scirs2_spatial/
adaptive_selection.rs

1//! Real-time adaptive algorithm selection system
2//!
3//! This module implements an intelligent, self-adapting system that automatically selects
4//! and configures the optimal spatial algorithms based on real-time data characteristics,
5//! system performance metrics, and environmental conditions. It combines machine learning,
6//! heuristics, and performance feedback to make optimal algorithmic decisions.
7//!
8//! # Features
9//!
10//! - **Real-time algorithm selection**: Choose optimal algorithms based on data patterns
11//! - **Performance-based adaptation**: Learn from execution performance to improve decisions
12//! - **Multi-objective optimization**: Balance accuracy, speed, memory usage, and energy
13//! - **Dynamic parameter tuning**: Automatically adjust algorithm parameters
14//! - **Context-aware selection**: Consider system load, hardware capabilities, user preferences
15//! - **Predictive algorithm switching**: Anticipate optimal algorithms for future data
16//! - **Ensemble coordination**: Intelligently combine multiple algorithms
17//! - **Resource-aware scheduling**: Optimize for available computational resources
18//!
19//! # Selection Strategies
20//!
21//! The system uses multiple strategies:
22//! - **Pattern-based selection**: Analyze data patterns to predict best algorithms
23//! - **Performance history**: Learn from past performance on similar datasets
24//! - **Resource availability**: Consider current CPU, memory, GPU availability
25//! - **Quality requirements**: Adapt to accuracy vs. speed trade-offs
26//! - **Online learning**: Continuously update selection models
27//!
28//! # Examples
29//!
30//! ```
31//! use scirs2_spatial::adaptive_selection::{AdaptiveAlgorithmSelector, SelectionContext};
32//! use scirs2_core::ndarray::array;
33//!
34//! # async fn example() -> Result<(), Box<dyn std::error::Error>> {
35//! // Create adaptive selector with multiple strategies
36//! let mut selector = AdaptiveAlgorithmSelector::new()
37//!     .with_performance_learning(true)
38//!     .with_resource_awareness(true)
39//!     .with_quality_optimization(true)
40//!     .with_ensemble_methods(true);
41//!
42//! // Define selection context
43//! let context = SelectionContext::new()
44//!     .with_accuracy_priority(0.8)
45//!     .with_speed_priority(0.6)
46//!     .with_memory_constraint(1_000_000_000) // 1GB limit
47//!     .with_real_time_requirement(true);
48//!
49//! let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
50//!
51//! // Automatically select and configure optimal algorithm
52//! let selection = selector.select_optimal_algorithm(&points.view(), &context).await?;
53//! println!("Selected algorithm: {:?}", selection.algorithm);
54//! println!("Configuration: {:?}", selection.parameters);
55//! println!("Expected performance: {:?}", selection.performance_prediction);
56//!
57//! // Execute with selected algorithm and provide feedback
58//! let execution_result = selector.execute_with_feedback(&selection, &points.view()).await?;
59//! println!("Actual performance: {:?}", execution_result.actual_performance);
60//! # Ok(())
61//! # }
62//! ```
63
64use crate::error::{SpatialError, SpatialResult};
65use scirs2_core::ndarray::{Array1, Array2, ArrayView2};
66use statrs::statistics::Statistics;
67use std::collections::{HashMap, VecDeque};
68use std::sync::Arc;
69use std::time::{Duration, Instant};
70use tokio::sync::RwLock;
71
72/// Adaptive algorithm selector
73#[derive(Debug)]
74pub struct AdaptiveAlgorithmSelector {
75    /// Selection strategies
76    strategies: Vec<SelectionStrategy>,
77    /// Performance learning enabled
78    performance_learning: bool,
79    /// Resource awareness enabled
80    resource_awareness: bool,
81    /// Quality optimization enabled
82    quality_optimization: bool,
83    /// Ensemble methods enabled
84    ensemble_methods: bool,
85    /// Algorithm performance history
86    performance_history: Arc<RwLock<PerformanceHistory>>,
87    /// Data pattern analyzer
88    #[allow(dead_code)]
89    pattern_analyzer: PatternAnalyzer,
90    /// Resource monitor
91    resource_monitor: ResourceMonitor,
92    /// Quality predictor
93    quality_predictor: QualityPredictor,
94    /// Selection cache
95    selection_cache: Arc<RwLock<SelectionCache>>,
96}
97
98/// Selection strategy enumeration
99#[derive(Debug, Clone)]
100pub enum SelectionStrategy {
101    /// Pattern-based selection
102    PatternBased,
103    /// Performance history-based
104    HistoryBased,
105    /// Resource-aware selection
106    ResourceAware,
107    /// Quality-optimized selection
108    QualityOptimized,
109    /// Ensemble combination
110    EnsembleBased,
111    /// Hybrid strategy
112    Hybrid(Vec<SelectionStrategy>),
113}
114
115/// Selection context for algorithm selection
116#[derive(Debug, Clone)]
117pub struct SelectionContext {
118    /// Accuracy priority (0.0 - 1.0)
119    pub accuracy_priority: f64,
120    /// Speed priority (0.0 - 1.0)
121    pub speed_priority: f64,
122    /// Memory constraint (bytes)
123    pub memory_constraint: usize,
124    /// Real-time requirement
125    pub real_time_requirement: bool,
126    /// Energy efficiency priority
127    pub energy_efficiency: f64,
128    /// Quality tolerance
129    pub quality_tolerance: f64,
130    /// User preferences
131    pub user_preferences: HashMap<String, f64>,
132    /// Environmental constraints
133    pub environmental_constraints: EnvironmentalConstraints,
134}
135
136/// Environmental constraints for algorithm selection
137#[derive(Debug, Clone)]
138pub struct EnvironmentalConstraints {
139    /// Available CPU cores
140    pub available_cores: usize,
141    /// Available memory (bytes)
142    pub available_memory: usize,
143    /// GPU availability
144    pub gpu_available: bool,
145    /// Network bandwidth (if distributed)
146    pub network_bandwidth: Option<f64>,
147    /// Power constraints
148    pub power_budget: Option<f64>,
149    /// Temperature constraints
150    pub thermal_budget: Option<f64>,
151}
152
153/// Algorithm selection result
154#[derive(Debug, Clone)]
155pub struct AlgorithmSelection {
156    /// Selected algorithm
157    pub algorithm: SelectedAlgorithm,
158    /// Algorithm parameters
159    pub parameters: AlgorithmParameters,
160    /// Expected performance
161    pub performance_prediction: PerformancePrediction,
162    /// Confidence score (0.0 - 1.0)
163    pub confidence: f64,
164    /// Selection reasoning
165    pub reasoning: SelectionReasoning,
166    /// Alternative algorithms
167    pub alternatives: Vec<AlgorithmSelection>,
168}
169
170/// Selected algorithm enumeration
171#[derive(Debug, Clone, PartialEq, Eq, Hash)]
172pub enum SelectedAlgorithm {
173    /// K-means clustering
174    KMeans,
175    /// DBSCAN clustering
176    DBScan,
177    /// Hierarchical clustering
178    HierarchicalClustering,
179    /// KD-Tree nearest neighbors
180    KDTreeNN,
181    /// Ball Tree nearest neighbors
182    BallTreeNN,
183    /// Quantum-inspired clustering
184    QuantumClustering,
185    /// Neuromorphic clustering
186    NeuromorphicClustering,
187    /// Tensor core acceleration
188    TensorCoreAccelerated,
189    /// Distributed processing
190    DistributedProcessing,
191    /// Ensemble method
192    Ensemble(Vec<SelectedAlgorithm>),
193}
194
195/// Algorithm parameters
196#[derive(Debug, Clone)]
197pub struct AlgorithmParameters {
198    /// Core parameters
199    pub core_params: HashMap<String, ParameterValue>,
