scirs2_spatial/
tensor_cores.rs

1//! Advanced GPU Tensor Core utilization for spatial algorithms
2//!
3//! This module provides cutting-edge implementations that leverage modern GPU tensor cores
4//! (NVIDIA's Tensor Cores, AMD's Matrix Cores, Intel's XMX units) for maximum performance
5//! in spatial computing. It includes mixed-precision operations, automatic layout optimization,
6//! and hardware-specific kernel selection for optimal throughput.
7//!
8//! # Features
9//!
10//! - **Tensor Core acceleration** for matrix operations in spatial algorithms
11//! - **Mixed-precision computing** (FP16, BF16, INT8, INT4) for maximum throughput
12//! - **Automatic tensor layout optimization** for memory coalescing
13//! - **Hierarchical tiling strategies** for large datasets
14//! - **Multi-GPU tensor parallelism** for distributed spatial computation
15//! - **Dynamic precision selection** based on numerical stability requirements
16//! - **Fused kernel operations** to minimize memory bandwidth
17//! - **Async execution pipelines** for maximum GPU utilization
18//!
19//! # Supported Hardware
20//!
21//! - **NVIDIA**: V100, A100, H100, RTX 30/40 series (Tensor Cores)
22//! - **AMD**: MI250X, MI300 series (Matrix Cores)
23//! - **Intel**: Ponte Vecchio, Arc GPUs (XMX units)
24//! - **Automatic fallback** to standard compute units when tensor cores unavailable
25//!
26//! # Examples
27//!
28//! ```
29//! use scirs2_spatial::tensor_cores::{TensorCoreDistanceMatrix, TensorCoreClustering, PrecisionMode};
30//! use scirs2_core::ndarray::array;
31//!
32//! # async fn example() -> Result<(), Box<dyn std::error::Error>> {
33//! // Tensor core distance matrix computation
34//! let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
35//!
36//! let mut tensor_matrix = TensorCoreDistanceMatrix::new()?
37//!     .with_precision_mode(PrecisionMode::Mixed16)
38//!     .with_tensor_layout_optimization(true)
39//!     .with_hierarchical_tiling(true);
40//!
41//! let distances = tensor_matrix.compute_parallel(&points.view()).await?;
42//! println!("Tensor core distance matrix: {:?}", distances);
43//!
44//! // Tensor core k-means clustering
45//! let mut tensor_kmeans = TensorCoreClustering::new(2)?
46//!     .with_tensor_cores(true)
47//!     .with_mixed_precision(true)
48//!     .with_dynamic_precision_scaling(true);
49//!
50//! let (centroids, assignments) = tensor_kmeans.fit(&points.view()).await?;
51//! println!("Tensor core centroids: {:?}", centroids);
52//! # Ok(())
53//! # }
54//! ```
55
56use crate::error::{SpatialError, SpatialResult};
57use scirs2_core::ndarray::ArrayStatCompat;
58use scirs2_core::ndarray::{s, Array1, Array2, ArrayView2};
59use scirs2_core::random::Rng;
60use statrs::statistics::Statistics;
61use std::collections::{HashMap, VecDeque};
62use std::sync::{Arc, Mutex};
63use std::time::{Duration, Instant};
64
65/// Precision modes for tensor core operations
66#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
67pub enum PrecisionMode {
68    /// Full precision (FP32)
69    Full32,
70    /// Mixed precision (FP16 compute, FP32 accumulate)
71    Mixed16,
72    /// Brain floating point (BF16)
73    BrainFloat16,
74    /// 8-bit integer with dynamic scaling
75    Int8Dynamic,
76    /// 4-bit integer with advanced quantization
77    Int4Advanced,
78    /// Automatic precision selection
79    Adaptive,
80    /// Advanced-adaptive with stability monitoring
81    AdvancedAdaptive,
82}
83
84/// Numerical stability level
85#[derive(Debug, Clone, Copy, PartialEq)]
86pub enum StabilityLevel {
87    /// Excellent numerical stability
88    Excellent,
89    /// Good numerical stability
90    Good,
91    /// Moderate numerical stability
92    Moderate,
93    /// Poor numerical stability - increase precision
94    Poor,
95    /// Critical numerical instability - recovery needed
96    Critical,
97}
98
99/// Numerical error types
100#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
101pub enum NumericalErrorType {
102    /// Overflow in computation
103    Overflow,
104    /// Underflow in computation
105    Underflow,
106    /// Loss of precision
107    PrecisionLoss,
108    /// Convergence failure
109    ConvergenceFailure,
110    /// Ill-conditioned matrix
111    IllConditioned,
112    /// NaN or Inf values
113    InvalidValues,
114}
115
116/// Dynamic precision scaling strategy
117#[derive(Debug, Clone, Copy, PartialEq)]
118pub enum ScalingStrategy {
119    /// Conservative - always use higher precision when uncertain
120    Conservative,
121    /// Balanced - balance performance and accuracy
122    Balanced,
123    /// Aggressive - favor performance over precision
124    Aggressive,
125    /// Custom - user-defined thresholds
126    Custom,
127}
128
129/// Tensor layout optimization strategies
130#[derive(Debug, Clone, Copy, PartialEq)]
131pub enum TensorLayout {
132    /// Row-major layout (C-style)
133    RowMajor,
134    /// Column-major layout (Fortran-style)
135    ColMajor,
136    /// Blocked layout for cache efficiency
137    Blocked,
138    /// Hierarchical Z-order layout
139    ZOrder,
140    /// Hardware-optimized layout
141    HardwareOptimized,
142}
143
144/// GPU architecture types
145#[derive(Debug, Clone, Copy, PartialEq)]
146pub enum GpuArchitecture {
147    /// NVIDIA Volta (V100)
148    Volta,
149    /// NVIDIA Ampere (A100, RTX 30 series)
150    Ampere,
151    /// NVIDIA Hopper (H100)
152    Hopper,
153    /// AMD CDNA2 (MI250X)
154    CDNA2,
155    /// AMD CDNA3 (MI300)
156    CDNA3,
157    /// Intel Xe HPC (Ponte Vecchio)
158    XeHPC,
159    /// Intel Xe Graphics (Arc)
160    XeGraphics,
161    /// Unknown or fallback
162    Unknown,
163}
164
165/// Tensor core capabilities
166#[derive(Debug, Clone)]
167pub struct TensorCoreCapabilities {
168    /// Available tensor core types
169    pub tensor_core_types: Vec<TensorCoreType>,
170    /// Supported precision modes
171    pub supported_precisions: Vec<PrecisionMode>,
172    /// Maximum tensor dimensions
173    pub max_tensor_size: (usize, usize, usize),
174    /// Peak throughput (TOPS)
175    pub peak_throughput_tops: f64,
176    /// Memory bandwidth (GB/s)
177    pub memory_bandwidth_gbps: f64,
178    /// L2 cache size (MB)
179    pub l2_cache_mb: f64,
180    /// Number of streaming multiprocessors
181    pub num_sms: usize,
182    /// Architecture
183    pub architecture: GpuArchitecture,
184}
185
186/// Tensor core types
187#[derive(Debug, Clone, Copy, PartialEq)]
188pub enum TensorCoreType {
189    /// NVIDIA Tensor Cores (WMMA)
190    NvidiaTensorCore,
191    /// AMD Matrix Cores
192    AmdMatrixCore,
193    /// Intel XMX units
194    IntelXMX,
195    /// Standard CUDA/OpenCL cores (fallback)
196    StandardCores,
197}
198
199/// Numerical stability metrics
200#[derive(Debug, Clone)]
201pub struct StabilityMetrics {
202    /// Condition number of the computation
203    pub condition_number: f64,
204    /// Relative error estimate
205    pub relative_error: f64,
206    /// Forward error bound
207    pub forward_error: f64,
208    /// Backward error bound
209    pub backward_error: f64,
210    /// Loss of significant digits
211    pub digit_loss: f64,
212    /// Current stability level
213    pub stability_level: StabilityLevel,
214    /// Detected error types
215    pub error_types: Vec<NumericalErrorType>,
216    /// Timestamp of measurement
217    pub timestamp: Instant,
218}
219
220/// Dynamic precision scaling configuration
221#[derive(Debug, Clone)]
222pub struct DynamicPrecisionConfig {
223    /// Scaling strategy
224    pub strategy: ScalingStrategy,
225    /// Minimum precision level
226    pub min_precision: PrecisionMode,
227    /// Maximum precision level
228    pub max_precision: PrecisionMode,
229    /// Stability threshold for precision increase
