Expand description
Neuromorphic Computing for Spatial Data Processing
This module implements brain-inspired computing paradigms for spatial algorithms, leveraging spiking neural networks, memristive computing, and neuroplasticity for energy-efficient adaptive spatial processing. These algorithms mimic biological neural computation to achieve extreme energy efficiency and real-time adaptation.
§Features
- Spiking Neural Networks (SNNs) for spatial pattern recognition
- Memristive crossbar arrays for in-memory spatial computations
- Spike-timing dependent plasticity (STDP) for adaptive learning
- Event-driven spatial processing for real-time applications
- Neuromorphic clustering using competitive learning
- Temporal coding for multi-dimensional spatial data
- Bio-inspired optimization using neural adaptation mechanisms
- Homeostatic plasticity for stable learning
- Neuromodulation for context-dependent adaptation
§Module Organization
§Core Components
core::events- Spike event structures and utilitiescore::neurons- Spiking neuron models with various dynamicscore::synapses- Synaptic models with STDP and metaplasticity
§Algorithm Implementations
algorithms::spiking_clustering- SNN-based clusteringalgorithms::competitive_learning- Winner-take-all and homeostatic clusteringalgorithms::memristive_learning- Advanced memristive learning systemsalgorithms::processing- General neuromorphic processing pipeline
§Examples
§Basic Spiking Neural Network Clustering
ⓘ
use scirs2_core::ndarray::Array2;
use scirs2_spatial::neuromorphic::SpikingNeuralClusterer;
let points = Array2::from_shape_vec((4, 2), vec![
0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0
]).unwrap();
let mut clusterer = SpikingNeuralClusterer::new(2)
.with_spike_threshold(0.8)
.with_stdp_learning(true)
.with_lateral_inhibition(true);
let (assignments, spike_events) = clusterer.fit(&points.view()).unwrap();
println!("Cluster assignments: {:?}", assignments);
println!("Recorded {} spike events", spike_events.len());§Competitive Learning with Homeostasis
ⓘ
use scirs2_core::ndarray::Array2;
use scirs2_spatial::neuromorphic::HomeostaticNeuralClusterer;
let points = Array2::from_shape_vec((4, 2), vec![
0.0, 0.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0
]).unwrap();
let mut clusterer = HomeostaticNeuralClusterer::new(2, 2)
.with_homeostatic_params(0.1, 1000.0);
let assignments = clusterer.fit(&points.view(), 50).unwrap();
println!("Homeostatic clustering results: {:?}", assignments);§Advanced Memristive Learning
ⓘ
use scirs2_core::ndarray::{Array1, Array2};
use scirs2_spatial::neuromorphic::{AdvancedMemristiveLearning, MemristiveDeviceType};
let mut learning_system = AdvancedMemristiveLearning::new(
4, 2, MemristiveDeviceType::TitaniumDioxide
).with_forgetting_protection(true);
let spatial_data = Array2::from_shape_vec((4, 4), vec![
0.0, 0.0, 1.0, 1.0,
1.0, 0.0, 0.0, 1.0,
0.0, 1.0, 1.0, 0.0,
1.0, 1.0, 0.0, 0.0
]).unwrap();
let targets = Array1::from_vec(vec![0.0, 1.0, 1.0, 0.0]);
let result = learning_system.train_spatial_data(
&spatial_data.view(), &targets.view(), 50
).await.unwrap();
println!("Training completed with final accuracy: {:.2}",
result.training_metrics.last().unwrap().accuracy);§Event-driven Neuromorphic Processing
ⓘ
use scirs2_core::ndarray::Array2;
use scirs2_spatial::neuromorphic::NeuromorphicProcessor;
let points = Array2::from_shape_vec((3, 2), vec![
0.0, 0.0, 1.0, 1.0, 2.0, 2.0
]).unwrap();
let mut processor = NeuromorphicProcessor::new()
.with_memristive_crossbar(true)
.with_temporal_coding(true)
.with_crossbar_size(64, 64);
// Encode spatial data as neuromorphic events
let events = processor.encode_spatial_events(&points.view()).unwrap();