200    /// Optimization parameters
201    pub optimization_params: HashMap<String, ParameterValue>,
202    /// Resource allocation parameters
203    pub resource_params: HashMap<String, ParameterValue>,
204}
205
206/// Parameter value types
207#[derive(Debug, Clone)]
208pub enum ParameterValue {
209    Integer(i64),
210    Float(f64),
211    Boolean(bool),
212    String(String),
213    Array(Vec<f64>),
214}
215
216/// Performance prediction
217#[derive(Debug, Clone)]
218pub struct PerformancePrediction {
219    /// Expected execution time (seconds)
220    pub execution_time: f64,
221    /// Expected memory usage (bytes)
222    pub memory_usage: usize,
223    /// Expected accuracy score
224    pub accuracy_score: f64,
225    /// Expected energy consumption (joules)
226    pub energy_consumption: f64,
227    /// Confidence intervals
228    pub confidence_intervals: ConfidenceIntervals,
229}
230
231/// Confidence intervals for predictions
232#[derive(Debug, Clone)]
233pub struct ConfidenceIntervals {
234    /// Execution time range
235    pub execution_time_range: (f64, f64),
236    /// Memory usage range
237    pub memory_usage_range: (usize, usize),
238    /// Accuracy range
239    pub accuracy_range: (f64, f64),
240}
241
242/// Selection reasoning
243#[derive(Debug, Clone)]
244pub struct SelectionReasoning {
245    /// Primary selection factors
246    pub primary_factors: Vec<String>,
247    /// Decision weights
248    pub decision_weights: HashMap<String, f64>,
249    /// Alternative considerations
250    pub alternatives_considered: usize,
251    /// Selection confidence factors
252    pub confidence_factors: Vec<String>,
253}
254
255/// Performance history tracking
256#[derive(Debug)]
257pub struct PerformanceHistory {
258    /// Algorithm performance records
259    records: HashMap<SelectedAlgorithm, VecDeque<PerformanceRecord>>,
260    /// Data pattern performance mapping
261    #[allow(dead_code)]
262    pattern_performance: HashMap<DataPattern, Vec<(SelectedAlgorithm, f64)>>,
263    /// Performance trends
264    #[allow(dead_code)]
265    trends: HashMap<SelectedAlgorithm, PerformanceTrend>,
266}
267
268/// Individual performance record
269#[derive(Debug, Clone)]
270pub struct PerformanceRecord {
271    /// Data characteristics
272    pub data_characteristics: DataCharacteristics,
273    /// Actual execution time
274    pub execution_time: f64,
275    /// Memory usage
276    pub memory_usage: usize,
277    /// Accuracy achieved
278    pub accuracy: f64,
279    /// Energy consumed
280    pub energy_consumed: f64,
281    /// Timestamp
282    pub timestamp: Instant,
283    /// Context information
284    pub context: SelectionContext,
285}
286
287/// Data characteristics for pattern matching
288#[derive(Debug, Clone, Hash, PartialEq, Eq)]
289pub struct DataCharacteristics {
290    /// Number of points (categorized)
291    pub size_category: SizeCategory,
292    /// Dimensionality (categorized)
293    pub dimensionality_category: DimensionalityCategory,
294    /// Data density
295    pub density_category: DensityCategory,
296    /// Clustering tendency
297    pub clustering_tendency: ClusteringTendencyCategory,
298    /// Noise level
299    pub noise_level: NoiseLevel,
300    /// Distribution type
301    pub distribution_type: DistributionType,
302}
303
304/// Data size categories
305#[derive(Debug, Clone, Hash, PartialEq, Eq)]
306pub enum SizeCategory {
307    Tiny,   // < 100 points
308    Small,  // 100 - 1K points
309    Medium, // 1K - 100K points
310    Large,  // 100K - 1M points
311    Huge,   // > 1M points
312}
313
314/// Dimensionality categories
315#[derive(Debug, Clone, Hash, PartialEq, Eq)]
316pub enum DimensionalityCategory {
317    Low,      // 1-3 dimensions
318    Medium,   // 4-20 dimensions
319    High,     // 21-100 dimensions
320    VeryHigh, // > 100 dimensions
321}
322
323/// Density categories
324#[derive(Debug, Clone, Hash, PartialEq, Eq)]
325pub enum DensityCategory {
326    Sparse,
327    Medium,
328    Dense,
329}
330
331/// Clustering tendency categories
332#[derive(Debug, Clone, Hash, PartialEq, Eq)]
333pub enum ClusteringTendencyCategory {
334    Random,
335    Structured,
336    HighlyStructured,
337}
338
339/// Noise level categories
340#[derive(Debug, Clone, Hash, PartialEq, Eq)]
341pub enum NoiseLevel {
342    Low,
343    Medium,
344    High,
345}
346
347/// Distribution type
348#[derive(Debug, Clone, Hash, PartialEq, Eq)]
349pub enum DistributionType {
350    Uniform,
351    Gaussian,
352    Multimodal,
353    Skewed,
354    Unknown,
355}
356
357/// Data pattern for performance mapping
358#[derive(Debug, Clone, Hash, PartialEq, Eq)]
359pub struct DataPattern {
360    pub characteristics: DataCharacteristics,
361    pub context_hash: u64, // Hash of context for grouping
362}
363
364/// Performance trend analysis
365#[derive(Debug, Clone)]
366pub struct PerformanceTrend {
367    /// Trend direction
368    pub trend_direction: TrendDirection,
369    /// Trend strength
370    pub trend_strength: f64,
371    /// Recent performance change
372    pub recent_change: f64,
373    /// Stability score
374    pub stability_score: f64,
375}
376
377/// Trend direction
378#[derive(Debug, Clone)]
379pub enum TrendDirection {
380    Improving,
381    Stable,
382    Degrading,
383}
384
385/// Data pattern analyzer
386#[derive(Debug)]
387pub struct PatternAnalyzer {
388    /// Pattern recognition models
389    #[allow(dead_code)]
390    pattern_models: HashMap<String, PatternModel>,
391    /// Feature extractors
392    #[allow(dead_code)]
393    feature_extractors: Vec<FeatureExtractor>,
394    /// Pattern cache
395    #[allow(dead_code)]
396    pattern_cache: HashMap<u64, DataCharacteristics>,
397}
398
399/// Pattern recognition model
400#[derive(Debug)]
401pub struct PatternModel {
402    /// Model type
403    pub model_type: PatternModelType,
404    /// Model parameters
405    pub parameters: Vec<f64>,
406    /// Accuracy score
407    pub accuracy: f64,
408    /// Last update time
409    pub last_update: Instant,
410}
411
412/// Pattern model types
413#[derive(Debug)]
414pub enum PatternModelType {
415    StatisticalAnalysis,
416    MachineLearning,
417    HeuristicRules,
418}
419
420/// Feature extractor for pattern analysis
421#[derive(Debug)]
422pub struct FeatureExtractor {
423    /// Extractor name
424    pub name: String,
425    /// Feature computation function
426    pub compute_features: fn(&ArrayView2<'_, f64>) -> Vec<f64>,
427}
428
429/// Resource monitor for system awareness
430#[derive(Debug)]
431pub struct ResourceMonitor {
432    /// Current CPU usage
433    cpu_usage: f64,
434    /// Current memory usage
435    memory_usage: usize,
436    /// GPU availability and usage
437    #[allow(dead_code)]
438    gpu_status: GpuStatus,
439    /// Network status
440    #[allow(dead_code)]
441    network_status: NetworkStatus,
442    /// Power consumption
443    #[allow(dead_code)]
444    power_consumption: f64,
445    /// Temperature readings
446    #[allow(dead_code)]
447    temperature: f64,
448    /// Update interval
449    #[allow(dead_code)]
450    update_interval: Duration,
451    /// Last update time
452    last_update: Instant,
453}
454
455/// GPU status information
456#[derive(Debug)]
457pub struct GpuStatus {
458    /// GPU available
459    pub available: bool,
460    /// GPU utilization
461    pub utilization: f64,
462    /// GPU memory usage
463    pub memory_usage: usize,
464    /// GPU temperature
465    pub temperature: f64,
466}
467
468/// Network status information
469#[derive(Debug)]
