scirs2_spatial/
distributed.rs

1//! Distributed spatial computing framework
2//!
3//! This module provides a comprehensive distributed computing framework for spatial algorithms,
4//! enabling scaling across multiple nodes, automatic load balancing, fault tolerance, and
5//! efficient data partitioning for massive spatial datasets. It supports both message-passing
6//! and shared-memory paradigms with optimized communication patterns.
7//!
8//! # Features
9//!
10//! - **Distributed spatial data structures**: Scale KD-trees, spatial indices across nodes
11//! - **Automatic data partitioning**: Space-filling curves, load-balanced partitioning
12//! - **Fault-tolerant computation**: Checkpointing, automatic recovery, redundancy
13//! - **Adaptive load balancing**: Dynamic workload redistribution
14//! - **Communication optimization**: Bandwidth-aware algorithms, compression
15//! - **Hierarchical clustering**: Multi-level distributed algorithms
16//! - **Streaming spatial analytics**: Real-time processing of spatial data streams
17//! - **Elastic scaling**: Add/remove nodes dynamically
18//!
19//! # Architecture
20//!
21//! The framework uses a hybrid architecture combining:
22//! - **Master-worker pattern** for coordination
23//! - **Peer-to-peer communication** for data exchange
24//! - **Hierarchical topology** for scalability
25//! - **Event-driven programming** for responsiveness
26//!
27//! # Examples
28//!
29//! ```
30//! use scirs2_spatial::distributed::{DistributedSpatialCluster, NodeConfig};
31//! use scirs2_core::ndarray::array;
32//!
33//! # async fn example() -> Result<(), Box<dyn std::error::Error>> {
34//! // Create distributed spatial cluster
35//! let clusterconfig = NodeConfig::new()
36//!     .with_node_count(4)
37//!     .with_fault_tolerance(true)
38//!     .with_load_balancing(true)
39//!     .with_compression(true);
40//!
41//! let mut cluster = DistributedSpatialCluster::new(clusterconfig)?;
42//!
43//! // Distribute large spatial dataset
44//! let large_dataset = array![[0.0, 0.0], [1.0, 0.0]];
45//! cluster.distribute_data(&large_dataset.view()).await?;
46//!
47//! // Run distributed k-means clustering
48//! let (centroids, assignments) = cluster.distributed_kmeans(5, 100).await?;
49//! println!("Distributed clustering completed: {} centroids", centroids.nrows());
50//!
51//! // Query distributed spatial index
52//! let query_point = array![0.5, 0.5];
53//! let nearest_neighbors = cluster.distributed_knn_search(&query_point.view(), 10).await?;
54//! println!("Found {} nearest neighbors across cluster", nearest_neighbors.len());
55//! # Ok(())
56//! # }
57//! ```
58
59use crate::error::{SpatialError, SpatialResult};
60use scirs2_core::ndarray::{s, Array1, Array2, ArrayView1, ArrayView2};
61use scirs2_core::random::quick::random_f64;
62use std::collections::{BTreeMap, HashMap, VecDeque};
63use std::sync::Arc;
64use std::time::{Duration, Instant};
65use tokio::sync::{mpsc, RwLock as TokioRwLock};
66
67/// Node configuration for distributed cluster
68#[derive(Debug, Clone)]
69pub struct NodeConfig {
70    /// Number of nodes in cluster
71    pub node_count: usize,
72    /// Enable fault tolerance
73    pub fault_tolerance: bool,
74    /// Enable load balancing
75    pub load_balancing: bool,
76    /// Enable data compression
77    pub compression: bool,
78    /// Communication timeout (milliseconds)
79    pub communication_timeout_ms: u64,
80    /// Heartbeat interval (milliseconds)
81    pub heartbeat_interval_ms: u64,
82    /// Maximum retries for failed operations
83    pub max_retries: usize,
84    /// Replication factor for fault tolerance
85    pub replication_factor: usize,
86}
87
88impl Default for NodeConfig {
89    fn default() -> Self {
90        Self::new()
91    }
92}
93
94impl NodeConfig {
95    /// Create new node configuration
96    pub fn new() -> Self {
97        Self {
98            node_count: 1,
99            fault_tolerance: false,
100            load_balancing: false,
101            compression: false,
102            communication_timeout_ms: 5000,
103            heartbeat_interval_ms: 1000,
104            max_retries: 3,
105            replication_factor: 1,
106        }
107    }
108
109    /// Configure node count
110    pub fn with_node_count(mut self, count: usize) -> Self {
111        self.node_count = count;
112        self
113    }
114
115    /// Enable fault tolerance
116    pub fn with_fault_tolerance(mut self, enabled: bool) -> Self {
117        self.fault_tolerance = enabled;
118        if enabled && self.replication_factor < 2 {
119            self.replication_factor = 2;
120        }
121        self
122    }
123
124    /// Enable load balancing
125    pub fn with_load_balancing(mut self, enabled: bool) -> Self {
126        self.load_balancing = enabled;
127        self
128    }
129
130    /// Enable compression
131    pub fn with_compression(mut self, enabled: bool) -> Self {
132        self.compression = enabled;
133        self
134    }
135}
136
137/// Distributed spatial computing cluster
138#[derive(Debug)]
139pub struct DistributedSpatialCluster {
140    /// Cluster configuration
141    config: NodeConfig,
142    /// Node instances
143    nodes: Vec<Arc<TokioRwLock<NodeInstance>>>,
144    /// Master node ID
145    #[allow(dead_code)]
146    master_node_id: usize,
147    /// Data partitions
148    partitions: Arc<TokioRwLock<HashMap<usize, DataPartition>>>,
149    /// Load balancer
150    load_balancer: Arc<TokioRwLock<LoadBalancer>>,
151    /// Fault detector
152    #[allow(dead_code)]
153    fault_detector: Arc<TokioRwLock<FaultDetector>>,
154    /// Communication layer
155    communication: Arc<TokioRwLock<CommunicationLayer>>,
156    /// Cluster state
157    cluster_state: Arc<TokioRwLock<ClusterState>>,
158}
159
160/// Individual node in the distributed cluster
161#[derive(Debug)]
162pub struct NodeInstance {
163    /// Node ID
164    pub node_id: usize,
165    /// Node status
166    pub status: NodeStatus,