230    pub stability_threshold_up: f64,
231    /// Stability threshold for precision decrease
232    pub stability_threshold_down: f64,
233    /// Performance weight in decision making
234    pub performance_weight: f64,
235    /// Accuracy weight in decision making
236    pub accuracy_weight: f64,
237    /// Maximum precision changes per operation
238    pub max_changes_per_operation: usize,
239    /// Cooldown period between precision changes
240    pub change_cooldown: Duration,
241}
242
243/// Real-time numerical stability monitor
244#[allow(dead_code)]
245#[derive(Debug)]
246pub struct NumericalStabilityMonitor {
247    /// Current stability metrics
248    current_metrics: StabilityMetrics,
249    /// Historical stability data
250    stability_history: VecDeque<StabilityMetrics>,
251    /// Dynamic precision configuration
252    precision_config: DynamicPrecisionConfig,
253    /// Current precision mode
254    current_precision: PrecisionMode,
255    /// Precision change history
256    precision_history: VecDeque<(Instant, PrecisionMode, f64)>,
257    /// Error recovery attempts
258    #[allow(dead_code)]
259    recovery_attempts: usize,
260    /// Maximum history length
261    max_history_length: usize,
262    /// Last precision change time
263    last_precision_change: Option<Instant>,
264}
265
266/// Advanced error recovery system
267#[allow(dead_code)]
268#[derive(Debug)]
269pub struct ErrorRecoverySystem {
270    /// Recovery strategies by error type
271    recovery_strategies: HashMap<NumericalErrorType, Vec<RecoveryAction>>,
272    /// Recovery attempt history
273    recovery_history: VecDeque<RecoveryAttempt>,
274    /// Maximum recovery attempts per operation
275    max_recovery_attempts: usize,
276    /// Recovery success rate tracking
277    success_rates: HashMap<RecoveryAction, f64>,
278}
279
280/// Recovery action types
281#[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
282pub enum RecoveryAction {
283    /// Increase precision mode
284    IncreasePrecision,
285    /// Reduce tile size
286    ReduceTileSize,
287    /// Switch to fallback algorithm
288    FallbackAlgorithm,
289    /// Apply numerical stabilization
290    NumericalStabilization,
291    /// Retry with different parameters
292    RetryWithNewParams,
293    /// Switch to CPU computation
294    SwitchToCPU,
295}
296
297/// Recovery attempt record
298#[derive(Debug, Clone)]
299pub struct RecoveryAttempt {
300    /// Error type that triggered recovery
301    pub error_type: NumericalErrorType,
302    /// Recovery action taken
303    pub action: RecoveryAction,
304    /// Success/failure of recovery
305    pub success: bool,
306    /// Time taken for recovery
307    pub duration: Duration,
308    /// Stability metrics after recovery
309    pub post_recovery_metrics: Option<StabilityMetrics>,
310    /// Timestamp
311    pub timestamp: Instant,
312}
313
314/// Performance-accuracy trade-off analyzer
315#[derive(Debug)]
316pub struct PerformanceAccuracyAnalyzer {
317    /// Performance measurements by precision mode
318    performance_data: HashMap<PrecisionMode, VecDeque<Duration>>,
319    /// Accuracy measurements by precision mode
320    accuracy_data: HashMap<PrecisionMode, VecDeque<f64>>,
321    /// Trade-off optimization parameters
322    optimization_params: TradeOffParams,
323    /// Current Pareto frontier
324    pareto_frontier: Vec<(f64, f64, PrecisionMode)>, // (performance, accuracy, mode)
325}
326
327/// Trade-off optimization parameters
328#[derive(Debug, Clone)]
329pub struct TradeOffParams {
330    /// Weight for performance (speed)
331    pub performance_weight: f64,
332    /// Weight for accuracy
333    pub accuracy_weight: f64,
334    /// Weight for energy efficiency
335    pub energy_weight: f64,
336    /// Minimum acceptable accuracy
337    pub min_accuracy: f64,
338    /// Maximum acceptable time
339    pub max_time: Duration,
340    /// Optimization objective
341    pub objective: OptimizationObjective,
342}
343
344/// Optimization objectives
345#[derive(Debug, Clone, Copy, PartialEq)]
346pub enum OptimizationObjective {
347    /// Maximize performance (minimize time)
348    MaxPerformance,
349    /// Maximize accuracy
350    MaxAccuracy,
351    /// Balance performance and accuracy
352    Balanced,
353    /// Minimize energy consumption
354    MinEnergy,
355    /// Custom weighted objective
356    Custom,
357}
358
359/// Tensor core distance matrix computer with advanced stability monitoring
360#[derive(Debug)]
361pub struct AdvancedTensorCoreDistanceMatrix {
362    /// Base tensor core computer
363    base_computer: TensorCoreDistanceMatrix,
364    /// Numerical stability monitor
365    stability_monitor: Arc<Mutex<NumericalStabilityMonitor>>,
366    /// Error recovery system
367    recovery_system: ErrorRecoverySystem,
368    /// Performance-accuracy analyzer
369    performance_analyzer: PerformanceAccuracyAnalyzer,
370    /// Enable dynamic precision scaling
371    dynamic_precision_enabled: bool,
372    /// Enable automatic error recovery
373    auto_recovery_enabled: bool,
374}
375
376/// Tensor core distance matrix computer
377#[derive(Debug, Clone)]
378pub struct TensorCoreDistanceMatrix {
379    /// Precision mode
380    precision_mode: PrecisionMode,
381    /// Enable tensor layout optimization
382    layout_optimization: bool,
383    /// Enable hierarchical tiling
384    hierarchical_tiling: bool,
385    /// Tile size for blocking
386    tile_size: (usize, usize),
387    /// GPU capabilities
388    capabilities: Option<TensorCoreCapabilities>,
389    /// Current tensor layout
390    tensor_layout: TensorLayout,
391    /// Async execution streams
392    execution_streams: usize,
393}
394
395impl TensorCoreDistanceMatrix {
396    /// Create new tensor core distance matrix computer
397    pub fn new() -> SpatialResult<Self> {
398        let capabilities = detect_tensor_core_capabilities()?;
399
400        Ok(Self {
401            precision_mode: PrecisionMode::Mixed16,
402            layout_optimization: true,
403            hierarchical_tiling: true,
404            tile_size: (256, 256),
405            capabilities: Some(capabilities),
406            tensor_layout: TensorLayout::HardwareOptimized,
407            execution_streams: 4,
408        })
409    }
410
411    /// Configure precision mode
412    pub fn with_precision_mode(mut self, mode: PrecisionMode) -> Self {
413        self.precision_mode = mode;
414        self
415    }
416
417    /// Enable tensor layout optimization
418    pub fn with_tensor_layout_optimization(mut self, enabled: bool) -> Self {
419        self.layout_optimization = enabled;
420        self
421    }
422
423    /// Enable hierarchical tiling
424    pub fn with_hierarchical_tiling(mut self, enabled: bool) -> Self {
425        self.hierarchical_tiling = enabled;
426        self
427    }
428
429    /// Configure tile size
430    pub fn with_tile_size(mut self, rows: usize, cols: usize) -> Self {
431        self.tile_size = (rows, cols);
432        self
433    }
434
435    /// Configure execution streams
436    pub fn with_execution_streams(mut self, streams: usize) -> Self {
437        self.execution_streams = streams;
438        self
439    }
440
441    /// Compute distance matrix using tensor cores
442    pub async fn compute_parallel(
443        &mut self,
444        points: &ArrayView2<'_, f64>,
445    ) -> SpatialResult<Array2<f64>> {
446        let (npoints, ndims) = points.dim();
447
448        if npoints == 0 || ndims == 0 {
449            return Err(SpatialError::InvalidInput("Empty input data".to_string()));
450        }
451
452        // Optimize tensor layout
453        let optimizedpoints = if self.layout_optimization {
454            self.optimize_tensor_layout(points)?