470pub struct NetworkStatus {
471    /// Bandwidth available
472    pub bandwidth: f64,
473    /// Latency
474    pub latency: f64,
475    /// Packet loss rate
476    pub packet_loss: f64,
477}
478
479/// Quality predictor for accuracy estimation
480#[derive(Debug)]
481pub struct QualityPredictor {
482    /// Quality models
483    #[allow(dead_code)]
484    quality_models: HashMap<SelectedAlgorithm, QualityModel>,
485    /// Cross-validation results
486    #[allow(dead_code)]
487    cv_results: HashMap<SelectedAlgorithm, Vec<f64>>,
488    /// Quality history
489    quality_history: VecDeque<QualityMeasurement>,
490}
491
492/// Quality prediction model
493#[derive(Debug)]
494pub struct QualityModel {
495    /// Model coefficients
496    pub coefficients: Vec<f64>,
497    /// Model intercept
498    pub intercept: f64,
499    /// R-squared score
500    pub r_squared: f64,
501    /// Training data size
502    pub training_size: usize,
503}
504
505/// Quality measurement
506#[derive(Debug, Clone)]
507pub struct QualityMeasurement {
508    /// Algorithm used
509    pub algorithm: SelectedAlgorithm,
510    /// Data characteristics
511    pub data_characteristics: DataCharacteristics,
512    /// Predicted quality
513    pub predicted_quality: f64,
514    /// Actual quality
515    pub actual_quality: f64,
516    /// Prediction error
517    pub prediction_error: f64,
518    /// Timestamp
519    pub timestamp: Instant,
520}
521
522/// Selection cache for performance optimization
523#[derive(Debug)]
524pub struct SelectionCache {
525    /// Cached selections
526    cache: HashMap<CacheKey, CachedSelection>,
527    /// Cache hit statistics
528    #[allow(dead_code)]
529    hit_count: u64,
530    /// Cache miss statistics
531    #[allow(dead_code)]
532    miss_count: u64,
533    /// Maximum cache size
534    max_size: usize,
535}
536
537/// Cache key for selection caching
538#[derive(Debug, Clone, Hash, PartialEq, Eq)]
539pub struct CacheKey {
540    /// Data characteristics hash
541    pub data_hash: u64,
542    /// Context hash
543    pub context_hash: u64,
544    /// Timestamp bucket (for time-based invalidation)
545    pub time_bucket: u64,
546}
547
548/// Cached selection
549#[derive(Debug, Clone)]
550pub struct CachedSelection {
551    /// Selection result
552    pub selection: AlgorithmSelection,
553    /// Cache timestamp
554    pub timestamp: Instant,
555    /// Use count
556    pub use_count: u64,
557    /// Success rate
558    pub success_rate: f64,
559}
560
561impl Default for SelectionContext {
562    fn default() -> Self {
563        Self::new()
564    }
565}
566
567impl SelectionContext {
568    /// Create new selection context
569    pub fn new() -> Self {
570        Self {
571            accuracy_priority: 0.7,
572            speed_priority: 0.7,
573            memory_constraint: usize::MAX,
574            real_time_requirement: false,
575            energy_efficiency: 0.5,
576            quality_tolerance: 0.1,
577            user_preferences: HashMap::new(),
578            environmental_constraints: EnvironmentalConstraints {
579                available_cores: num_cpus::get(),
580                available_memory: 8_000_000_000, // 8GB default
581                gpu_available: false,
582                network_bandwidth: None,
583                power_budget: None,
584                thermal_budget: None,
585            },
586        }
587    }
588
589    /// Configure accuracy priority
590    pub fn with_accuracy_priority(mut self, priority: f64) -> Self {
591        self.accuracy_priority = priority.clamp(0.0, 1.0);
592        self
593    }
594
595    /// Configure speed priority
596    pub fn with_speed_priority(mut self, priority: f64) -> Self {
597        self.speed_priority = priority.clamp(0.0, 1.0);
598        self
599    }
600
601    /// Configure memory constraint
602    pub fn with_memory_constraint(mut self, bytes: usize) -> Self {
603        self.memory_constraint = bytes;
604        self
605    }
606
607    /// Configure real-time requirement
608    pub fn with_real_time_requirement(mut self, required: bool) -> Self {
609        self.real_time_requirement = required;
610        self
611    }
612}
613
614impl Default for AdaptiveAlgorithmSelector {
615    fn default() -> Self {
616        Self::new()
617    }
618}
619
620impl AdaptiveAlgorithmSelector {
621    /// Create new adaptive algorithm selector
622    pub fn new() -> Self {
623        Self {
624            strategies: vec![
625                SelectionStrategy::PatternBased,
626                SelectionStrategy::HistoryBased,
627                SelectionStrategy::ResourceAware,
628            ],
629            performance_learning: false,
630            resource_awareness: false,
631            quality_optimization: false,
632            ensemble_methods: false,
633            performance_history: Arc::new(RwLock::new(PerformanceHistory {
634                records: HashMap::new(),
635                pattern_performance: HashMap::new(),
636                trends: HashMap::new(),
637            })),
638            pattern_analyzer: PatternAnalyzer {
639                pattern_models: HashMap::new(),
640                feature_extractors: Vec::new(),
641                pattern_cache: HashMap::new(),
642            },
643            resource_monitor: ResourceMonitor {
644                cpu_usage: 0.0,
645                memory_usage: 0,
646                gpu_status: GpuStatus {
647                    available: false,
648                    utilization: 0.0,
649                    memory_usage: 0,
650                    temperature: 0.0,
651                },
652                network_status: NetworkStatus {
653                    bandwidth: 0.0,
654                    latency: 0.0,
655                    packet_loss: 0.0,
656                },
657                power_consumption: 0.0,
658                temperature: 0.0,
659                update_interval: Duration::from_secs(1),
660                last_update: Instant::now(),
661            },
662            quality_predictor: QualityPredictor {
663                quality_models: HashMap::new(),
664                cv_results: HashMap::new(),
665                quality_history: VecDeque::new(),
666            },
667            selection_cache: Arc::new(RwLock::new(SelectionCache {
668                cache: HashMap::new(),
669                hit_count: 0,
670                miss_count: 0,
671                max_size: 1000,
672            })),
673        }
674    }
675
676    /// Enable performance learning
677    pub fn with_performance_learning(mut self, enabled: bool) -> Self {
678        self.performance_learning = enabled;
679        if enabled {
680            self.strategies.push(SelectionStrategy::HistoryBased);
681        }
682        self
683    }
684
685    /// Enable resource awareness
686    pub fn with_resource_awareness(mut self, enabled: bool) -> Self {
687        self.resource_awareness = enabled;
688        if enabled {
689            self.strategies.push(SelectionStrategy::ResourceAware);
690        }
691        self
692    }
693
694    /// Enable quality optimization
695    pub fn with_quality_optimization(mut self, enabled: bool) -> Self {
696        self.quality_optimization = enabled;
697        if enabled {
698            self.strategies.push(SelectionStrategy::QualityOptimized);
699        }
700        self
701    }
702
703    /// Enable ensemble methods
704    pub fn with_ensemble_methods(mut self, enabled: bool) -> Self {
705        self.ensemble_methods = enabled;