// Process events through neuromorphic pipeline
let processed_events = processor.process_events(&events).unwrap();
println!("Processed {} events", processed_events.len());§Performance Considerations
Neuromorphic algorithms are designed for:
- Energy efficiency: Event-driven processing reduces computation
- Real-time adaptation: Online learning without full retraining
- Noise tolerance: Biological inspiration provides robustness
- Scalability: Distributed processing capabilities
§Biological Inspiration
These algorithms draw inspiration from:
- Synaptic plasticity: Adaptive connection strengths
- Homeostatic regulation: Maintaining stable activity levels
- Neuromodulation: Context-dependent learning control
- Memory consolidation: Strengthening important patterns
- Competitive dynamics: Winner-take-all neural competition
Re-exports§
pub use core::events::SpikeEvent;pub use core::events::SpikeSequence;pub use core::neurons::AdaptiveSpikingNeuron;pub use core::neurons::SpikingNeuron;pub use core::synapses::HomeostaticSynapse;pub use core::synapses::MetaplasticSynapse;pub use core::synapses::Synapse;pub use algorithms::competitive_learning::AdaptationScale;pub use algorithms::competitive_learning::CompetitiveNeuralClusterer;pub use algorithms::competitive_learning::HomeostaticNeuralClusterer;pub use algorithms::competitive_learning::HomeostaticNeuron;pub use algorithms::competitive_learning::LearningRateAdaptation;pub use algorithms::competitive_learning::MetaplasticityController;pub use algorithms::competitive_learning::MultiTimescaleAdaptation;pub use algorithms::memristive_learning::AdvancedMemristiveLearning;pub use algorithms::memristive_learning::ConsolidationEvent;pub use algorithms::memristive_learning::ConsolidationRules;pub use algorithms::memristive_learning::ConsolidationType;pub use algorithms::memristive_learning::ForgettingProtectionRules;pub use algorithms::memristive_learning::HomeostaticMechanism;pub use algorithms::memristive_learning::HomeostaticSystem;pub use algorithms::memristive_learning::LearningHistory;pub use algorithms::memristive_learning::LearningRateAdaptation as MemristiveLearningRateAdaptation;pub use algorithms::memristive_learning::MemristiveCrossbar;pub use algorithms::memristive_learning::MemristiveDeviceType;pub use algorithms::memristive_learning::MetaplasticityRules;pub use algorithms::memristive_learning::NeuromodulationEffects;pub use algorithms::memristive_learning::NeuromodulationSystem;pub use algorithms::memristive_learning::NeuromodulatorReleasePatterns;pub use algorithms::memristive_learning::PerformanceMetrics;pub use algorithms::memristive_learning::PlasticityEvent;pub use algorithms::memristive_learning::PlasticityEventType;pub use algorithms::memristive_learning::PlasticityLearningRates;pub use algorithms::memristive_learning::PlasticityMechanism;pub use algorithms::memristive_learning::PlasticityThresholds;pub use algorithms::memristive_learning::PlasticityTimeConstants;pub use algorithms::memristive_learning::PlasticityType;pub use algorithms::memristive_learning::ThresholdAdaptation;pub use algorithms::memristive_learning::TrainingResult;pub use algorithms::processing::NeuromorphicProcessor;pub use algorithms::spiking_clustering::NetworkStats;pub use algorithms::spiking_clustering::SpikingNeuralClusterer;
Modules§
- algorithms
- Neuromorphic Computing Algorithms
- core
- Core Neuromorphic Computing Components
- utils
- Neuromorphic utilities
Structs§
- Neuromorphic
Config - Neuromorphic system configuration
- Neuromorphic
Factory - Neuromorphic system factory
Enums§
- Neuromorphic
Capability - Neuromorphic processing capabilities
Traits§
- Neuromorphic
Algorithm - Neuromorphic algorithm trait for unified interface