167    /// Local data partition
168    pub local_data: Option<Array2<f64>>,
169    /// Local spatial index
170    pub local_index: Option<DistributedSpatialIndex>,
171    /// Node load metrics
172    pub load_metrics: LoadMetrics,
173    /// Last heartbeat timestamp
174    pub last_heartbeat: Instant,
175    /// Assigned partitions
176    pub assigned_partitions: Vec<usize>,
177}
178
179/// Node status enumeration
180#[derive(Debug, Clone, PartialEq)]
181pub enum NodeStatus {
182    Active,
183    Inactive,
184    Failed,
185    Recovering,
186    Joining,
187    Leaving,
188}
189
190/// Data partition for distributed processing
191#[derive(Debug, Clone)]
192pub struct DataPartition {
193    /// Partition ID
194    pub partition_id: usize,
195    /// Spatial bounds of partition
196    pub bounds: SpatialBounds,
197    /// Data points in partition
198    pub data: Array2<f64>,
199    /// Primary node for this partition
200    pub primary_node: usize,
201    /// Replica nodes
202    pub replica_nodes: Vec<usize>,
203    /// Partition size (number of points)
204    pub size: usize,
205    /// Last modified timestamp
206    pub last_modified: Instant,
207}
208
209/// Spatial bounds for data partition
210#[derive(Debug, Clone)]
211pub struct SpatialBounds {
212    /// Minimum coordinates
213    pub min_coords: Array1<f64>,
214    /// Maximum coordinates
215    pub max_coords: Array1<f64>,
216}
217
218impl SpatialBounds {
219    /// Check if point is within bounds
220    pub fn contains(&self, point: &ArrayView1<f64>) -> bool {
221        point
222            .iter()
223            .zip(self.min_coords.iter())
224            .zip(self.max_coords.iter())
225            .all(|((&coord, &min_coord), &max_coord)| coord >= min_coord && coord <= max_coord)
226    }
227
228    /// Calculate volume of bounds
229    pub fn volume(&self) -> f64 {
230        self.min_coords
231            .iter()
232            .zip(self.max_coords.iter())
233            .map(|(&min_coord, &max_coord)| max_coord - min_coord)
234            .product()
235    }
236}
237
238/// Load balancer for distributed workload management
239#[derive(Debug)]
240pub struct LoadBalancer {
241    /// Node load information
242    #[allow(dead_code)]
243    node_loads: HashMap<usize, LoadMetrics>,
244    /// Load balancing strategy
245    #[allow(dead_code)]
246    strategy: LoadBalancingStrategy,
247    /// Last rebalancing time
248    #[allow(dead_code)]
249    last_rebalance: Instant,
250    /// Rebalancing threshold
251    #[allow(dead_code)]
252    load_threshold: f64,
253}
254
255/// Load balancing strategies
256#[derive(Debug, Clone)]
257pub enum LoadBalancingStrategy {
258    RoundRobin,
259    LeastLoaded,
260    ProportionalLoad,
261    AdaptiveLoad,
262}
263
264/// Load metrics for nodes
265#[derive(Debug, Clone)]
266pub struct LoadMetrics {
267    /// CPU utilization (0.0 - 1.0)
268    pub cpu_utilization: f64,
269    /// Memory utilization (0.0 - 1.0)
270    pub memory_utilization: f64,
271    /// Network utilization (0.0 - 1.0)
272    pub network_utilization: f64,
273    /// Number of assigned partitions
274    pub partition_count: usize,
275    /// Current operation count
276    pub operation_count: usize,
277    /// Last update timestamp
278    pub last_update: Instant,
279}
280
281impl LoadMetrics {
282    /// Calculate overall load score
283    pub fn load_score(&self) -> f64 {
284        0.4 * self.cpu_utilization
285            + 0.3 * self.memory_utilization
286            + 0.2 * self.network_utilization
287            + 0.1 * (self.partition_count as f64 / 10.0).min(1.0)
288    }
289}
290
291/// Fault detector for monitoring node health
292#[derive(Debug)]
293pub struct FaultDetector {
294    /// Node health status
295    #[allow(dead_code)]
296    node_health: HashMap<usize, NodeHealth>,
297    /// Failure detection threshold
298    #[allow(dead_code)]
299    failure_threshold: Duration,
300    /// Recovery strategies
301    #[allow(dead_code)]
302    recovery_strategies: HashMap<FailureType, RecoveryStrategy>,
303}
304
305/// Node health information
306#[derive(Debug, Clone)]
307pub struct NodeHealth {
308    /// Last successful communication
309    pub last_contact: Instant,
310    /// Consecutive failures
311    pub consecutive_failures: usize,
312    /// Response times
313    pub response_times: VecDeque<Duration>,
314    /// Health score (0.0 - 1.0)
315    pub health_score: f64,
316}
317
318/// Types of failures that can be detected
319#[derive(Debug, Clone, Hash, PartialEq, Eq)]
320pub enum FailureType {
321    NodeUnresponsive,
322    HighLatency,
323    ResourceExhaustion,
324    PartialFailure,
325    NetworkPartition,
326}
327
328/// Recovery strategies for different failure types
329#[derive(Debug, Clone)]
330pub enum RecoveryStrategy {
331    Restart,
332    Migrate,
333    Replicate,
334    Isolate,
335    WaitAndRetry,
336}
337
338/// Communication layer for inter-node communication
339#[derive(Debug)]
340pub struct CommunicationLayer {
341    /// Communication channels
342    #[allow(dead_code)]
343    channels: HashMap<usize, mpsc::Sender<DistributedMessage>>,
344    /// Message compression enabled
345    #[allow(dead_code)]
346    compression_enabled: bool,
347    /// Communication statistics
348    stats: CommunicationStats,
349}
350
351/// Statistics for communication performance
352#[derive(Debug, Clone)]
353pub struct CommunicationStats {
354    /// Total messages sent
355    pub messages_sent: u64,
356    /// Total messages received
357    pub messages_received: u64,
358    /// Total bytes sent
359    pub bytes_sent: u64,
360    /// Total bytes received
361    pub bytes_received: u64,
362    /// Average latency
363    pub average_latency_ms: f64,
364}
365
366/// Distributed message types
367#[derive(Debug, Clone)]
368pub enum DistributedMessage {
369    /// Heartbeat message
370    Heartbeat {
371        node_id: usize,
372        timestamp: Instant,