706        if enabled {
707            self.strategies.push(SelectionStrategy::EnsembleBased);
708        }
709        self
710    }
711
712    /// Select optimal algorithm for given data and context
713    pub async fn select_optimal_algorithm(
714        &mut self,
715        data: &ArrayView2<'_, f64>,
716        context: &SelectionContext,
717    ) -> SpatialResult<AlgorithmSelection> {
718        // Check cache first
719        if let Some(cached) = self.check_cache(data, context).await? {
720            return Ok(cached.selection);
721        }
722
723        // Analyze data characteristics
724        let data_characteristics = self.analyzedata_characteristics(data)?;
725
726        // Update resource monitoring
727        self.update_resource_monitor().await?;
728
729        // Generate candidate algorithms
730        let candidates = self
731            .generate_candidate_algorithms(&data_characteristics, context)
732            .await?;
733
734        // Evaluate candidates using all strategies
735        let mut evaluations = Vec::new();
736        for candidate in candidates {
737            let evaluation = self
738                .evaluate_candidate(&candidate, &data_characteristics, context)
739                .await?;
740            evaluations.push(evaluation);
741        }
742
743        // Select best algorithm
744        let best_selection = self.select_best_candidate(evaluations, context)?;
745
746        // Cache the selection
747        self.cache_selection(data, context, &best_selection).await?;
748
749        Ok(best_selection)
750    }
751
752    /// Execute algorithm with performance feedback
753    pub async fn execute_with_feedback(
754        &mut self,
755        selection: &AlgorithmSelection,
756        data: &ArrayView2<'_, f64>,
757    ) -> SpatialResult<ExecutionResult> {
758        let start_time = Instant::now();
759
760        // Execute the selected algorithm
761        let algorithm_result = self.execute_algorithm(selection, data).await?;
762
763        let execution_time = start_time.elapsed().as_secs_f64();
764
765        // Measure actual performance
766        let actual_performance = ActualPerformance {
767            execution_time,
768            memory_usage: algorithm_result.memory_usage,
769            accuracy: algorithm_result.accuracy,
770            energy_consumed: 0.0, // Would measure actual energy consumption
771        };
772
773        // Update performance history
774        if self.performance_learning {
775            self.update_performance_history(selection, data, &actual_performance)
776                .await?;
777        }
778
779        // Update quality predictor
780        if self.quality_optimization {
781            self.update_quality_predictor(selection, &actual_performance)
782                .await?;
783        }
784
785        Ok(ExecutionResult {
786            algorithm_result,
787            actual_performance: actual_performance.clone(),
788            selection_accuracy: self.calculate_selection_accuracy(selection, &actual_performance),
789        })
790    }
791
792    /// Default feature extractors for pattern analysis
793    #[allow(dead_code)]
794    fn default_feature_extractors(&self) -> Vec<FeatureExtractor> {
795        vec![
796            FeatureExtractor {
797                name: "basic_stats".to_string(),
798                compute_features: |data| {
799                    let (n_points, n_dims) = data.dim();
800                    vec![n_points as f64, n_dims as f64]
801                },
802            },
803            FeatureExtractor {
804                name: "distribution_stats".to_string(),
805                compute_features: |data| {
806                    let (_, n_dims) = data.dim();
807                    let mut features = Vec::new();
808
809                    for dim in 0..n_dims {
810                        let column = data.column(dim);
811                        let mean = column.to_owned().mean();
812                        let std = (column.mapv(|x| (x - mean).powi(2)).mean()).sqrt();
813                        features.push(mean);
814                        features.push(std);
815                    }
816
817                    features
818                },
819            },
820        ]
821    }
822
823    /// Check cache for existing selection
824    async fn check_cache(
825        &self,
826        data: &ArrayView2<'_, f64>,
827        context: &SelectionContext,
828    ) -> SpatialResult<Option<CachedSelection>> {
829        let cache_key = self.compute_cache_key(data, context);
830        let cache = self.selection_cache.read().await;
831
832        if let Some(cached) = cache.cache.get(&cache_key) {
833            // Check if cache entry is still valid (not too old)
834            if cached.timestamp.elapsed() < Duration::from_secs(300) {
835                // 5 minutes
836                return Ok(Some(cached.clone()));
837            }
838        }
839
840        Ok(None)
841    }
842
843    /// Compute cache key for data and context
844    fn compute_cache_key(
845        &self,
846        data: &ArrayView2<'_, f64>,
847        context: &SelectionContext,
848    ) -> CacheKey {
849        use std::collections::hash_map::DefaultHasher;
850        use std::hash::{Hash, Hasher};
851
852        let mut data_hasher = DefaultHasher::new();
853        let (n_points, n_dims) = data.dim();
854        n_points.hash(&mut data_hasher);
855        n_dims.hash(&mut data_hasher);
856
857        // Hash a sample of data points
858        for (i, point) in data.outer_iter().enumerate() {
859            if i % (n_points / 10 + 1) == 0 {
860                // Sample every 10th point
861                for &coord in point.iter() {
862                    (coord as i64).hash(&mut data_hasher);
863                }
864            }
865        }
866
867        let data_hash = data_hasher.finish();
868
869        let mut context_hasher = DefaultHasher::new();
870        context
871            .accuracy_priority
872            .to_bits()
873            .hash(&mut context_hasher);
874        context.speed_priority.to_bits().hash(&mut context_hasher);
875        context.memory_constraint.hash(&mut context_hasher);
876        context.real_time_requirement.hash(&mut context_hasher);
877
878        let context_hash = context_hasher.finish();
879
880        let time_bucket = Instant::now().elapsed().as_secs() / 300; // 5-minute buckets
881
882        CacheKey {
883            data_hash,
884            context_hash,
885            time_bucket,
886        }
887    }
888
889    /// Analyze data characteristics for pattern matching
890    fn analyzedata_characteristics(
891        &mut self,
892        data: &ArrayView2<'_, f64>,
893    ) -> SpatialResult<DataCharacteristics> {
894        let (n_points, n_dims) = data.dim();
895
896        // Categorize size
897        let size_category = match n_points {
898            0..=99 => SizeCategory::Tiny,
899            100..=999 => SizeCategory::Small,
900            1000..=99_999 => SizeCategory::Medium,
901            100_000..=999_999 => SizeCategory::Large,
902            _ => SizeCategory::Huge,
903        };
904
905        // Categorize dimensionality
906        let dimensionality_category = match n_dims {
907            1..=3 => DimensionalityCategory::Low,
908            4..=20 => DimensionalityCategory::Medium,
909            21..=100 => DimensionalityCategory::High,
910            _ => DimensionalityCategory::VeryHigh,
911        };
912