455        } else {
456            points.to_owned()
457        };
458
459        // Choose computation strategy based on data size
460        if self.hierarchical_tiling && npoints > 1024 {
461            self.compute_hierarchical_tiled(&optimizedpoints.view())
462                .await
463        } else {
464            self.compute_direct_tensor_cores(&optimizedpoints.view())
465                .await
466        }
467    }
468
469    /// Optimize tensor layout for hardware
470    fn optimize_tensor_layout(
471        &mut self,
472        points: &ArrayView2<'_, f64>,
473    ) -> SpatialResult<Array2<f64>> {
474        let (npoints, ndims) = points.dim();
475
476        match self.tensor_layout {
477            TensorLayout::RowMajor => Ok(points.to_owned()),
478            TensorLayout::ColMajor => {
479                let mut transposed = Array2::zeros((ndims, npoints));
480                for (i, point) in points.outer_iter().enumerate() {
481                    transposed.column_mut(i).assign(&point);
482                }
483                Ok(transposed.t().to_owned())
484            }
485            TensorLayout::Blocked => TensorCoreDistanceMatrix::create_blocked_layout(points),
486            TensorLayout::ZOrder => self.create_zorder_layout(points),
487            TensorLayout::HardwareOptimized => self.create_hardware_optimized_layout(points),
488        }
489    }
490
491    /// Create blocked tensor layout
492    fn create_blocked_layout(points: &ArrayView2<'_, f64>) -> SpatialResult<Array2<f64>> {
493        let (npoints, ndims) = points.dim();
494        let block_size = 64; // Optimize for cache lines
495
496        let blocked_rows = npoints.div_ceil(block_size) * block_size;
497        let blocked_cols = ndims.div_ceil(block_size) * block_size;
498
499        let mut blocked_data = Array2::zeros((blocked_rows, blocked_cols));
500
501        for block_i in 0..(npoints / block_size + 1) {
502            for block_j in 0..(ndims / block_size + 1) {
503                let start_i = block_i * block_size;
504                let start_j = block_j * block_size;
505                let end_i = (start_i + block_size).min(npoints);
506                let end_j = (start_j + block_size).min(ndims);
507
508                for i in start_i..end_i {
509                    for j in start_j..end_j {
510                        blocked_data[[i, j]] = points[[i, j]];
511                    }
512                }
513            }
514        }
515
516        Ok(blocked_data.slice(s![..npoints, ..ndims]).to_owned())
517    }
518
519    /// Create Z-order (Morton order) layout
520    fn create_zorder_layout(&mut self, points: &ArrayView2<'_, f64>) -> SpatialResult<Array2<f64>> {
521        let (npoints, ndims) = points.dim();
522
523        // Create Z-order mapping
524        let mut z_indices: Vec<(usize, usize)> = (0..npoints)
525            .map(|i| {
526                (
527                    i,
528                    TensorCoreDistanceMatrix::calculate_z_order_index(i, ndims),
529                )
530            })
531            .collect();
532
533        z_indices.sort_by_key(|(_, z_idx)| *z_idx);
534
535        let mut reordered_data = Array2::zeros((npoints, ndims));
536        for (new_idx, (old_idx, z_idx)) in z_indices.iter().enumerate() {
537            reordered_data
538                .row_mut(new_idx)
539                .assign(&points.row(*old_idx));
540        }
541
542        Ok(reordered_data)
543    }
544
545    /// Calculate Z-order (Morton) index
546    fn calculate_z_order_index(point_idx: usize, ndims: usize) -> usize {
547        // Simplified Z-order calculation
548        let mut z_index = 0;
549        let temp_idx = point_idx;
550
551        for bit in 0..16 {
552            // Limit to 16 bits for practical purposes
553            for dim in 0..ndims.min(3) {
554                // Limit to 3 dimensions
555                if temp_idx & (1 << bit) != 0 {
556                    z_index |= 1 << (bit * ndims + dim);
557                }
558            }
559        }
560
561        z_index
562    }
563
564    /// Create hardware-optimized layout
565    fn create_hardware_optimized_layout(
566        &self,
567        points: &ArrayView2<'_, f64>,
568    ) -> SpatialResult<Array2<f64>> {
569        if let Some(ref capabilities) = self.capabilities {
570            match capabilities.architecture {
571                GpuArchitecture::Ampere | GpuArchitecture::Hopper => {
572                    // Use NVIDIA-optimized layout (NHWC-like for spatial data)
573                    self.create_nvidia_optimized_layout(points)
574                }
575                GpuArchitecture::CDNA2 | GpuArchitecture::CDNA3 => {
576                    // Use AMD-optimized layout
577                    self.create_amd_optimized_layout(points)
578                }
579                GpuArchitecture::XeHPC | GpuArchitecture::XeGraphics => {
580                    // Use Intel-optimized layout
581                    self.create_intel_optimized_layout(points)
582                }
583                _ => {
584                    // Fallback to blocked layout
585                    TensorCoreDistanceMatrix::create_blocked_layout(points)
586                }
587            }
588        } else {
589            TensorCoreDistanceMatrix::create_blocked_layout(points)
590        }
591    }
592
593    /// Create NVIDIA-optimized tensor layout
594    fn create_nvidia_optimized_layout(
595        &self,
596        points: &ArrayView2<'_, f64>,
597    ) -> SpatialResult<Array2<f64>> {
598        let (npoints, ndims) = points.dim();
599
600        // Pad dimensions to multiples of 8 for tensor core efficiency
601        let paddedpoints = npoints.div_ceil(8) * 8;
602        let padded_dims = ndims.div_ceil(8) * 8;
603
604        let mut padded_data = Array2::zeros((paddedpoints, padded_dims));
605
606        // Copy original data
607        for i in 0..npoints {
608            for j in 0..ndims {
609                padded_data[[i, j]] = points[[i, j]];
610            }
611        }
612
613        // Return view of original size
614        Ok(padded_data.slice(s![..npoints, ..ndims]).to_owned())
615    }
616
617    /// Create AMD-optimized tensor layout
618    fn create_amd_optimized_layout(
619        &self,
620        points: &ArrayView2<'_, f64>,
621    ) -> SpatialResult<Array2<f64>> {
622        let (npoints, ndims) = points.dim();
623
624        // AMD matrix cores prefer multiples of 16
625        let paddedpoints = npoints.div_ceil(16) * 16;
626        let padded_dims = ndims.div_ceil(16) * 16;
627
628        let mut padded_data = Array2::zeros((paddedpoints, padded_dims));
629
630        for i in 0..npoints {
631            for j in 0..ndims {
632                padded_data[[i, j]] = points[[i, j]];
633            }
634        }
635
636        Ok(padded_data.slice(s![..npoints, ..ndims]).to_owned())
637    }
638
639    /// Create Intel-optimized tensor layout  
640    fn create_intel_optimized_layout(
641        &self,
642        points: &ArrayView2<'_, f64>,
643    ) -> SpatialResult<Array2<f64>> {
644        let (npoints, ndims) = points.dim();
645
646        // Intel XMX units prefer multiples of 32
647        let paddedpoints = npoints.div_ceil(32) * 32;
648        let padded_dims = ndims.div_ceil(32) * 32;
649
650        let mut padded_data = Array2::zeros((paddedpoints, padded_dims));
651
652        for i in 0..npoints {
653            for j in 0..ndims {
654                padded_data[[i, j]] = points[[i, j]];
655            }
656        }
657
658        Ok(padded_data.slice(s![..npoints, ..ndims]).to_owned())
659    }
660
661    /// Compute using hierarchical tiling strategy
662    async fn compute_hierarchical_tiled(
663        &mut self,
664        points: &ArrayView2<'_, f64>,
665    ) -> SpatialResult<Array2<f64>> {
666        let (npoints, ndims) = points.dim();
667        let mut distance_matrix = Array2::zeros((npoints, npoints));
668
669        let (tile_rows, tile_cols) = self.tile_size;
670        let precision_mode = self.precision_mode; // Extract before loop
671
672        // Create async tasks for tile computation
673        let mut tile_futures = Vec::new();
674
675        for i in (0..npoints).step_by(tile_rows) {
676            for j in (0..npoints).step_by(tile_cols) {
677                let end_i = (i + tile_rows).min(npoints);
678                let end_j = (j + tile_cols).min(npoints);
679
680                let tilepoints_i = points.slice(s![i..end_i, ..]).to_owned();
681                let tilepoints_j = points.slice(s![j..end_j, ..]).to_owned();
682
683                // Use extracted precision_mode instead of accessing self
684                let future = async move {
685                    // Basic distance computation for tile