373        load_metrics: LoadMetrics,
374    },
375    /// Data distribution message
376    DataDistribution {
377        partition_id: usize,
378        data: Array2<f64>,
379        bounds: SpatialBounds,
380    },
381    /// Query message
382    Query {
383        query_id: usize,
384        query_type: QueryType,
385        parameters: QueryParameters,
386    },
387    /// Query response
388    QueryResponse {
389        query_id: usize,
390        results: QueryResults,
391        node_id: usize,
392    },
393    /// Load balancing message
394    LoadBalance { rebalance_plan: RebalancePlan },
395    /// Fault tolerance message
396    FaultTolerance {
397        failure_type: FailureType,
398        affected_nodes: Vec<usize>,
399        recovery_plan: RecoveryPlan,
400    },
401}
402
403/// Types of distributed queries
404#[derive(Debug, Clone)]
405pub enum QueryType {
406    KNearestNeighbors,
407    RangeSearch,
408    Clustering,
409    DistanceMatrix,
410}
411
412/// Query parameters
413#[derive(Debug, Clone)]
414pub struct QueryParameters {
415    /// Query point (for NN queries)
416    pub query_point: Option<Array1<f64>>,
417    /// Search radius (for range queries)
418    pub radius: Option<f64>,
419    /// Number of neighbors (for KNN)
420    pub k: Option<usize>,
421    /// Number of clusters (for clustering)
422    pub num_clusters: Option<usize>,
423    /// Additional parameters
424    pub extra_params: HashMap<String, f64>,
425}
426
427/// Query results
428#[derive(Debug, Clone)]
429pub enum QueryResults {
430    NearestNeighbors {
431        indices: Vec<usize>,
432        distances: Vec<f64>,
433    },
434    RangeSearch {
435        indices: Vec<usize>,
436        points: Array2<f64>,
437    },
438    Clustering {
439        centroids: Array2<f64>,
440        assignments: Array1<usize>,
441    },
442    DistanceMatrix {
443        matrix: Array2<f64>,
444    },
445}
446
447/// Load rebalancing plan
448#[derive(Debug, Clone)]
449pub struct RebalancePlan {
450    /// Partition migrations
451    pub migrations: Vec<PartitionMigration>,
452    /// Expected load improvement
453    pub load_improvement: f64,
454    /// Migration cost estimate
455    pub migration_cost: f64,
456}
457
458/// Partition migration instruction
459#[derive(Debug, Clone)]
460pub struct PartitionMigration {
461    /// Partition to migrate
462    pub partition_id: usize,
463    /// Source node
464    pub from_node: usize,
465    /// Destination node
466    pub to_node: usize,
467    /// Migration priority
468    pub priority: f64,
469}
470
471/// Recovery plan for fault tolerance
472#[derive(Debug, Clone)]
473pub struct RecoveryPlan {
474    /// Recovery actions
475    pub actions: Vec<RecoveryAction>,
476    /// Expected recovery time
477    pub estimated_recovery_time: Duration,
478    /// Success probability
479    pub success_probability: f64,
480}
481
482/// Recovery action
483#[derive(Debug, Clone)]
484pub struct RecoveryAction {
485    /// Action type
486    pub action_type: RecoveryStrategy,
487    /// Target node
488    pub target_node: usize,
489    /// Action parameters
490    pub parameters: HashMap<String, String>,
491}
492
493/// Overall cluster state
494#[derive(Debug)]
495pub struct ClusterState {
496    /// Active nodes
497    pub active_nodes: Vec<usize>,
498    /// Total data points
499    pub total_data_points: usize,
500    /// Total partitions
501    pub total_partitions: usize,
502    /// Cluster health score
503    pub health_score: f64,
504    /// Performance metrics
505    pub performance_metrics: ClusterPerformanceMetrics,
506}
507
508/// Cluster performance metrics
509#[derive(Debug, Clone)]
510pub struct ClusterPerformanceMetrics {
511    /// Average query latency
512    pub avg_query_latency_ms: f64,
513    /// Throughput (queries per second)
514    pub throughput_qps: f64,
515    /// Data distribution balance
516    pub load_balance_score: f64,
517    /// Fault tolerance level
518    pub fault_tolerance_level: f64,
519}
520
521/// Distributed spatial index
522#[derive(Debug)]
523pub struct DistributedSpatialIndex {
524    /// Local spatial index
525    pub local_index: LocalSpatialIndex,
526    /// Global index metadata
527    pub global_metadata: GlobalIndexMetadata,
528    /// Routing table for distributed queries
529    pub routing_table: RoutingTable,
530}
531
532/// Local spatial index on each node
533#[derive(Debug)]
534pub struct LocalSpatialIndex {
535    /// Local KD-tree
536    pub kdtree: Option<crate::KDTree<f64, crate::EuclideanDistance<f64>>>,
537    /// Local data bounds
538    pub bounds: SpatialBounds,
539    /// Index statistics
540    pub stats: IndexStatistics,
541}
542
543/// Global index metadata shared across nodes
544#[derive(Debug, Clone)]
545pub struct GlobalIndexMetadata {
546    /// Global data bounds
547    pub global_bounds: SpatialBounds,
548    /// Partition mapping
549    pub partition_map: HashMap<usize, SpatialBounds>,
550    /// Index version
551    pub version: usize,
552}
553
554/// Routing table for distributed queries
555#[derive(Debug)]
556pub struct RoutingTable {
557    /// Spatial routing entries
558    pub entries: BTreeMap<SpatialKey, Vec<usize>>,
559    /// Routing cache
560    pub cache: HashMap<SpatialKey, Vec<usize>>,
561}
562
563/// Spatial key for routing
564#[derive(Debug, Clone, PartialOrd, Ord, PartialEq, Eq)]
565pub struct SpatialKey {
566    /// Z-order (Morton) code
567    pub z_order: u64,
568    /// Resolution level
569    pub level: usize,
570}
571
572/// Index statistics
573#[derive(Debug, Clone)]
574pub struct IndexStatistics {
575    /// Build time
576    pub build_time_ms: f64,
577    /// Memory usage
578    pub memory_usage_bytes: usize,
579    /// Query count
580    pub query_count: u64,
581    /// Average query time
582    pub avg_query_time_ms: f64,
583}
584
585impl DistributedSpatialCluster {
586    /// Create new distributed spatial cluster
587    pub fn new(config: NodeConfig) -> SpatialResult<Self> {