913        // Estimate density
914        let density = self.estimatedata_density(data)?;
915        let density_category = if density < 0.3 {
916            DensityCategory::Sparse
917        } else if density < 0.7 {
918            DensityCategory::Medium
919        } else {
920            DensityCategory::Dense
921        };
922
923        // Estimate clustering tendency
924        let clustering_tendency = self.estimate_clustering_tendency(data)?;
925        let clustering_tendency_category = if clustering_tendency < 0.3 {
926            ClusteringTendencyCategory::HighlyStructured
927        } else if clustering_tendency < 0.7 {
928            ClusteringTendencyCategory::Structured
929        } else {
930            ClusteringTendencyCategory::Random
931        };
932
933        // Estimate noise level
934        let noise_level = self.estimate_noise_level(data)?;
935        let noise_level_category = if noise_level < 0.3 {
936            NoiseLevel::Low
937        } else if noise_level < 0.7 {
938            NoiseLevel::Medium
939        } else {
940            NoiseLevel::High
941        };
942
943        // Estimate distribution type
944        let distribution_type = self.estimate_distribution_type(data)?;
945
946        Ok(DataCharacteristics {
947            size_category,
948            dimensionality_category,
949            density_category,
950            clustering_tendency: clustering_tendency_category,
951            noise_level: noise_level_category,
952            distribution_type,
953        })
954    }
955
956    /// Estimate data density
957    fn estimatedata_density(&self, data: &ArrayView2<'_, f64>) -> SpatialResult<f64> {
958        let (n_points_, n_dims) = data.dim();
959
960        if n_points_ < 2 {
961            return Ok(0.0);
962        }
963
964        let sample_size = n_points_.min(100);
965        let mut total_inverse_distance = 0.0;
966        let mut count = 0;
967
968        for i in 0..sample_size {
969            let mut nearest_distance = f64::INFINITY;
970
971            for j in 0..n_points_ {
972                if i != j {
973                    let dist: f64 = data
974                        .row(i)
975                        .iter()
976                        .zip(data.row(j).iter())
977                        .map(|(&a, &b)| (a - b).powi(2))
978                        .sum::<f64>()
979                        .sqrt();
980
981                    if dist < nearest_distance {
982                        nearest_distance = dist;
983                    }
984                }
985            }
986
987            if nearest_distance > 0.0 && nearest_distance.is_finite() {
988                total_inverse_distance += 1.0 / nearest_distance;
989                count += 1;
990            }
991        }
992
993        Ok(if count > 0 {
994            (total_inverse_distance / count as f64).min(1.0)
995        } else {
996            0.0
997        })
998    }
999
1000    /// Estimate clustering tendency (Hopkins-like statistic)
1001    fn estimate_clustering_tendency(&self, data: &ArrayView2<'_, f64>) -> SpatialResult<f64> {
1002        let (n_points, n_dims) = data.dim();
1003
1004        if n_points < 10 {
1005            return Ok(0.5);
1006        }
1007
1008        let sample_size = n_points.min(20);
1009        let mut real_distances = Vec::new();
1010        let mut random_distances = Vec::new();
1011
1012        // Real point distances
1013        for i in 0..sample_size {
1014            let mut min_dist = f64::INFINITY;
1015            for j in 0..n_points {
1016                if i != j {
1017                    let dist: f64 = data
1018                        .row(i)
1019                        .iter()
1020                        .zip(data.row(j).iter())
1021                        .map(|(&a, &b)| (a - b).powi(2))
1022                        .sum::<f64>()
1023                        .sqrt();
1024                    min_dist = min_dist.min(dist);
1025                }
1026            }
1027            real_distances.push(min_dist);
1028        }
1029
1030        // Random point distances
1031        let bounds = self.getdata_bounds(data);
1032        for _ in 0..sample_size {
1033            let random_point: Array1<f64> = Array1::from_shape_fn(n_dims, |i| {
1034                scirs2_core::random::random::<f64>() * (bounds[i].1 - bounds[i].0) + bounds[i].0
1035            });
1036
1037            let mut min_dist = f64::INFINITY;
1038            for j in 0..n_points {
1039                let dist: f64 = random_point
1040                    .iter()
1041                    .zip(data.row(j).iter())
1042                    .map(|(&a, &b)| (a - b).powi(2))
1043                    .sum::<f64>()
1044                    .sqrt();
1045                min_dist = min_dist.min(dist);
1046            }
1047            random_distances.push(min_dist);
1048        }
1049
1050        let sum_random: f64 = random_distances.iter().sum();
1051        let sum_real: f64 = real_distances.iter().sum();
1052        let hopkins = sum_random / (sum_random + sum_real);
1053
1054        Ok(hopkins)
1055    }
1056
1057    /// Estimate noise level in data
1058    fn estimate_noise_level(&self, data: &ArrayView2<'_, f64>) -> SpatialResult<f64> {
1059        let (n_points_, n_dims) = data.dim();
1060
1061        if n_points_ < 10 {
1062            return Ok(0.0);
1063        }
1064
1065        // Use local outlier factor approximation
1066        let sample_size = n_points_.min(50);
1067        let k = 5; // Number of neighbors
1068
1069        let mut outlier_scores = Vec::new();
1070
1071        for i in 0..sample_size {
1072            let mut distances = Vec::new();
1073
1074            for j in 0..n_points_ {
1075                if i != j {
1076                    let dist: f64 = data
1077                        .row(i)
1078                        .iter()
1079                        .zip(data.row(j).iter())
1080                        .map(|(&a, &b)| (a - b).powi(2))
1081                        .sum::<f64>()
1082                        .sqrt();
1083                    distances.push(dist);
1084                }
1085            }
1086
1087            distances.sort_by(|a, b| a.partial_cmp(b).unwrap());
1088
1089            if distances.len() >= k {
1090                let k_distance = distances[k - 1];
1091                let local_density = k as f64 / k_distance;
1092                outlier_scores.push(1.0 / local_density);
1093            }
1094        }
1095
1096        if outlier_scores.is_empty() {
1097            Ok(0.0)
1098        } else {
1099            let mean_score = outlier_scores.iter().sum::<f64>() / outlier_scores.len() as f64;
1100            let variance = outlier_scores
1101                .iter()
1102                .map(|&score| (score - mean_score).powi(2))
1103                .sum::<f64>()
1104                / outlier_scores.len() as f64;
1105
1106            Ok((variance.sqrt() / mean_score).min(1.0))
1107        }
1108    }
1109
1110    /// Estimate distribution type
1111    fn estimate_distribution_type(
1112        &self,
1113        data: &ArrayView2<'_, f64>,
1114    ) -> SpatialResult<DistributionType> {
1115        let (n_points, n_dims) = data.dim();
1116
1117        if n_points < 10 {
1118            return Ok(DistributionType::Unknown);
1119        }
1120
1121        // Analyze each dimension
1122        let mut uniform_count = 0;
1123        let mut gaussian_count = 0;
1124
1125        for dim in 0..n_dims {
1126            let column = data.column(dim);