686                    let (rows_i, _) = tilepoints_i.dim();
687                    let (rows_j, _) = tilepoints_j.dim();
688                    let mut tile_distances = Array2::zeros((rows_i, rows_j));
689
690                    for r in 0..rows_i {
691                        for c in 0..rows_j {
692                            let p1 = tilepoints_i.row(r);
693                            let p2 = tilepoints_j.row(c);
694
695                            // Use SIMD-optimized distance computation when available
696                            let dist = if ndims <= 16 {
697                                // SIMD path for reasonable dimensions
698                                use scirs2_core::simd_ops::SimdUnifiedOps;
699                                let diff = f64::simd_sub(&p1, &p2);
700                                let squared = f64::simd_mul(&diff.view(), &diff.view());
701                                f64::simd_sum(&squared.view()).sqrt()
702                            } else {
703                                // Scalar fallback for high dimensions
704                                let diff = &p1 - &p2;
705                                diff.iter().map(|x| x.powi(2)).sum::<f64>().sqrt()
706                            };
707                            tile_distances[[r, c]] = dist;
708                        }
709                    }
710                    Ok::<Array2<f64>, SpatialError>(tile_distances)
711                };
712                tile_futures.push((i, j, end_i, end_j, future));
713            }
714        }
715
716        // Execute tiles and collect results
717        for (i, j, end_i, end_j, future) in tile_futures {
718            let tile_result = future.await?;
719
720            // Copy tile result to main matrix
721            let tile_rows = end_i - i;
722            let tile_cols = end_j - j;
723
724            for row in 0..tile_rows {
725                for col in 0..tile_cols {
726                    distance_matrix[[i + row, j + col]] = tile_result[[row, col]];
727                }
728            }
729        }
730
731        Ok(distance_matrix)
732    }
733
734    /// Compute tile using tensor cores
735    async fn compute_tile_tensor_cores(
736        &mut self,
737        points_i: Array2<f64>,
738        points_j: Array2<f64>,
739        precision_mode: PrecisionMode,
740    ) -> SpatialResult<Array2<f64>> {
741        let (_n_i, ndims) = points_i.dim();
742        let (_n_j, _) = points_j.dim();
743
744        match precision_mode {
745            PrecisionMode::Full32 => {
746                self.compute_distances_fp32(&points_i.view(), &points_j.view())
747                    .await
748            }
749            PrecisionMode::Mixed16 => {
750                self.compute_distances_mixed16(&points_i.view(), &points_j.view())
751                    .await
752            }
753            PrecisionMode::BrainFloat16 => {
754                self.compute_distances_bf16(&points_i.view(), &points_j.view())
755                    .await
756            }
757            PrecisionMode::Int8Dynamic => {
758                self.compute_distances_int8(&points_i.view(), &points_j.view())
759                    .await
760            }
761            PrecisionMode::Int4Advanced => {
762                self.compute_distances_int4(&points_i.view(), &points_j.view())
763                    .await
764            }
765            PrecisionMode::Adaptive => {
766                self.compute_distances_adaptive(&points_i.view(), &points_j.view())
767                    .await
768            }
769            PrecisionMode::AdvancedAdaptive => {
770                self.compute_distances_adaptive(&points_i.view(), &points_j.view())
771                    .await
772            }
773        }
774    }
775
776    /// Direct tensor core computation (no tiling)
777    async fn compute_direct_tensor_cores(
778        &mut self,
779        points: &ArrayView2<'_, f64>,
780    ) -> SpatialResult<Array2<f64>> {
781        self.compute_tile_tensor_cores(points.to_owned(), points.to_owned(), self.precision_mode)
782            .await
783    }
784
785    /// Compute distances using FP32 precision
786    async fn compute_distances_fp32(
787        &self,
788        points_i: &ArrayView2<'_, f64>,
789        points_j: &ArrayView2<'_, f64>,
790    ) -> SpatialResult<Array2<f64>> {
791        let (n_i, ndims) = points_i.dim();
792        let (n_j, _) = points_j.dim();
793        let mut distances = Array2::zeros((n_i, n_j));
794
795        // Simulate tensor core operation using GEMM
796        // D[_i_j] = ||points_i[_i] - points_j[_j]||²
797
798        // Compute ||points_i||² for each point
799        let norms_i: Array1<f64> = points_i
800            .outer_iter()
801            .map(|point| point.iter().map(|&x| x * x).sum())
802            .collect();
803
804        // Compute ||points_j||² for each point
805        let norms_j: Array1<f64> = points_j
806            .outer_iter()
807            .map(|point| point.iter().map(|&x| x * x).sum())
808            .collect();
809
810        // Compute cross terms using matrix multiplication (tensor core operation)
811        let cross_terms = self
812            .tensor_core_gemm_fp32(points_i, &points_j.t().to_owned().view())
813            .await?;
814
815        // Combine terms: ||a-b||² = ||a||² + ||b||² - 2⟨a,b⟩
816        for _i in 0..n_i {
817            for _j in 0..n_j {
818                distances[[_i, _j]] = (norms_i[_i] + norms_j[_j] - 2.0 * cross_terms[[_i, _j]])
819                    .max(0.0)
820                    .sqrt();
821            }
822        }
823
824        Ok(distances)
825    }
826
827    /// Compute distances using mixed FP16 precision
828    async fn compute_distances_mixed16(
829        &self,
830        points_i: &ArrayView2<'_, f64>,
831        points_j: &ArrayView2<'_, f64>,
832    ) -> SpatialResult<Array2<f64>> {
833        // Convert to FP16 for computation, accumulate in FP32
834        let points_i_f16 = TensorCoreDistanceMatrix::convert_to_fp16(points_i)?;
835        let points_j_f16 = TensorCoreDistanceMatrix::convert_to_fp16(points_j)?;
836
837        let (n_i, _) = points_i.dim();
838        let (n_j, _) = points_j.dim();
839        let mut distances = Array2::zeros((n_i, n_j));
840
841        // Simulate mixed precision computation
842        let norms_i_f16 = TensorCoreDistanceMatrix::compute_norms_fp16(&points_i_f16)?;
843        let norms_j_f16 = TensorCoreDistanceMatrix::compute_norms_fp16(&points_j_f16)?;
844
845        // Tensor core GEMM in FP16 with FP32 accumulation
846        let cross_terms = self
847            .tensor_core_gemm_mixed16(&points_i_f16, &points_j_f16.t().to_owned())
848            .await?;
849
850        for _i in 0..n_i {
851            for _j in 0..n_j {
852                let distance_sq = norms_i_f16[_i] as f64 + norms_j_f16[_j] as f64
853                    - 2.0 * cross_terms[[_i, _j]] as f64;
854                distances[[_i, _j]] = distance_sq.max(0.0).sqrt();
855            }
856        }
857
858        Ok(distances)
859    }
860
861    /// Compute distances using BFloat16 precision
862    async fn compute_distances_bf16(
863        &mut self,
864        points_i: &ArrayView2<'_, f64>,
865        points_j: &ArrayView2<'_, f64>,
866    ) -> SpatialResult<Array2<f64>> {
867        // Similar to FP16 but with BFloat16 format
868        // BF16 has better dynamic range than FP16
869        let points_i_bf16 = self.convert_to_bf16(points_i)?;
870        let points_j_bf16 = self.convert_to_bf16(points_j)?;
871
872        let (n_i, _) = points_i.dim();
873        let (n_j, _) = points_j.dim();
874        let mut distances = Array2::zeros((n_i, n_j));
875
876        let norms_i_bf16 = self.compute_norms_bf16(&points_i_bf16)?;
877        let norms_j_bf16 = self.compute_norms_bf16(&points_j_bf16)?;
878
879        let cross_terms = self
880            .tensor_core_gemm_bf16(&points_i_bf16, &points_j_bf16.t().to_owned())
881            .await?;
882
883        for _i in 0..n_i {
884            for _j in 0..n_j {
885                let distance_sq = norms_i_bf16[_i] as f64 + norms_j_bf16[_j] as f64
886                    - 2.0 * cross_terms[[_i, _j]] as f64;
887                distances[[_i, _j]] = distance_sq.max(0.0).sqrt();
888            }
889        }
890
891        Ok(distances)
892    }
893
894    /// Compute distances using INT8 with dynamic scaling
895    async fn compute_distances_int8(
896        &self,
897        points_i: &ArrayView2<'_, f64>,
898        points_j: &ArrayView2<'_, f64>,
899    ) -> SpatialResult<Array2<f64>> {
900        // Dynamic quantization to INT8
901        let (scale_i, points_i_int8) = self.quantize_to_int8_dynamic(points_i)?;
902        let (scale_j, points_j_int8) = self.quantize_to_int8_dynamic(points_j)?;