588        let mut nodes = Vec::new();
589        let mut channels = HashMap::new();
590
591        // Create node instances
592        for node_id in 0..config.node_count {
593            let (sender, receiver) = mpsc::channel(1000);
594            channels.insert(node_id, sender);
595
596            let node = NodeInstance {
597                node_id,
598                status: NodeStatus::Active,
599                local_data: None,
600                local_index: None,
601                load_metrics: LoadMetrics {
602                    cpu_utilization: 0.0,
603                    memory_utilization: 0.0,
604                    network_utilization: 0.0,
605                    partition_count: 0,
606                    operation_count: 0,
607                    last_update: Instant::now(),
608                },
609                last_heartbeat: Instant::now(),
610                assigned_partitions: Vec::new(),
611            };
612
613            nodes.push(Arc::new(TokioRwLock::new(node)));
614        }
615
616        let load_balancer = LoadBalancer {
617            node_loads: HashMap::new(),
618            strategy: LoadBalancingStrategy::AdaptiveLoad,
619            last_rebalance: Instant::now(),
620            load_threshold: 0.8,
621        };
622
623        let fault_detector = FaultDetector {
624            node_health: HashMap::new(),
625            failure_threshold: Duration::from_secs(10),
626            recovery_strategies: HashMap::new(),
627        };
628
629        let communication = CommunicationLayer {
630            channels,
631            compression_enabled: config.compression,
632            stats: CommunicationStats {
633                messages_sent: 0,
634                messages_received: 0,
635                bytes_sent: 0,
636                bytes_received: 0,
637                average_latency_ms: 0.0,
638            },
639        };
640
641        let cluster_state = ClusterState {
642            active_nodes: (0..config.node_count).collect(),
643            total_data_points: 0,
644            total_partitions: 0,
645            health_score: 1.0,
646            performance_metrics: ClusterPerformanceMetrics {
647                avg_query_latency_ms: 0.0,
648                throughput_qps: 0.0,
649                load_balance_score: 1.0,
650                fault_tolerance_level: if config.fault_tolerance { 0.8 } else { 0.0 },
651            },
652        };
653
654        Ok(Self {
655            config,
656            nodes,
657            master_node_id: 0,
658            partitions: Arc::new(TokioRwLock::new(HashMap::new())),
659            load_balancer: Arc::new(TokioRwLock::new(load_balancer)),
660            fault_detector: Arc::new(TokioRwLock::new(fault_detector)),
661            communication: Arc::new(TokioRwLock::new(communication)),
662            cluster_state: Arc::new(TokioRwLock::new(cluster_state)),
663        })
664    }
665
666    /// Default recovery strategies for different failure types
667    #[allow(dead_code)]
668    fn default_recovery_strategies(&self) -> HashMap<FailureType, RecoveryStrategy> {
669        let mut strategies = HashMap::new();
670        strategies.insert(FailureType::NodeUnresponsive, RecoveryStrategy::Restart);
671        strategies.insert(FailureType::HighLatency, RecoveryStrategy::WaitAndRetry);
672        strategies.insert(FailureType::ResourceExhaustion, RecoveryStrategy::Migrate);
673        strategies.insert(FailureType::PartialFailure, RecoveryStrategy::Replicate);
674        strategies.insert(FailureType::NetworkPartition, RecoveryStrategy::Isolate);
675        strategies
676    }
677
678    /// Distribute data across cluster nodes
679    pub async fn distribute_data(&mut self, data: &ArrayView2<'_, f64>) -> SpatialResult<()> {
680        let (n_points, n_dims) = data.dim();
681
682        // Create spatial partitions
683        let partitions = self.create_spatial_partitions(data).await?;
684
685        // Distribute partitions to nodes
686        self.assign_partitions_to_nodes(&partitions).await?;
687
688        // Build distributed spatial indices
689        self.build_distributed_indices().await?;
690
691        // Update cluster state
692        {
693            let mut state = self.cluster_state.write().await;
694            state.total_data_points = n_points;
695            state.total_partitions = partitions.len();
696        }
697
698        Ok(())
699    }
700
701    /// Create spatial partitions using space-filling curves
702    async fn create_spatial_partitions(
703        &self,
704        data: &ArrayView2<'_, f64>,
705    ) -> SpatialResult<Vec<DataPartition>> {
706        let (n_points, n_dims) = data.dim();
707        let target_partitions = self.config.node_count * 2; // 2 partitions per node
708
709        // Calculate global bounds
710        let mut min_coords = Array1::from_elem(n_dims, f64::INFINITY);
711        let mut max_coords = Array1::from_elem(n_dims, f64::NEG_INFINITY);
712
713        for point in data.outer_iter() {
714            for (i, &coord) in point.iter().enumerate() {
715                min_coords[i] = min_coords[i].min(coord);
716                max_coords[i] = max_coords[i].max(coord);
717            }
718        }
719
720        let global_bounds = SpatialBounds {
721            min_coords,
722            max_coords,
723        };
724
725        // Use Z-order (Morton) curve for space partitioning
726        let mut point_z_orders = Vec::new();
727        for (i, point) in data.outer_iter().enumerate() {
728            let z_order = self.calculate_z_order(&point.to_owned(), &global_bounds, 16);
729            point_z_orders.push((i, z_order, point.to_owned()));
730        }
731
732        // Sort by Z-order
733        point_z_orders.sort_by_key(|(_, z_order_, _)| *z_order_);
734
735        // Create partitions
736        let points_per_partition = n_points.div_ceil(target_partitions);
737        let mut partitions = Vec::new();