1127            let mean = column.to_owned().mean();
1128            let std = (column.mapv(|x| (x - mean).powi(2)).mean()).sqrt();
1129
1130            if std < 1e-6 {
1131                continue; // Constant dimension
1132            }
1133
1134            // Test for uniformity (simplified)
1135            let min_val = column.fold(f64::INFINITY, |a, &b| a.min(b));
1136            let max_val = column.fold(f64::NEG_INFINITY, |a, &b| a.max(b));
1137            let range = max_val - min_val;
1138
1139            let expected_std_uniform = range / (12.0_f64).sqrt();
1140            if (std - expected_std_uniform).abs() / expected_std_uniform < 0.2 {
1141                uniform_count += 1;
1142            }
1143
1144            // Test for normality (simplified skewness and kurtosis)
1145            let normalized: Vec<f64> = column.iter().map(|&x| (x - mean) / std).collect();
1146            let skewness =
1147                normalized.iter().map(|&x| x.powi(3)).sum::<f64>() / normalized.len() as f64;
1148            let kurtosis =
1149                normalized.iter().map(|&x| x.powi(4)).sum::<f64>() / normalized.len() as f64;
1150
1151            if skewness.abs() < 0.5 && (kurtosis - 3.0).abs() < 1.0 {
1152                gaussian_count += 1;
1153            }
1154        }
1155
1156        if uniform_count > n_dims / 2 {
1157            Ok(DistributionType::Uniform)
1158        } else if gaussian_count > n_dims / 2 {
1159            Ok(DistributionType::Gaussian)
1160        } else {
1161            // Check for multimodality (simplified)
1162            Ok(DistributionType::Multimodal)
1163        }
1164    }
1165
1166    /// Get data bounds for each dimension
1167    fn getdata_bounds(&self, data: &ArrayView2<'_, f64>) -> Vec<(f64, f64)> {
1168        let (_, n_dims) = data.dim();
1169        let mut bounds = Vec::new();
1170
1171        for dim in 0..n_dims {
1172            let column = data.column(dim);
1173            let min_val = column.fold(f64::INFINITY, |a, &b| a.min(b));
1174            let max_val = column.fold(f64::NEG_INFINITY, |a, &b| a.max(b));
1175            bounds.push((min_val, max_val));
1176        }
1177
1178        bounds
1179    }
1180
1181    /// Update resource monitor
1182    async fn update_resource_monitor(&mut self) -> SpatialResult<()> {
1183        // In a real implementation, this would query system resources
1184        self.resource_monitor.cpu_usage = 0.5; // Simulated
1185        self.resource_monitor.memory_usage = 4_000_000_000; // 4GB
1186        self.resource_monitor.last_update = Instant::now();
1187        Ok(())
1188    }
1189
1190    /// Generate candidate algorithms based on characteristics
1191    async fn generate_candidate_algorithms(
1192        &self,
1193        characteristics: &DataCharacteristics,
1194        context: &SelectionContext,
1195    ) -> SpatialResult<Vec<SelectedAlgorithm>> {
1196        let mut candidates = Vec::new();
1197
1198        // Add base algorithms
1199        candidates.push(SelectedAlgorithm::KMeans);
1200        candidates.push(SelectedAlgorithm::DBScan);
1201        candidates.push(SelectedAlgorithm::KDTreeNN);
1202
1203        // Add advanced algorithms based on characteristics
1204        match characteristics.size_category {
1205            SizeCategory::Huge => {
1206                candidates.push(SelectedAlgorithm::DistributedProcessing);
1207                candidates.push(SelectedAlgorithm::TensorCoreAccelerated);
1208            }
1209            SizeCategory::Large => {
1210                candidates.push(SelectedAlgorithm::TensorCoreAccelerated);
1211            }
1212            _ => {}
1213        }
1214
1215        // Add specialized algorithms
1216        if context.accuracy_priority > 0.8 {
1217            candidates.push(SelectedAlgorithm::QuantumClustering);
1218        }
1219
1220        if context.energy_efficiency > 0.8 {
1221            candidates.push(SelectedAlgorithm::NeuromorphicClustering);
1222        }
1223
1224        // Add ensemble if enabled
1225        if self.ensemble_methods {
1226            candidates.push(SelectedAlgorithm::Ensemble(vec![
1227                SelectedAlgorithm::KMeans,
1228                SelectedAlgorithm::DBScan,
1229            ]));
1230        }
1231
1232        Ok(candidates)
1233    }
1234
1235    /// Evaluate candidate algorithm
1236    async fn evaluate_candidate(
1237        &self,
1238        candidate: &SelectedAlgorithm,
1239        characteristics: &DataCharacteristics,
1240        context: &SelectionContext,
1241    ) -> SpatialResult<AlgorithmEvaluation> {
1242        // Predict performance
1243        let performance_prediction = self
1244            .predict_performance(candidate, characteristics, context)
1245            .await?;
1246
1247        // Calculate fitness score
1248        let fitness_score = self.calculate_fitness_score(&performance_prediction, context);
1249
1250        // Generate parameters
1251        let parameters = self.generate_parameters(candidate, characteristics, context)?;
1252
1253        Ok(AlgorithmEvaluation {
1254            algorithm: candidate.clone(),
1255            parameters,
1256            performance_prediction,
1257            fitness_score,
1258            confidence: 0.8, // Would be computed based on historical accuracy
1259        })
1260    }
1261
1262    /// Predict algorithm performance
1263    async fn predict_performance(
1264        &self,
1265        algorithm: &SelectedAlgorithm,
1266        characteristics: &DataCharacteristics,
1267        context: &SelectionContext,
1268    ) -> SpatialResult<PerformancePrediction> {
1269        // Base predictions (would use machine learning models in practice)
1270        let (base_time, base_memory, base_accuracy) = match algorithm {
1271            SelectedAlgorithm::KMeans => (1.0, 1000000, 0.8),
1272            SelectedAlgorithm::DBScan => (2.0, 1500000, 0.85),
1273            SelectedAlgorithm::KDTreeNN => (0.5, 800000, 0.9),
1274            SelectedAlgorithm::QuantumClustering => (3.0, 2000000, 0.95),
1275            SelectedAlgorithm::NeuromorphicClustering => (1.5, 1200000, 0.88),
1276            SelectedAlgorithm::TensorCoreAccelerated => (0.3, 3000000, 0.9),
1277            SelectedAlgorithm::DistributedProcessing => (0.8, 5000000, 0.92),
1278            SelectedAlgorithm::HierarchicalClustering => (5.0, 2500000, 0.9),
1279            SelectedAlgorithm::BallTreeNN => (0.7, 1000000, 0.88),
1280            SelectedAlgorithm::Ensemble(_) => (2.5, 3000000, 0.95),
1281        };
1282
1283        // Apply scaling factors based on data characteristics
1284        let size_factor = match characteristics.size_category {
1285            SizeCategory::Tiny => 0.1,
1286            SizeCategory::Small => 0.5,
1287            SizeCategory::Medium => 1.0,
1288            SizeCategory::Large => 3.0,
1289            SizeCategory::Huge => 10.0,
1290        };
1291
1292        let dim_factor = match characteristics.dimensionality_category {
1293            DimensionalityCategory::Low => 0.8,
1294            DimensionalityCategory::Medium => 1.0,
1295            DimensionalityCategory::High => 1.5,
1296            DimensionalityCategory::VeryHigh => 2.5,
1297        };
1298
1299        let execution_time = base_time * size_factor * dim_factor;
1300        let memory_usage = (base_memory as f64 * size_factor * dim_factor) as usize;
1301        let accuracy_score = base_accuracy
1302            * (if characteristics.noise_level == NoiseLevel::High {
1303                0.9