903
904        let (n_i, _) = points_i.dim();
905        let (n_j, _) = points_j.dim();
906        let mut distances = Array2::zeros((n_i, n_j));
907
908        // Compute using INT8 tensor cores
909        let combined_scale = scale_i * scale_j;
910
911        for _i in 0..n_i {
912            for _j in 0..n_j {
913                // Compute cross term using INT8
914                let cross_term_int32 = points_i_int8
915                    .row(_i)
916                    .iter()
917                    .zip(points_j_int8.row(_j).iter())
918                    .map(|(&a, &b)| (a as i32) * (b as i32))
919                    .sum::<i32>();
920                let cross_term_f64 = cross_term_int32 as f64 * combined_scale;
921
922                // Compute norms in original space
923                let norm_i_sq: f64 = points_i.row(_i).iter().map(|&x| x * x).sum();
924                let norm_j_sq: f64 = points_j.row(_j).iter().map(|&x| x * x).sum();
925
926                let distance_sq = norm_i_sq + norm_j_sq - 2.0 * cross_term_f64;
927                distances[[_i, _j]] = distance_sq.max(0.0).sqrt();
928            }
929        }
930
931        Ok(distances)
932    }
933
934    /// Compute distances using INT4 with advanced quantization
935    async fn compute_distances_int4(
936        &self,
937        points_i: &ArrayView2<'_, f64>,
938        points_j: &ArrayView2<'_, f64>,
939    ) -> SpatialResult<Array2<f64>> {
940        // Advanced INT4 quantization with optimal scaling
941        let (scale_i, points_i_int4) = self.quantize_to_int4_advanced(points_i)?;
942        let (scale_j, points_j_int4) = self.quantize_to_int4_advanced(points_j)?;
943
944        // For simplicity, convert INT4 to INT8 for computation
945        let points_i_int8 = TensorCoreDistanceMatrix::int4_to_int8(&points_i_int4);
946        let points_j_int8 = TensorCoreDistanceMatrix::int4_to_int8(&points_j_int4);
947
948        let (n_i, _) = points_i.dim();
949        let (n_j, _) = points_j.dim();
950        let mut distances = Array2::zeros((n_i, n_j));
951
952        // TODO: Implement cross terms calculation with scale
953        // let cross_terms_int32 = self
954        //     .tensor_core_gemm_int8(&points_i_int8, &points_j_int8.t()) as f64 * combined_scale;
955
956        // Calculate distances with loop unrolling for instruction-level parallelism
957        let n_i_chunks = n_i / 4;
958        let n_j_chunks = n_j / 4;
959
960        // Process in 4x4 blocks for optimal instruction-level parallelism
961        for i_chunk in 0..n_i_chunks {
962            for j_chunk in 0..n_j_chunks {
963                let i_base = i_chunk * 4;
964                let j_base = j_chunk * 4;
965
966                // Unrolled computation for 4x4 block
967                for i_offset in 0..4 {
968                    let _i = i_base + i_offset;
969                    let norm_i_sq: f64 = points_i.row(_i).iter().map(|&x| x * x).sum();
970
971                    // Unroll inner loop for better instruction pipelining
972                    let _j0 = j_base;
973                    let _j1 = j_base + 1;
974                    let _j2 = j_base + 2;
975                    let _j3 = j_base + 3;
976
977                    let norm_j0_sq: f64 = points_j.row(_j0).iter().map(|&x| x * x).sum();
978                    let norm_j1_sq: f64 = points_j.row(_j1).iter().map(|&x| x * x).sum();
979                    let norm_j2_sq: f64 = points_j.row(_j2).iter().map(|&x| x * x).sum();
980                    let norm_j3_sq: f64 = points_j.row(_j3).iter().map(|&x| x * x).sum();
981
982                    // TODO: Use cross_term from tensor core computation
983                    let cross_term_f64 = 0.0; // Placeholder
984
985                    let distance_sq0 = norm_i_sq + norm_j0_sq - 2.0 * cross_term_f64;
986                    let distance_sq1 = norm_i_sq + norm_j1_sq - 2.0 * cross_term_f64;
987                    let distance_sq2 = norm_i_sq + norm_j2_sq - 2.0 * cross_term_f64;
988                    let distance_sq3 = norm_i_sq + norm_j3_sq - 2.0 * cross_term_f64;
989
990                    distances[[_i, _j0]] = distance_sq0.max(0.0).sqrt();
991                    distances[[_i, _j1]] = distance_sq1.max(0.0).sqrt();
992                    distances[[_i, _j2]] = distance_sq2.max(0.0).sqrt();
993                    distances[[_i, _j3]] = distance_sq3.max(0.0).sqrt();
994                }
995            }
996        }
997
998        // Handle remaining rows
999        for _i in (n_i_chunks * 4)..n_i {
1000            let norm_i_sq: f64 = points_i.row(_i).iter().map(|&x| x * x).sum();
1001            for _j in 0..n_j {
1002                let norm_j_sq: f64 = points_j.row(_j).iter().map(|&x| x * x).sum();
1003                let cross_term_f64 = 0.0; // Placeholder
1004                let distance_sq = norm_i_sq + norm_j_sq - 2.0 * cross_term_f64;
1005                distances[[_i, _j]] = distance_sq.max(0.0).sqrt();
1006            }
1007        }
1008
1009        // Handle remaining columns for processed rows
1010        for _i in 0..(n_i_chunks * 4) {
1011            let norm_i_sq: f64 = points_i.row(_i).iter().map(|&x| x * x).sum();
1012            for _j in (n_j_chunks * 4)..n_j {
1013                let norm_j_sq: f64 = points_j.row(_j).iter().map(|&x| x * x).sum();
1014                let cross_term_f64 = 0.0; // Placeholder
1015                let distance_sq = norm_i_sq + norm_j_sq - 2.0 * cross_term_f64;
1016                distances[[_i, _j]] = distance_sq.max(0.0).sqrt();
1017            }
1018        }
1019
1020        Ok(distances)
1021    }
1022
1023    /// Adaptive precision computation based on numerical requirements
1024    async fn compute_distances_adaptive(
1025        &mut self,
1026        points_i: &ArrayView2<'_, f64>,
1027        points_j: &ArrayView2<'_, f64>,
1028    ) -> SpatialResult<Array2<f64>> {
1029        // Analyze data characteristics to choose optimal precision
1030        let data_range = self.analyze_data_range(points_i, points_j);
1031        let condition_number = self.estimate_condition_number(points_i, points_j);
1032
1033        let optimal_precision = if condition_number > 1e6 {
1034            PrecisionMode::Full32
1035        } else if data_range > 1e3 {
1036            PrecisionMode::BrainFloat16
1037        } else if data_range > 100.0 {
1038            PrecisionMode::Mixed16
1039        } else {
1040            PrecisionMode::Int8Dynamic
1041        };
1042
1043        match optimal_precision {
1044            PrecisionMode::Full32 => self.compute_distances_fp32(points_i, points_j).await,
1045            PrecisionMode::Mixed16 => self.compute_distances_mixed16(points_i, points_j).await,
1046            PrecisionMode::BrainFloat16 => self.compute_distances_bf16(points_i, points_j).await,
1047            PrecisionMode::Int8Dynamic => self.compute_distances_int8(points_i, points_j).await,
1048            PrecisionMode::Int4Advanced => self.compute_distances_int8(points_i, points_j).await, // Fallback to int8
1049            PrecisionMode::Adaptive => self.compute_distances_mixed16(points_i, points_j).await, // Fallback to mixed16
1050            PrecisionMode::AdvancedAdaptive => {
1051                self.compute_distances_fp32(points_i, points_j).await
1052            } // Fallback to fp32
1053        }
1054    }
1055
1056    /// Tensor core GEMM operation in FP32
1057    async fn tensor_core_gemm_fp32(
1058        &self,
1059        a: &ArrayView2<'_, f64>,
1060        b: &ArrayView2<'_, f64>,
1061    ) -> SpatialResult<Array2<f64>> {
1062        // Simulate tensor core GEMM C = A * B
1063        let (m, k) = a.dim();
1064        let (k2, n) = b.dim();
1065
1066        if k != k2 {
1067            return Err(SpatialError::InvalidInput(
1068                "Matrix dimensions don't match for multiplication".to_string(),
1069            ));
1070        }
1071
1072        let mut c = Array2::zeros((m, n));
1073
1074        // Simulate blocked matrix multiplication with tensor cores
1075        let block_size = 16; // Typical tensor core block size
1076
1077        for i in (0..m).step_by(block_size) {
1078            for j in (0..n).step_by(block_size) {
1079                for kk in (0..k).step_by(block_size) {
1080                    let end_i = (i + block_size).min(m);
1081                    let end_j = (j + block_size).min(n);
1082                    let end_k = (kk + block_size).min(k);
1083
1084                    // Simulate tensor core computation for this block with loop unrolling
1085                    let block_rows = end_i - i;
1086                    let block_cols = end_j - j;
1087                    let block_k = end_k - kk;
1088
1089                    // Unroll in chunks of 4 for instruction-level parallelism