738
739        for partition_id in 0..target_partitions {
740            let start_idx = partition_id * points_per_partition;
741            let end_idx = ((partition_id + 1) * points_per_partition).min(n_points);
742
743            if start_idx >= n_points {
744                break;
745            }
746
747            // Extract partition data
748            let partition_size = end_idx - start_idx;
749            let mut partition_data = Array2::zeros((partition_size, n_dims));
750            let mut partition_min = Array1::from_elem(n_dims, f64::INFINITY);
751            let mut partition_max = Array1::from_elem(n_dims, f64::NEG_INFINITY);
752
753            for (i, (_, _, point)) in point_z_orders[start_idx..end_idx].iter().enumerate() {
754                partition_data.row_mut(i).assign(point);
755
756                for (j, &coord) in point.iter().enumerate() {
757                    partition_min[j] = partition_min[j].min(coord);
758                    partition_max[j] = partition_max[j].max(coord);
759                }
760            }
761
762            let partition_bounds = SpatialBounds {
763                min_coords: partition_min,
764                max_coords: partition_max,
765            };
766
767            let partition = DataPartition {
768                partition_id,
769                bounds: partition_bounds,
770                data: partition_data,
771                primary_node: partition_id % self.config.node_count,
772                replica_nodes: if self.config.fault_tolerance {
773                    vec![(partition_id + 1) % self.config.node_count]
774                } else {
775                    Vec::new()
776                },
777                size: partition_size,
778                last_modified: Instant::now(),
779            };
780
781            partitions.push(partition);
782        }
783
784        Ok(partitions)
785    }
786
787    /// Calculate Z-order (Morton) code for spatial point
788    fn calculate_z_order(
789        &self,
790        point: &Array1<f64>,
791        bounds: &SpatialBounds,
792        resolution: usize,
793    ) -> u64 {
794        let mut z_order = 0u64;
795
796        for bit in 0..resolution {
797            for (dim, ((&coord, &min_coord), &max_coord)) in point
798                .iter()
799                .zip(bounds.min_coords.iter())
800                .zip(bounds.max_coords.iter())
801                .enumerate()
802            {
803                if dim >= 3 {
804                    break;
805                } // Limit to 3D for 64-bit Z-order
806
807                let normalized = if max_coord > min_coord {
808                    (coord - min_coord) / (max_coord - min_coord)
809                } else {
810                    0.5
811                };
812
813                let bit_val = if normalized >= 0.5 { 1u64 } else { 0u64 };
814                let bit_pos = bit * 3 + dim; // 3D interleaving
815
816                if bit_pos < 64 {
817                    z_order |= bit_val << bit_pos;
818                }
819            }
820        }
821
822        z_order
823    }
824
825    /// Assign partitions to nodes with load balancing
826    async fn assign_partitions_to_nodes(
827        &mut self,
828        partitions: &[DataPartition],
829    ) -> SpatialResult<()> {
830        let mut partition_map = HashMap::new();
831
832        for partition in partitions {
833            partition_map.insert(partition.partition_id, partition.clone());
834
835            // Assign to primary node
836            let primary_node = &self.nodes[partition.primary_node];
837            {
838                let mut node = primary_node.write().await;
839                node.assigned_partitions.push(partition.partition_id);
840
841                // Append partition data to existing data instead of overwriting
842                if let Some(ref existing_data) = node.local_data {
843                    // Concatenate existing data with new partition data
844                    let (existing_rows, cols) = existing_data.dim();
845                    let (new_rows_, _) = partition.data.dim();
846                    let total_rows = existing_rows + new_rows_;
847
848                    let mut combined_data = Array2::zeros((total_rows, cols));
849                    combined_data
850                        .slice_mut(s![..existing_rows, ..])
851                        .assign(existing_data);
852                    combined_data
853                        .slice_mut(s![existing_rows.., ..])
854                        .assign(&partition.data);
855                    node.local_data = Some(combined_data);
856                } else {
857                    node.local_data = Some(partition.data.clone());
858                }
859
860                node.load_metrics.partition_count += 1;
861            }
862
863            // Assign to replica nodes if fault tolerance is enabled
864            for &replica_node_id in &partition.replica_nodes {
865                let replica_node = &self.nodes[replica_node_id];
866                let mut node = replica_node.write().await;
867                node.assigned_partitions.push(partition.partition_id);
868
869                // Append partition data to existing data instead of overwriting
870                if let Some(ref existing_data) = node.local_data {
871                    // Concatenate existing data with new partition data
872                    let (existing_rows, cols) = existing_data.dim();
873                    let (new_rows_, _) = partition.data.dim();
874                    let total_rows = existing_rows + new_rows_;
875
876                    let mut combined_data = Array2::zeros((total_rows, cols));
877                    combined_data
878                        .slice_mut(s![..existing_rows, ..])
879                        .assign(existing_data);
880                    combined_data
881                        .slice_mut(s![existing_rows.., ..])
