scirs2_spatial/distance/
manhattandistance_traits.rs1use scirs2_core::numeric::Float;
13
14use super::functions::prefetch_read;
15use super::functions::Distance;
16use super::types::ManhattanDistance;
17
18impl<T: Float> Default for ManhattanDistance<T> {
19 fn default() -> Self {
20 Self::new()
21 }
22}
23
24impl<T: Float + Send + Sync> Distance<T> for ManhattanDistance<T> {
25 fn distance(&self, a: &[T], b: &[T]) -> T {
26 if a.len() != b.len() {
27 return T::nan();
28 }
29 if let Some(result) = Self::try_simd_f64(a, b) {
30 return result;
31 }
32 if let Some(result) = Self::try_simd_f32(a, b) {
33 return result;
34 }
35 let len = a.len();
36 let mut sum = T::zero();
37 let chunks = len / 4;
38 for i in 0..chunks {
39 let base = i * 4;
40 if base + 8 < len {
41 let end_idx = (base + 8).min(len);
42 prefetch_read(&a[base + 4..end_idx]);
43 prefetch_read(&b[base + 4..end_idx]);
44 }
45 let diff0_abs = (a[base] - b[base]).abs();
46 let diff1_abs = (a[base + 1] - b[base + 1]).abs();
47 let diff2_abs = (a[base + 2] - b[base + 2]).abs();
48 let diff3_abs = (a[base + 3] - b[base + 3]).abs();
49 sum = sum + diff0_abs + diff1_abs + diff2_abs + diff3_abs;
50 }
51 for i in (chunks * 4)..len {
52 sum = sum + (a[i] - b[i]).abs();
53 }
54 sum
55 }
56 fn min_distance_point_rectangle(&self, point: &[T], mins: &[T], maxes: &[T]) -> T {
57 let mut sum = T::zero();
58 for i in 0..point.len() {
59 let coord = point[i];
60 let min_val = mins[i];
61 let max_val = maxes[i];
62 let clamped = coord.max(min_val).min(max_val);
63 let diff = (coord - clamped).abs();
64 sum = sum + diff;
65 }
66 sum
67 }
68}