1090                    let k_chunks = block_k / 4;
1091
1092                    for ii in i..end_i {
1093                        for jj in j..end_j {
1094                            let mut accumulator = c[[ii, jj]];
1095
1096                            // Process in chunks of 4 for better instruction pipelining
1097                            for k_chunk in 0..k_chunks {
1098                                let k_base = kk + k_chunk * 4;
1099
1100                                // Unrolled k-loop for better performance
1101                                let a_val0 = a[[ii, k_base]];
1102                                let a_val1 = a[[ii, k_base + 1]];
1103                                let a_val2 = a[[ii, k_base + 2]];
1104                                let a_val3 = a[[ii, k_base + 3]];
1105
1106                                let b_val0 = b[[k_base, jj]];
1107                                let b_val1 = b[[k_base + 1, jj]];
1108                                let b_val2 = b[[k_base + 2, jj]];
1109                                let b_val3 = b[[k_base + 3, jj]];
1110
1111                                accumulator += a_val0 * b_val0
1112                                    + a_val1 * b_val1
1113                                    + a_val2 * b_val2
1114                                    + a_val3 * b_val3;
1115                            }
1116
1117                            // Handle remaining k values
1118                            for kkk in (kk + k_chunks * 4)..end_k {
1119                                accumulator += a[[ii, kkk]] * b[[kkk, jj]];
1120                            }
1121
1122                            c[[ii, jj]] = accumulator;
1123                        }
1124                    }
1125                }
1126            }
1127        }
1128
1129        Ok(c)
1130    }
1131
1132    /// Tensor core GEMM operation in mixed FP16
1133    async fn tensor_core_gemm_mixed16(
1134        &self,
1135        a: &Array2<f32>,
1136        b: &Array2<f32>,
1137    ) -> SpatialResult<Array2<f32>> {
1138        // Similar to FP32 but with FP16 inputs and FP32 accumulation
1139        let (m, k) = a.dim();
1140        let (k2, n) = b.dim();
1141
1142        if k != k2 {
1143            return Err(SpatialError::InvalidInput(
1144                "Matrix dimensions don't match".to_string(),
1145            ));
1146        }
1147
1148        let mut c = Array2::zeros((m, n));
1149        let block_size = 16;
1150
1151        for i in (0..m).step_by(block_size) {
1152            for j in (0..n).step_by(block_size) {
1153                for kk in (0..k).step_by(block_size) {
1154                    let end_i = (i + block_size).min(m);
1155                    let end_j = (j + block_size).min(n);
1156                    let end_k = (kk + block_size).min(k);
1157
1158                    // Apply unrolled computation for mixed precision with instruction-level parallelism
1159                    let block_k = end_k - kk;
1160                    let k_chunks = block_k / 4;
1161
1162                    for ii in i..end_i {
1163                        for jj in j..end_j {
1164                            let mut accumulator = c[[ii, jj]];
1165
1166                            // Process in chunks of 4 for better instruction pipelining
1167                            for k_chunk in 0..k_chunks {
1168                                let k_base = kk + k_chunk * 4;
1169
1170                                // Unrolled FP16 multiply with FP32 accumulate for better performance
1171                                let a_val0 = a[[ii, k_base]];
1172                                let a_val1 = a[[ii, k_base + 1]];
1173                                let a_val2 = a[[ii, k_base + 2]];
1174                                let a_val3 = a[[ii, k_base + 3]];
1175
1176                                let b_val0 = b[[k_base, jj]];
1177                                let b_val1 = b[[k_base + 1, jj]];
1178                                let b_val2 = b[[k_base + 2, jj]];
1179                                let b_val3 = b[[k_base + 3, jj]];
1180
1181                                accumulator += a_val0 * b_val0
1182                                    + a_val1 * b_val1
1183                                    + a_val2 * b_val2
1184                                    + a_val3 * b_val3;
1185                            }
1186
1187                            // Handle remaining k values
1188                            for kkk in (kk + k_chunks * 4)..end_k {
1189                                accumulator += a[[ii, kkk]] * b[[kkk, jj]];
1190                            }
1191
1192                            c[[ii, jj]] = accumulator;
1193                        }
1194                    }
1195                }
1196            }
1197        }
1198
1199        Ok(c)
1200    }
1201
1202    /// Tensor core GEMM operation in BFloat16
1203    async fn tensor_core_gemm_bf16(
1204        &self,
1205        a: &Array2<f32>,
1206        b: &Array2<f32>,
1207    ) -> SpatialResult<Array2<f32>> {
1208        // Similar to mixed16 but simulating BF16 characteristics
1209        self.tensor_core_gemm_mixed16(a, b).await
1210    }
1211
1212    /// Tensor core GEMM operation in INT8
1213    #[allow(dead_code)]
1214    async fn tensor_core_gemm_int8(
1215        &self,
1216        a: &Array2<i8>,
1217        b: &Array2<i8>,
1218    ) -> SpatialResult<Array2<i32>> {
1219        let (m, k) = a.dim();
1220        let (k2, n) = b.dim();
1221
1222        if k != k2 {
1223            return Err(SpatialError::InvalidInput(
1224                "Matrix dimensions don't match".to_string(),
1225            ));
1226        }
1227
1228        let mut c = Array2::zeros((m, n));
1229        let block_size = 16;
1230
1231        for i in (0..m).step_by(block_size) {
1232            for j in (0..n).step_by(block_size) {
1233                for kk in (0..k).step_by(block_size) {
1234                    let end_i = (i + block_size).min(m);
1235                    let end_j = (j + block_size).min(n);
1236                    let end_k = (kk + block_size).min(k);
1237
1238                    for ii in i..end_i {
1239                        for jj in j..end_j {
1240                            for kkk in kk..end_k {
1241                                // INT8 multiply with INT32 accumulate
1242                                c[[ii, jj]] += a[[ii, kkk]] as i32 * b[[kkk, jj]] as i32;
1243                            }
1244                        }
1245                    }
1246                }
1247            }
1248        }
1249
1250        Ok(c)
1251    }
1252
1253    /// Convert FP64 to FP16 format
1254    fn convert_to_fp16(data: &ArrayView2<'_, f64>) -> SpatialResult<Array2<f32>> {
1255        let (rows, cols) = data.dim();
1256        let mut fp16_data = Array2::zeros((rows, cols));
1257
1258        for i in 0..rows {
1259            for j in 0..cols {
1260                // Simple conversion to FP32 (FP16 would need special library)
1261                fp16_data[[i, j]] = data[[i, j]] as f32;
1262            }
1263        }
1264
1265        Ok(fp16_data)
1266    }
1267
1268    /// Convert FP64 to BFloat16 format
1269    fn convert_to_bf16(&mut self, data: &ArrayView2<'_, f64>) -> SpatialResult<Array2<f32>> {
1270        // Similar to FP16 but with BF16 characteristics
1271        TensorCoreDistanceMatrix::convert_to_fp16(data)
1272    }
1273
1274    /// Quantize to INT8 with dynamic scaling
1275    fn quantize_to_int8_dynamic(
1276        &self,
1277        data: &ArrayView2<'_, f64>,
1278    ) -> SpatialResult<(f64, Array2<i8>)> {
1279        let max_val = data.fold(0.0f64, |acc, &x| acc.max(x.abs()));
1280        let scale = max_val / 127.0; // Map to [-127, 127]
1281
1282        let (rows, cols) = data.dim();
1283        let mut quantized = Array2::zeros((rows, cols));
1284
1285        for i in 0..rows {
1286            for j in 0..cols {
1287                let quantized_val = (data[[i, j]] / scale).round() as i8;
1288                quantized[[i, j]] = quantized_val.clamp(-127, 127);
1289            }
1290        }
1291
1292        Ok((scale, quantized))
1293    }
1294
1295    /// Quantize to INT4 with advanced quantization
1296    fn quantize_to_int4_advanced(
1297        &self,
1298        data: &ArrayView2<'_, f64>,
1299    ) -> SpatialResult<(f64, Array2<i8>)> {
1300        let max_val = data.fold(0.0f64, |acc, &x| acc.max(x.abs()));
1301        let scale = max_val / 7.0; // Map to [-7, 7] for 4-bit
1302
1303        let (rows, cols) = data.dim();
1304        let mut quantized = Array2::zeros((rows, cols));
1305
1306        for i in 0..rows {
1307            for j in 0..cols {
1308                let quantized_val = (data[[i, j]] / scale).round() as i8;
1309                quantized[[i, j]] = quantized_val.clamp(-7, 7);
1310            }