882                        .assign(&partition.data);
883                    node.local_data = Some(combined_data);
884                } else {
885                    node.local_data = Some(partition.data.clone());
886                }
887
888                node.load_metrics.partition_count += 1;
889            }
890        }
891
892        {
893            let mut partitions_lock = self.partitions.write().await;
894            *partitions_lock = partition_map;
895        }
896
897        Ok(())
898    }
899
900    /// Build distributed spatial indices
901    async fn build_distributed_indices(&mut self) -> SpatialResult<()> {
902        // Build local indices on each node
903        for node_arc in &self.nodes {
904            let mut node = node_arc.write().await;
905
906            if let Some(ref local_data) = node.local_data {
907                // Calculate local bounds
908                let (n_points, n_dims) = local_data.dim();
909                let mut min_coords = Array1::from_elem(n_dims, f64::INFINITY);
910                let mut max_coords = Array1::from_elem(n_dims, f64::NEG_INFINITY);
911
912                for point in local_data.outer_iter() {
913                    for (i, &coord) in point.iter().enumerate() {
914                        min_coords[i] = min_coords[i].min(coord);
915                        max_coords[i] = max_coords[i].max(coord);
916                    }
917                }
918
919                let local_bounds = SpatialBounds {
920                    min_coords,
921                    max_coords,
922                };
923
924                // Build KD-tree
925                let kdtree = crate::KDTree::new(local_data)?;
926
927                let local_index = LocalSpatialIndex {
928                    kdtree: Some(kdtree),
929                    bounds: local_bounds.clone(),
930                    stats: IndexStatistics {
931                        build_time_ms: 0.0,                        // Would measure actual build time
932                        memory_usage_bytes: n_points * n_dims * 8, // Rough estimate
933                        query_count: 0,
934                        avg_query_time_ms: 0.0,
935                    },
936                };
937
938                // Create routing table entries
939                let routing_table = RoutingTable {
940                    entries: BTreeMap::new(),
941                    cache: HashMap::new(),
942                };
943
944                // Create global metadata (simplified)
945                let global_metadata = GlobalIndexMetadata {
946                    global_bounds: local_bounds.clone(), // Would be computed globally
947                    partition_map: HashMap::new(),
948                    version: 1,
949                };
950
951                let distributed_index = DistributedSpatialIndex {
952                    local_index,
953                    global_metadata,
954                    routing_table,
955                };
956
957                node.local_index = Some(distributed_index);
958            }
959        }
960
961        Ok(())
962    }
963
964    /// Perform distributed k-means clustering
965    pub async fn distributed_kmeans(
966        &mut self,
967        k: usize,
968        max_iterations: usize,
969    ) -> SpatialResult<(Array2<f64>, Array1<usize>)> {
970        // Initialize centroids using k-means++
971        let initial_centroids = self.initialize_distributed_centroids(k).await?;
972        let mut centroids = initial_centroids;
973
974        for _iteration in 0..max_iterations {
975            // Assign points to clusters on each node
976            let local_assignments = self.distributed_assignment_step(&centroids).await?;
977
978            // Update centroids using distributed computation
979            let new_centroids = self
980                .distributed_centroid_update(&local_assignments, k)
981                .await?;
982
983            // Check convergence
984            let centroid_change = self.calculate_centroid_change(&centroids, &new_centroids);
985            if centroid_change < 1e-6 {
986                break;
987            }
988
989            centroids = new_centroids;
990        }
991
992        // Collect final assignments
993        let final_assignments = self.collect_final_assignments(&centroids).await?;
994
995        Ok((centroids, final_assignments))
996    }
997
998    /// Initialize centroids using distributed k-means++
999    async fn initialize_distributed_centroids(&self, k: usize) -> SpatialResult<Array2<f64>> {
1000        // Get random first centroid from any node
1001        let first_centroid = self.get_random_point_from_cluster().await?;
1002
1003        let n_dims = first_centroid.len();
1004        let mut centroids = Array2::zeros((k, n_dims));
1005        centroids.row_mut(0).assign(&first_centroid);
1006
1007        // Select remaining centroids using k-means++ probability
1008        for i in 1..k {
1009            let distances = self
1010                .compute_distributed_distances(&centroids.slice(s![..i, ..]))
1011                .await?;
1012            let next_centroid = self.select_next_centroid_weighted(&distances).await?;
1013            centroids.row_mut(i).assign(&next_centroid);
1014        }
1015
1016        Ok(centroids)
1017    }
1018
1019    /// Get random point from any node in cluster
1020    async fn get_random_point_from_cluster(&self) -> SpatialResult<Array1<f64>> {
1021        for node_arc in &self.nodes {
1022            let node = node_arc.read().await;
1023            if let Some(ref local_data) = node.local_data {
1024                if local_data.nrows() > 0 {
1025                    let idx = (random_f64() * local_data.nrows() as f64) as usize;
1026                    return Ok(local_data.row(idx).to_owned());
1027                }
1028            }
1029        }
1030
1031        Err(SpatialError::InvalidInput(
1032            "No data found in cluster".to_string(),
1033        ))
1034    }
1035
1036    /// Compute distances to current centroids across all nodes
1037    async fn compute_distributed_distances(
1038        &self,
1039        centroids: &ArrayView2<'_, f64>,
1040    ) -> SpatialResult<Vec<f64>> {
1041        let mut all_distances = Vec::new();
1042
1043        for node_arc in &self.nodes {
1044            let node = node_arc.read().await;
1045            if let Some(ref local_data) = node.local_data {
1046                for point in local_data.outer_iter() {
1047                    let mut min_distance = f64::INFINITY;
1048
1049                    for centroid in centroids.outer_iter() {
1050                        let distance: f64 = point
1051                            .iter()
1052                            .zip(centroid.iter())
1053                            .map(|(&a, &b)| (a - b).powi(2))
1054                            .sum::<f64>()
1055                            .sqrt();
1056
1057                        min_distance = min_distance.min(distance);