1304            } else {
1305                1.0
1306            });
1307
1308        Ok(PerformancePrediction {
1309            execution_time,
1310            memory_usage,
1311            accuracy_score,
1312            energy_consumption: execution_time * 50.0, // Simplified energy model
1313            confidence_intervals: ConfidenceIntervals {
1314                execution_time_range: (execution_time * 0.8, execution_time * 1.2),
1315                memory_usage_range: (
1316                    (memory_usage as f64 * 0.9) as usize,
1317                    (memory_usage as f64 * 1.1) as usize,
1318                ),
1319                accuracy_range: (accuracy_score * 0.95, accuracy_score.min(1.0)),
1320            },
1321        })
1322    }
1323
1324    /// Calculate fitness score for algorithm
1325    fn calculate_fitness_score(
1326        &self,
1327        prediction: &PerformancePrediction,
1328        context: &SelectionContext,
1329    ) -> f64 {
1330        let time_score = if context.real_time_requirement && prediction.execution_time > 1.0 {
1331            0.0
1332        } else {
1333            1.0 / (1.0 + prediction.execution_time)
1334        };
1335
1336        let memory_score = if prediction.memory_usage > context.memory_constraint {
1337            0.0
1338        } else {
1339            1.0 - (prediction.memory_usage as f64) / (context.memory_constraint as f64)
1340        };
1341
1342        let accuracy_score = prediction.accuracy_score;
1343
1344        let energy_score = 1.0 / (1.0 + prediction.energy_consumption / 100.0);
1345
1346        // Weighted combination
1347        context.speed_priority * time_score
1348            + context.accuracy_priority * accuracy_score
1349            + 0.2 * memory_score
1350            + context.energy_efficiency * energy_score
1351    }
1352
1353    /// Generate algorithm parameters
1354    fn generate_parameters(
1355        &self,
1356        algorithm: &SelectedAlgorithm,
1357        characteristics: &DataCharacteristics,
1358        context: &SelectionContext,
1359    ) -> SpatialResult<AlgorithmParameters> {
1360        let mut core_params = HashMap::new();
1361        let optimization_params = HashMap::new();
1362        let mut resource_params = HashMap::new();
1363
1364        match algorithm {
1365            SelectedAlgorithm::KMeans => {
1366                let k = match characteristics.clustering_tendency {
1367                    ClusteringTendencyCategory::HighlyStructured => 3,
1368                    ClusteringTendencyCategory::Structured => 5,
1369                    ClusteringTendencyCategory::Random => 2,
1370                };
1371                core_params.insert("n_clusters".to_string(), ParameterValue::Integer(k));
1372                core_params.insert("max_iter".to_string(), ParameterValue::Integer(300));
1373                core_params.insert("tol".to_string(), ParameterValue::Float(1e-4));
1374            }
1375            SelectedAlgorithm::DBScan => {
1376                let eps = match characteristics.density_category {
1377                    DensityCategory::Dense => 0.3,
1378                    DensityCategory::Medium => 0.5,
1379                    DensityCategory::Sparse => 1.0,
1380                };
1381                core_params.insert("eps".to_string(), ParameterValue::Float(eps));
1382                core_params.insert("min_samples".to_string(), ParameterValue::Integer(5));
1383            }
1384            SelectedAlgorithm::KDTreeNN => {
1385                core_params.insert("leaf_size".to_string(), ParameterValue::Integer(30));
1386            }
1387            _ => {
1388                // Default parameters for other algorithms
1389                core_params.insert("tolerance".to_string(), ParameterValue::Float(1e-6));
1390            }
1391        }
1392
1393        // Add resource parameters
1394        resource_params.insert(
1395            "n_jobs".to_string(),
1396            ParameterValue::Integer(context.environmental_constraints.available_cores as i64),
1397        );
1398
1399        Ok(AlgorithmParameters {
1400            core_params,
1401            optimization_params,
1402            resource_params,
1403        })
1404    }
1405
1406    /// Select best candidate from evaluations
1407    fn select_best_candidate(
1408        &self,
1409        evaluations: Vec<AlgorithmEvaluation>,
1410        _context: &SelectionContext,
1411    ) -> SpatialResult<AlgorithmSelection> {
1412        let best_evaluation = evaluations
1413            .into_iter()
1414            .max_by(|a, b| a.fitness_score.partial_cmp(&b.fitness_score).unwrap())
1415            .ok_or_else(|| SpatialError::InvalidInput("No candidate algorithms".to_string()))?;
1416
1417        Ok(AlgorithmSelection {
1418            algorithm: best_evaluation.algorithm,
1419            parameters: best_evaluation.parameters,
1420            performance_prediction: best_evaluation.performance_prediction,
1421            confidence: best_evaluation.confidence,
1422            reasoning: SelectionReasoning {
1423                primary_factors: vec!["fitness_score".to_string()],
1424                decision_weights: HashMap::new(),
1425                alternatives_considered: 1,
1426                confidence_factors: vec!["historical_performance".to_string()],
1427            },
1428            alternatives: Vec::new(),
1429        })
1430    }
1431
1432    /// Cache selection result
1433    async fn cache_selection(
1434        &self,
1435        data: &ArrayView2<'_, f64>,
1436        context: &SelectionContext,
1437        selection: &AlgorithmSelection,
1438    ) -> SpatialResult<()> {
1439        let cache_key = self.compute_cache_key(data, context);
1440        let cached_selection = CachedSelection {
1441            selection: selection.clone(),
1442            timestamp: Instant::now(),
1443            use_count: 1,
1444            success_rate: 1.0,
1445        };
1446
1447        let mut cache = self.selection_cache.write().await;
1448        cache.cache.insert(cache_key, cached_selection);
1449
1450        // Limit cache size
1451        if cache.cache.len() > cache.max_size {
1452            // Remove oldest entries (simplified LRU)
1453            let oldest_key = cache
1454                .cache
1455                .iter()
1456                .min_by_key(|(_, v)| v.timestamp)
1457                .map(|(k, _)| k.clone());
1458
1459            if let Some(key) = oldest_key {
1460                cache.cache.remove(&key);
1461            }
1462        }
1463
1464        Ok(())
1465    }
1466
1467    /// Execute selected algorithm
1468    async fn execute_algorithm(
1469        &self,
1470        _selection: &AlgorithmSelection,
1471        data: &ArrayView2<'_, f64>,
1472    ) -> SpatialResult<AlgorithmResult> {
1473        // Simulate algorithm execution
1474        tokio::time::sleep(Duration::from_millis(100)).await;
1475
1476        Ok(AlgorithmResult {
1477            resultdata: data.to_owned(),
1478            memory_usage: 1000000,
1479            accuracy: 0.85,
1480            execution_details: HashMap::new(),
1481        })
1482    }
1483
1484    /// Update performance history
1485    async fn update_performance_history(
1486        &mut self,
1487        selection: &AlgorithmSelection,
1488        data: &ArrayView2<'_, f64>,
1489        actual_performance: &ActualPerformance,
1490    ) -> SpatialResult<()> {
1491        let data_characteristics = self.analyzedata_characteristics(data)?;
1492
1493        let record = PerformanceRecord {
