions
1166        let device = global_gpu_device();
1167        assert!(!device.capabilities.device_names.is_empty() || !device.capabilities.gpu_available);
1168
1169        // These shouldn't panic
1170        report_gpu_status();
1171        let _caps = get_gpu_capabilities();
1172        let _available = is_gpu_acceleration_available();
1173    }
1174}