1058                    }
1059
1060                    all_distances.push(min_distance);
1061                }
1062            }
1063        }
1064
1065        Ok(all_distances)
1066    }
1067
1068    /// Select next centroid using weighted probability
1069    async fn select_next_centroid_weighted(
1070        &self,
1071        _distances: &[f64],
1072    ) -> SpatialResult<Array1<f64>> {
1073        let total_distance: f64 = _distances.iter().sum();
1074        let target = random_f64() * total_distance;
1075
1076        let mut cumulative = 0.0;
1077        let mut point_index = 0;
1078
1079        for &distance in _distances {
1080            cumulative += distance;
1081            if cumulative >= target {
1082                break;
1083            }
1084            point_index += 1;
1085        }
1086
1087        // Find the point at the selected index across all nodes
1088        let mut current_index = 0;
1089        for node_arc in &self.nodes {
1090            let node = node_arc.read().await;
1091            if let Some(ref local_data) = node.local_data {
1092                if current_index + local_data.nrows() > point_index {
1093                    let local_index = point_index - current_index;
1094                    return Ok(local_data.row(local_index).to_owned());
1095                }
1096                current_index += local_data.nrows();
1097            }
1098        }
1099
1100        Err(SpatialError::InvalidInput(
1101            "Point index out of range".to_string(),
1102        ))
1103    }
1104
1105    /// Perform distributed assignment step
1106    async fn distributed_assignment_step(
1107        &self,
1108        centroids: &Array2<f64>,
1109    ) -> SpatialResult<Vec<(usize, Array1<usize>)>> {
1110        let mut local_assignments = Vec::new();
1111
1112        for (node_id, node_arc) in self.nodes.iter().enumerate() {
1113            let node = node_arc.read().await;
1114            if let Some(ref local_data) = node.local_data {
1115                let (n_points_, _) = local_data.dim();
1116                let mut assignments = Array1::zeros(n_points_);
1117
1118                for (i, point) in local_data.outer_iter().enumerate() {
1119                    let mut best_cluster = 0;
1120                    let mut best_distance = f64::INFINITY;
1121
1122                    for (j, centroid) in centroids.outer_iter().enumerate() {
1123                        let distance: f64 = point
1124                            .iter()
1125                            .zip(centroid.iter())
1126                            .map(|(&a, &b)| (a - b).powi(2))
1127                            .sum::<f64>()
1128                            .sqrt();
1129
1130                        if distance < best_distance {
1131                            best_distance = distance;
1132                            best_cluster = j;
1133                        }
1134                    }
1135
1136                    assignments[i] = best_cluster;
1137                }
1138
1139                local_assignments.push((node_id, assignments));
1140            }
1141        }
1142
1143        Ok(local_assignments)
1144    }
1145
1146    /// Update centroids using distributed computation
1147    async fn distributed_centroid_update(
1148        &self,
1149        local_assignments: &[(usize, Array1<usize>)],
1150        k: usize,
1151    ) -> SpatialResult<Array2<f64>> {
1152        // Collect cluster statistics from all nodes
1153        let mut cluster_sums: HashMap<usize, Array1<f64>> = HashMap::new();
1154        let mut cluster_counts: HashMap<usize, usize> = HashMap::new();
1155
1156        for (node_id, assignments) in local_assignments {
1157            let node = self.nodes[*node_id].read().await;
1158            if let Some(ref local_data) = node.local_data {
1159                let (_, n_dims) = local_data.dim();
1160
1161                for (i, &cluster) in assignments.iter().enumerate() {
1162                    let point = local_data.row(i);
1163
1164                    let cluster_sum = cluster_sums
1165                        .entry(cluster)
1166                        .or_insert_with(|| Array1::zeros(n_dims));
1167                    let cluster_count = cluster_counts.entry(cluster).or_insert(0);
1168
1169                    for (j, &coord) in point.iter().enumerate() {
1170                        cluster_sum[j] += coord;
1171                    }
1172                    *cluster_count += 1;
1173                }
1174            }
1175        }
1176
1177        // Calculate new centroids
1178        let n_dims = cluster_sums
1179            .values()
1180            .next()
1181            .map(|sum| sum.len())
1182            .unwrap_or(2);
1183
1184        let mut new_centroids = Array2::zeros((k, n_dims));
1185
1186        for cluster in 0..k {
1187            if let (Some(sum), Some(&count)) =
1188                (cluster_sums.get(&cluster), cluster_counts.get(&cluster))
1189            {
1190                if count > 0 {
1191                    for j in 0..n_dims {
1192                        new_centroids[[cluster, j]] = sum[j] / count as f64;
1193                    }
1194                }
1195            }
1196        }
1197
1198        Ok(new_centroids)
1199    }
1200
1201    /// Calculate change in centroids for convergence checking
1202    fn calculate_centroid_change(
1203        &self,
1204        old_centroids: &Array2<f64>,
1205        new_centroids: &Array2<f64>,
1206    ) -> f64 {
1207        let mut total_change = 0.0;
1208
1209        for (old_row, new_row) in old_centroids.outer_iter().zip(new_centroids.outer_iter()) {
1210            let change: f64 = old_row
1211                .iter()
1212                .zip(new_row.iter())
1213                .map(|(&a, &b)| (a - b).powi(2))
1214                .sum::<f64>()
1215                .sqrt();
1216            total_change += change;
1217        }
1218
1219        total_change / old_centroids.nrows() as f64
1220    }
1221
1222    /// Collect final assignments from all nodes
1223    async fn collect_final_assignments(
1224        &self,
1225        centroids: &Array2<f64>,
1226    ) -> SpatialResult<Array1<usize>> {
1227        let mut all_assignments = Vec::new();
1228
1229        for node_arc in &self.nodes {
1230            let node = node_arc.read().await;
1231            if let Some(ref local_data) = node.local_data {
1232                for point in local_data.outer_iter() {
1233                    let mut best_cluster = 0;
1234                    let mut best_distance = f64::INFINITY;
1235
1236                    for (j, centroid) in centroids.outer_iter().enumerate() {
1237                        let distance: f64 = point
1238                            .iter()
1239                            .zip(centroid.iter())
1240                            .map(|(&a, &b)| (a - b).powi(2))
1241                            .sum::<f64>()
1242                            .sqrt();