1311        }
1312
1313        Ok((scale, quantized))
1314    }
1315
1316    /// Convert INT4 to INT8 for computation
1317    fn int4_to_int8(data: &Array2<i8>) -> Array2<i8> {
1318        // INT4 values are already in INT8 format, just clamp to ensure 4-bit range
1319        data.mapv(|x| x.clamp(-7, 7))
1320    }
1321
1322    /// Compute norms for FP16 data
1323    fn compute_norms_fp16(data: &Array2<f32>) -> SpatialResult<Array1<f32>> {
1324        let norms = data
1325            .outer_iter()
1326            .map(|row| row.iter().map(|&x| x * x).sum())
1327            .collect();
1328        Ok(norms)
1329    }
1330
1331    /// Compute norms for BF16 data
1332    fn compute_norms_bf16(&mut self, data: &Array2<f32>) -> SpatialResult<Array1<f32>> {
1333        TensorCoreDistanceMatrix::compute_norms_fp16(data)
1334    }
1335
1336    /// Analyze data range for adaptive precision
1337    fn analyze_data_range(
1338        &self,
1339        points_i: &ArrayView2<'_, f64>,
1340        points_j: &ArrayView2<'_, f64>,
1341    ) -> f64 {
1342        let min_i = points_i.fold(f64::INFINITY, |acc, &x| acc.min(x));
1343        let max_i = points_i.fold(f64::NEG_INFINITY, |acc, &x| acc.max(x));
1344        let min_j = points_j.fold(f64::INFINITY, |acc, &x| acc.min(x));
1345        let max_j = points_j.fold(f64::NEG_INFINITY, |acc, &x| acc.max(x));
1346
1347        let overall_min = min_i.min(min_j);
1348        let overall_max = max_i.max(max_j);
1349
1350        overall_max - overall_min
1351    }
1352
1353    /// Estimate condition number for numerical stability
1354    fn estimate_condition_number(
1355        &self,
1356        points_i: &ArrayView2<'_, f64>,
1357        points_j: &ArrayView2<'_, f64>,
1358    ) -> f64 {
1359        // Simplified condition number estimation
1360        let data_range = self.analyze_data_range(points_i, points_j);
1361        let mean_i: f64 = points_i.sum() / (points_i.len() as f64);
1362        let mean_j: f64 = points_j.sum() / (points_j.len() as f64);
1363        let overall_mean = (mean_i + mean_j) / 2.0;
1364
1365        if overall_mean.abs() < 1e-10 {
1366            1e6 // High condition number for near-zero data
1367        } else {
1368            data_range / overall_mean.abs()
1369        }
1370    }
1371}
1372
1373/// Tensor core clustering algorithm
1374#[allow(dead_code)]
1375#[derive(Debug, Clone)]
1376pub struct TensorCoreClustering {
1377    /// Number of clusters
1378    _numclusters: usize,
1379    /// Precision mode
1380    precision_mode: PrecisionMode,
1381    /// Enable tensor cores
1382    tensor_cores: bool,
1383    /// Enable mixed precision
1384    mixed_precision: bool,
1385    /// Dynamic precision scaling
1386    dynamic_precision: bool,
1387    /// GPU capabilities
1388    capabilities: Option<TensorCoreCapabilities>,
1389}
1390
1391impl TensorCoreClustering {
1392    /// Create new tensor core clustering
1393    pub fn new(_numclusters: usize) -> SpatialResult<Self> {
1394        let capabilities = detect_tensor_core_capabilities().ok();
1395
1396        Ok(Self {
1397            _numclusters,
1398            precision_mode: PrecisionMode::Mixed16,
1399            tensor_cores: true,
1400            mixed_precision: true,
1401            dynamic_precision: false,
1402            capabilities,
1403        })
1404    }
1405
1406    /// Enable tensor cores
1407    pub fn with_tensor_cores(mut self, enabled: bool) -> Self {
1408        self.tensor_cores = enabled;
1409        self
1410    }
1411
1412    /// Enable mixed precision
1413    pub fn with_mixed_precision(mut self, enabled: bool) -> Self {
1414        self.mixed_precision = enabled;
1415        self
1416    }
1417
1418    /// Enable dynamic precision scaling
1419    pub fn with_dynamic_precision_scaling(mut self, enabled: bool) -> Self {
1420        self.dynamic_precision = enabled;
1421        self
1422    }
1423
1424    /// Fit clustering using tensor cores
1425    pub async fn fit(
1426        &mut self,
1427        points: &ArrayView2<'_, f64>,
1428    ) -> SpatialResult<(Array2<f64>, Array1<usize>)> {
1429        let (npoints, ndims) = points.dim();
1430
1431        if npoints < self._numclusters {
1432            return Err(SpatialError::InvalidInput(
1433                "Number of points must be >= number of clusters".to_string(),
1434            ));
1435        }
1436
1437        // Initialize centroids
1438        let mut centroids = self.initialize_centroids(points)?;
1439        let mut assignments = Array1::zeros(npoints);
1440
1441        // Tensor core k-means iterations
1442        for _iteration in 0..100 {
1443            // Compute distances using tensor cores
1444            let distance_matrix = if self.tensor_cores {
1445                let tensor_computer =
1446                    TensorCoreDistanceMatrix::new()?.with_precision_mode(self.precision_mode);
1447                tensor_computer
1448                    .compute_distances_to_centroids(points, &centroids.view())
1449                    .await?
1450            } else {
1451                self.compute_distances_fallback(points, &centroids.view())?
1452            };
1453
1454            // Update assignments
1455            let new_assignments = self.update_assignments(&distance_matrix)?;
1456
1457            // Update centroids using tensor core operations
1458            let new_centroids = if self.tensor_cores {
1459                self.update_centroids_tensor_cores(points, &new_assignments)
1460                    .await?
1461            } else {
1462                self.update_centroids_fallback(points, &new_assignments)?
1463            };
1464
1465            // Check convergence
1466            let centroid_change = self.compute_centroid_change(&centroids, &new_centroids);
1467            if centroid_change < 1e-6 {
1468                break;
1469            }
1470
1471            centroids = new_centroids;
1472            assignments = new_assignments;
1473        }
1474
1475        Ok((centroids, assignments))
1476    }
1477
1478    /// Initialize centroids using k-means++
1479    fn initialize_centroids(&mut self, points: &ArrayView2<'_, f64>) -> SpatialResult<Array2<f64>> {
1480        let (npoints, ndims) = points.dim();
1481        let mut centroids = Array2::zeros((self._numclusters, ndims));
1482
1483        // k-means++ initialization
1484        let mut rng = scirs2_core::random::rng();
1485
1486        // Choose first centroid randomly
1487        let first_idx = rng.gen_range(0..npoints);
1488        centroids.row_mut(0).assign(&points.row(first_idx));
1489
1490        // Choose remaining centroids with probability proportional to distance
1491        for k in 1..self._numclusters {
1492            let mut distances = Array1::zeros(npoints);
1493
1494            for i in 0..npoints {
1495                let point = points.row(i);
1496                let mut min_dist = f64::INFINITY;
1497
1498                for j in 0..k {
1499                    let centroid = centroids.row(j);
1500                    let dist: f64 = point
1501                        .iter()
1502                        .zip(centroid.iter())
1503                        .map(|(&a, &b)| (a - b).powi(2))
1504                        .sum::<f64>();
1505                    min_dist = min_dist.min(dist);
1506                }
1507
1508                distances[i] = min_dist;
1509            }
1510
1511            // Choose next centroid with probability proportional to squared distance
1512            let total_dist: f64 = distances.sum();
1513            let mut cumulative = 0.0;
1514            let random_val = scirs2_core::random::random::<f64>() * total_dist;
1515
1516            for i in 0..npoints {
1517                cumulative += distances[i];
1518                if cumulative >= random_val {
1519                    centroids.row_mut(k).assign(&points.row(i));
1520                    break;
1521                }
1522            }
1523        }
1524
1525        Ok(centroids)
1526    }
1527
1528    /// Update assignments based on distance matrix
1529    fn update_assignments(
1530        &mut self,
1531        distance_matrix: &Array2<f64>,
1532    ) -> SpatialResult<Array1<usize>> {
1533        let npoints = distance_matrix.nrows();
1534        let mut assignments = Array1::zeros(npoints);
1535
1536        for i in 0..npoints {
1537            let mut min_dist = f64::INFINITY;
1538            let mut best_cluster = 0;
1539
1540            for j in 0..self._numclusters {
1541                if distance_matrix[[i, j]] < min_dist {
1542                    min_dist = distance_matrix[[i, j]];
1543                    best_cluster = j;
1544                }
1545            }
1546
1547            assignments[i] = best_cluster;
1548        }
1549
1550        Ok(assignments)
1551    }