1494            data_characteristics,
1495            execution_time: actual_performance.execution_time,
1496            memory_usage: actual_performance.memory_usage,
1497            accuracy: actual_performance.accuracy,
1498            energy_consumed: actual_performance.energy_consumed,
1499            timestamp: Instant::now(),
1500            context: SelectionContext::new(), // Would store actual context
1501        };
1502
1503        let mut history = self.performance_history.write().await;
1504        history
1505            .records
1506            .entry(selection.algorithm.clone())
1507            .or_insert_with(VecDeque::new)
1508            .push_back(record);
1509
1510        // Limit history size
1511        if let Some(algorithm_history) = history.records.get_mut(&selection.algorithm) {
1512            if algorithm_history.len() > 1000 {
1513                algorithm_history.pop_front();
1514            }
1515        }
1516
1517        Ok(())
1518    }
1519
1520    /// Update quality predictor
1521    async fn update_quality_predictor(
1522        &mut self,
1523        selection: &AlgorithmSelection,
1524        actual_performance: &ActualPerformance,
1525    ) -> SpatialResult<()> {
1526        let predicted_accuracy = selection.performance_prediction.accuracy_score;
1527        let actual_accuracy = actual_performance.accuracy;
1528        let prediction_error = (predicted_accuracy - actual_accuracy).abs();
1529
1530        let measurement = QualityMeasurement {
1531            algorithm: selection.algorithm.clone(),
1532            data_characteristics: DataCharacteristics {
1533                size_category: SizeCategory::Medium,
1534                dimensionality_category: DimensionalityCategory::Medium,
1535                density_category: DensityCategory::Medium,
1536                clustering_tendency: ClusteringTendencyCategory::Structured,
1537                noise_level: NoiseLevel::Medium,
1538                distribution_type: DistributionType::Gaussian,
1539            },
1540            predicted_quality: predicted_accuracy,
1541            actual_quality: actual_accuracy,
1542            prediction_error,
1543            timestamp: Instant::now(),
1544        };
1545
1546        self.quality_predictor
1547            .quality_history
1548            .push_back(measurement);
1549
1550        // Limit history size
1551        if self.quality_predictor.quality_history.len() > 10000 {
1552            self.quality_predictor.quality_history.pop_front();
1553        }
1554
1555        Ok(())
1556    }
1557
1558    /// Calculate selection accuracy
1559    fn calculate_selection_accuracy(
1560        &self,
1561        selection: &AlgorithmSelection,
1562        actual_performance: &ActualPerformance,
1563    ) -> f64 {
1564        let time_accuracy = 1.0
1565            - (selection.performance_prediction.execution_time - actual_performance.execution_time)
1566                .abs()
1567                / selection
1568                    .performance_prediction
1569                    .execution_time
1570                    .max(actual_performance.execution_time);
1571
1572        let accuracy_accuracy = 1.0
1573            - (selection.performance_prediction.accuracy_score - actual_performance.accuracy).abs();
1574
1575        (time_accuracy + accuracy_accuracy) / 2.0
1576    }
1577}
1578
1579/// Algorithm evaluation result
1580#[derive(Debug, Clone)]
1581pub struct AlgorithmEvaluation {
1582    pub algorithm: SelectedAlgorithm,
1583    pub parameters: AlgorithmParameters,
1584    pub performance_prediction: PerformancePrediction,
1585    pub fitness_score: f64,
1586    pub confidence: f64,
1587}
1588
1589/// Algorithm execution result
1590#[derive(Debug)]
1591pub struct AlgorithmResult {
1592    pub resultdata: Array2<f64>,
1593    pub memory_usage: usize,
1594    pub accuracy: f64,
1595    pub execution_details: HashMap<String, String>,
1596}
1597
1598/// Actual performance measurement
1599#[derive(Debug, Clone)]
1600pub struct ActualPerformance {
1601    pub execution_time: f64,
1602    pub memory_usage: usize,
1603    pub accuracy: f64,
1604    pub energy_consumed: f64,
1605}
1606
1607/// Complete execution result with feedback
1608#[derive(Debug)]
1609pub struct ExecutionResult {
1610    pub algorithm_result: AlgorithmResult,
1611    pub actual_performance: ActualPerformance,
1612    pub selection_accuracy: f64,
1613}
1614
1615#[cfg(test)]
1616mod tests {
1617    use super::*;
1618    use scirs2_core::ndarray::array;
1619
1620    #[test]
1621    fn test_selection_context() {
1622        let context = SelectionContext::new()
1623            .with_accuracy_priority(0.9)
1624            .with_speed_priority(0.7)
1625            .with_real_time_requirement(true);
1626
1627        assert_eq!(context.accuracy_priority, 0.9);
1628        assert_eq!(context.speed_priority, 0.7);
1629        assert!(context.real_time_requirement);
1630    }
1631
1632    #[test]
1633    fn test_adaptive_selector_creation() {
1634        let selector = AdaptiveAlgorithmSelector::new()
1635            .with_performance_learning(true)
1636            .with_resource_awareness(true)
1637            .with_quality_optimization(true);
1638
1639        assert!(selector.performance_learning);
1640        assert!(selector.resource_awareness);
1641        assert!(selector.quality_optimization);
1642    }
1643
1644    #[test]
1645    fn testdata_characteristics() {
1646        let selector = AdaptiveAlgorithmSelector::new();
1647        let data = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
1648
1649        let mut selector_mut = selector;
1650        let characteristics = selector_mut.analyzedata_characteristics(&data.view());
1651        assert!(characteristics.is_ok());
1652
1653        let chars = characteristics.unwrap();
1654        assert_eq!(chars.size_category, SizeCategory::Tiny);
1655        assert_eq!(chars.dimensionality_category, DimensionalityCategory::Low);
1656    }
1657
1658    #[tokio::test]
1659    async fn test_algorithm_selection() {
1660        let mut selector = AdaptiveAlgorithmSelector::new();
1661        let context = SelectionContext::new();
1662        let data = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
1663
1664        let result = selector
1665            .select_optimal_algorithm(&data.view(), &context)
1666            .await;
1667        assert!(result.is_ok());
1668
1669        let selection = result.unwrap();
1670        assert!(matches!(
1671            selection.algorithm,
1672            SelectedAlgorithm::KMeans | SelectedAlgorithm::DBScan | SelectedAlgorithm::KDTreeNN
1673        ));
1674        assert!(selection.confidence > 0.0);
1675    }
1676
1677    #[tokio::test]
1678    async fn test_execution_with_feedback() {
1679        let mut selector = AdaptiveAlgorithmSelector::new().with_performance_learning(true);
1680
1681        let context = SelectionContext::new();
1682        let data = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
1683
1684        let selection = selector
1685            .select_optimal_algorithm(&data.view(), &context)
1686            .await
1687            .unwrap();
1688        let execution_result = selector
1689            .execute_with_feedback(&selection, &data.view())
1690            .await;
1691
1692        assert!(execution_result.is_ok());
1693        let result = execution_result.unwrap();
1694        assert!(result.selection_accuracy >= 0.0 && result.selection_accuracy <= 1.0);
1695    }
1696}