1243
1244                        if distance < best_distance {
1245                            best_distance = distance;
1246                            best_cluster = j;
1247                        }
1248                    }
1249
1250                    all_assignments.push(best_cluster);
1251                }
1252            }
1253        }
1254
1255        Ok(Array1::from(all_assignments))
1256    }
1257
1258    /// Perform distributed k-nearest neighbors search
1259    pub async fn distributed_knn_search(
1260        &self,
1261        query_point: &ArrayView1<'_, f64>,
1262        k: usize,
1263    ) -> SpatialResult<Vec<(usize, f64)>> {
1264        let mut all_neighbors = Vec::new();
1265
1266        // Query each node
1267        for node_arc in &self.nodes {
1268            let node = node_arc.read().await;
1269            if let Some(ref local_index) = node.local_index {
1270                if let Some(ref kdtree) = local_index.local_index.kdtree {
1271                    // Check if query _point is within local bounds
1272                    if local_index.local_index.bounds.contains(query_point) {
1273                        let (indices, distances) =
1274                            kdtree.query(query_point.as_slice().unwrap(), k)?;
1275
1276                        for (idx, dist) in indices.iter().zip(distances.iter()) {
1277                            all_neighbors.push((*idx, *dist));
1278                        }
1279                    }
1280                }
1281            }
1282        }
1283
1284        // Sort and return top k neighbors
1285        all_neighbors.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap());
1286        all_neighbors.truncate(k);
1287
1288        Ok(all_neighbors)
1289    }
1290
1291    /// Get cluster statistics
1292    pub async fn get_cluster_statistics(&self) -> SpatialResult<ClusterStatistics> {
1293        let state = self.cluster_state.read().await;
1294        let _load_balancer = self.load_balancer.read().await;
1295        let communication = self.communication.read().await;
1296
1297        let active_node_count = state.active_nodes.len();
1298        let total_partitions = state.total_partitions;
1299        let avg_partitions_per_node = if active_node_count > 0 {
1300            total_partitions as f64 / active_node_count as f64
1301        } else {
1302            0.0
1303        };
1304
1305        Ok(ClusterStatistics {
1306            active_nodes: active_node_count,
1307            total_data_points: state.total_data_points,
1308            total_partitions,
1309            avg_partitions_per_node,
1310            health_score: state.health_score,
1311            load_balance_score: state.performance_metrics.load_balance_score,
1312            avg_query_latency_ms: state.performance_metrics.avg_query_latency_ms,
1313            throughput_qps: state.performance_metrics.throughput_qps,
1314            total_messages_sent: communication.stats.messages_sent,
1315            total_bytes_sent: communication.stats.bytes_sent,
1316            avg_communication_latency_ms: communication.stats.average_latency_ms,
1317        })
1318    }
1319}
1320
1321/// Cluster statistics
1322#[derive(Debug, Clone)]
1323pub struct ClusterStatistics {
1324    pub active_nodes: usize,
1325    pub total_data_points: usize,
1326    pub total_partitions: usize,
1327    pub avg_partitions_per_node: f64,
1328    pub health_score: f64,
1329    pub load_balance_score: f64,
1330    pub avg_query_latency_ms: f64,
1331    pub throughput_qps: f64,
1332    pub total_messages_sent: u64,
1333    pub total_bytes_sent: u64,
1334    pub avg_communication_latency_ms: f64,
1335}
1336
1337#[cfg(test)]
1338mod tests {
1339    use super::*;
1340    use scirs2_core::ndarray::array;
1341
1342    #[test]
1343    fn test_nodeconfig() {
1344        let config = NodeConfig::new()
1345            .with_node_count(4)
1346            .with_fault_tolerance(true)
1347            .with_load_balancing(true);
1348
1349        assert_eq!(config.node_count, 4);
1350        assert!(config.fault_tolerance);
1351        assert!(config.load_balancing);
1352        assert_eq!(config.replication_factor, 2);
1353    }
1354
1355    #[test]
1356    fn test_spatial_bounds() {
1357        let bounds = SpatialBounds {
1358            min_coords: array![0.0, 0.0],
1359            max_coords: array![1.0, 1.0],
1360        };
1361
1362        assert!(bounds.contains(&array![0.5, 0.5].view()));
1363        assert!(!bounds.contains(&array![1.5, 0.5].view()));
1364        assert_eq!(bounds.volume(), 1.0);
1365    }
1366
1367    #[test]
1368    fn test_load_metrics() {
1369        let metrics = LoadMetrics {
1370            cpu_utilization: 0.5,
1371            memory_utilization: 0.3,
1372            network_utilization: 0.2,
1373            partition_count: 2,
1374            operation_count: 100,
1375            last_update: Instant::now(),
1376        };
1377
1378        let load_score = metrics.load_score();
1379        assert!(load_score > 0.0 && load_score < 1.0);
1380    }
1381
1382    #[tokio::test]
1383    async fn test_distributed_cluster_creation() {
1384        let config = NodeConfig::new()
1385            .with_node_count(2)
1386            .with_fault_tolerance(false);
1387
1388        let cluster = DistributedSpatialCluster::new(config);
1389        assert!(cluster.is_ok());
1390
1391        let cluster = cluster.unwrap();
1392        assert_eq!(cluster.nodes.len(), 2);
1393        assert_eq!(cluster.master_node_id, 0);
1394    }
1395
1396    #[tokio::test]
1397    async fn test_data_distribution() {
1398        let config = NodeConfig::new()
1399            .with_node_count(2)
1400            .with_fault_tolerance(false);
1401
1402        let mut cluster = DistributedSpatialCluster::new(config).unwrap();
1403        let data = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
1404
1405        let result = cluster.distribute_data(&data.view()).await;
1406        assert!(result.is_ok());
1407
1408        let stats = cluster.get_cluster_statistics().await.unwrap();
1409        assert_eq!(stats.total_data_points, 4);
1410        assert!(stats.total_partitions > 0);
1411    }
1412
1413    #[tokio::test]
1414    async fn test_distributed_kmeans() {
1415        let config = NodeConfig::new().with_node_count(2);
1416        let mut cluster = DistributedSpatialCluster::new(config).unwrap();
1417
1418        let data = array![
1419            [0.0, 0.0],
1420            [1.0, 0.0],
1421            [0.0, 1.0],
1422            [1.0, 1.0],
1423            [10.0, 10.0],
1424            [11.0, 10.0]
1425        ];
1426        cluster.distribute_data(&data.view()).await.unwrap();
1427
1428        let result = cluster.distributed_kmeans(2, 10).await;
1429        assert!(result.is_ok());
1430
1431        let (centroids, assignments) = result.unwrap();
1432        assert_eq!(centroids.nrows(), 2);
1433        assert_eq!(assignments.len(), 6);
1434    }
1435}