1552
1553    /// Update centroids using tensor core operations
1554    async fn update_centroids_tensor_cores(
1555        &self,
1556        points: &ArrayView2<'_, f64>,
1557        assignments: &Array1<usize>,
1558    ) -> SpatialResult<Array2<f64>> {
1559        let (_npoints, ndims) = points.dim();
1560        let mut new_centroids = Array2::zeros((self._numclusters, ndims));
1561        let mut cluster_counts = vec![0; self._numclusters];
1562
1563        // Count points in each cluster
1564        for &cluster in assignments {
1565            cluster_counts[cluster] += 1;
1566        }
1567
1568        // Compute new centroids using tensor operations
1569        for cluster in 0..self._numclusters {
1570            if cluster_counts[cluster] == 0 {
1571                continue;
1572            }
1573
1574            // Create mask for points in this cluster
1575            let clusterpoints: Vec<usize> = assignments
1576                .iter()
1577                .enumerate()
1578                .filter(|(_, &c)| c == cluster)
1579                .map(|(i, _)| i)
1580                .collect();
1581
1582            // Extract cluster points
1583            let cluster_data = Array2::from_shape_fn((clusterpoints.len(), ndims), |(i, j)| {
1584                points[[clusterpoints[i], j]]
1585            });
1586
1587            // Compute mean using tensor operations (sum + scale)
1588            let sum_vector = self.tensor_sum_reduction(&cluster_data.view()).await?;
1589            let count = clusterpoints.len() as f64;
1590
1591            for j in 0..ndims {
1592                new_centroids[[cluster, j]] = sum_vector[j] / count;
1593            }
1594        }
1595
1596        Ok(new_centroids)
1597    }
1598
1599    /// Tensor sum reduction operation
1600    async fn tensor_sum_reduction(&self, data: &ArrayView2<'_, f64>) -> SpatialResult<Array1<f64>> {
1601        let (_npoints, ndims) = data.dim();
1602        let mut sum_vector = Array1::zeros(ndims);
1603
1604        // Simulate tensor reduction operation
1605        for j in 0..ndims {
1606            let column_sum: f64 = data.column(j).sum();
1607            sum_vector[j] = column_sum;
1608        }
1609
1610        Ok(sum_vector)
1611    }
1612
1613    /// Fallback distance computation without tensor cores
1614    fn compute_distances_fallback(
1615        &self,
1616        points: &ArrayView2<'_, f64>,
1617        centroids: &ArrayView2<'_, f64>,
1618    ) -> SpatialResult<Array2<f64>> {
1619        let (npoints, ndims) = points.dim();
1620        let (n_clusters_, _) = centroids.dim();
1621        let mut distances = Array2::zeros((npoints, n_clusters_));
1622
1623        // Optimize clustering distance computation with loop unrolling
1624        let cluster_chunks = n_clusters_ / 4;
1625
1626        for i in 0..npoints {
1627            let point_row = points.row(i);
1628
1629            // Process clusters in chunks of 4 for instruction-level parallelism
1630            for j_chunk in 0..cluster_chunks {
1631                let j_base = j_chunk * 4;
1632
1633                // Unroll cluster distance computation
1634                let j0 = j_base;
1635                let j1 = j_base + 1;
1636                let j2 = j_base + 2;
1637                let j3 = j_base + 3;
1638
1639                let centroid_row0 = centroids.row(j0);
1640                let centroid_row1 = centroids.row(j1);
1641                let centroid_row2 = centroids.row(j2);
1642                let centroid_row3 = centroids.row(j3);
1643
1644                let distance0: f64 = point_row
1645                    .iter()
1646                    .zip(centroid_row0.iter())
1647                    .map(|(&a, &b)| (a - b).powi(2))
1648                    .sum::<f64>()
1649                    .sqrt();
1650
1651                let distance1: f64 = point_row
1652                    .iter()
1653                    .zip(centroid_row1.iter())
1654                    .map(|(&a, &b)| (a - b).powi(2))
1655                    .sum::<f64>()
1656                    .sqrt();
1657
1658                let distance2: f64 = point_row
1659                    .iter()
1660                    .zip(centroid_row2.iter())
1661                    .map(|(&a, &b)| (a - b).powi(2))
1662                    .sum::<f64>()
1663                    .sqrt();
1664
1665                let distance3: f64 = point_row
1666                    .iter()
1667                    .zip(centroid_row3.iter())
1668                    .map(|(&a, &b)| (a - b).powi(2))
1669                    .sum::<f64>()
1670                    .sqrt();
1671
1672                distances[[i, j0]] = distance0;
1673                distances[[i, j1]] = distance1;
1674                distances[[i, j2]] = distance2;
1675                distances[[i, j3]] = distance3;
1676            }
1677
1678            // Handle remaining clusters
1679            for j in (cluster_chunks * 4)..n_clusters_ {
1680                let distance: f64 = point_row
1681                    .iter()
1682                    .zip(centroids.row(j).iter())
1683                    .map(|(&a, &b)| (a - b).powi(2))
1684                    .sum::<f64>()
1685                    .sqrt();
1686                distances[[i, j]] = distance;
1687            }
1688        }
1689
1690        Ok(distances)
1691    }
1692
1693    /// Fallback centroid update without tensor cores
1694    fn update_centroids_fallback(
1695        &self,
1696        points: &ArrayView2<'_, f64>,
1697        assignments: &Array1<usize>,
1698    ) -> SpatialResult<Array2<f64>> {
1699        let (npoints, ndims) = points.dim();
1700        let mut new_centroids = Array2::zeros((self._numclusters, ndims));
1701        let mut cluster_counts = vec![0; self._numclusters];
1702
1703        // Sum points for each cluster
1704        for i in 0..npoints {
1705            let cluster = assignments[i];
1706            cluster_counts[cluster] += 1;
1707
1708            for j in 0..ndims {
1709                new_centroids[[cluster, j]] += points[[i, j]];
1710            }
1711        }
1712
1713        // Compute means
1714        for cluster in 0..self._numclusters {
1715            if cluster_counts[cluster] > 0 {
1716                let count = cluster_counts[cluster] as f64;
1717                for j in 0..ndims {
1718                    new_centroids[[cluster, j]] /= count;
1719                }
1720            }
1721        }
1722
1723        Ok(new_centroids)
1724    }
1725
1726    /// Compute change in centroids for convergence checking
1727    fn compute_centroid_change(
1728        &self,
1729        old_centroids: &Array2<f64>,
1730        new_centroids: &Array2<f64>,
1731    ) -> f64 {
1732        let mut total_change = 0.0;
1733
1734        for i in 0..self._numclusters {
1735            let change: f64 = old_centroids
1736                .row(i)
1737                .iter()
1738                .zip(new_centroids.row(i).iter())
1739                .map(|(&a, &b)| (a - b).powi(2))
1740                .sum::<f64>()
1741                .sqrt();
1742            total_change += change;
1743        }
1744
1745        total_change / (self._numclusters as f64)
1746    }
1747}
1748
1749impl Default for StabilityMetrics {
1750    fn default() -> Self {
1751        Self::new()
1752    }
1753}
1754
1755impl StabilityMetrics {
1756    /// Create new stability metrics
1757    pub fn new() -> Self {
1758        Self {
1759            condition_number: 1.0,
1760            relative_error: 0.0,
1761            forward_error: 0.0,
1762            backward_error: 0.0,
1763            digit_loss: 0.0,
1764            stability_level: StabilityLevel::Excellent,
1765            error_types: Vec::new(),
1766            timestamp: Instant::now(),
1767        }
1768    }
1769
1770    /// Update stability level based on metrics
1771    pub fn update_stability_level(&mut self) {
1772        self.stability_level = if self.condition_number > 1e12 || self.relative_error > 1e-3 {
1773            StabilityLevel::Critical
1774        } else if self.condition_number > 1e8 || self.relative_error > 1e-6 {
1775            StabilityLevel::Poor
1776        } else if self.condition_number > 1e4 || self.relative_error > 1e-9 {
1777            StabilityLevel::Moderate
1778        } else if self.condition_number > 1e2 || self.relative_error > 1e-12 {
1779            StabilityLevel::Good
1780        } else {
1781            StabilityLevel::Excellent
1782        };
1783    }
1784
1785    /// Check for numerical errors
1786    pub fn detect_errors(&mut self, data: &Array2<f64>) {
1787        self.error_types.clear();
1788
1789        // Check for NaN or Inf values
1790        for &value in data.iter() {
1791            if !value.is_finite() {
1792                self.error_types.push(NumericalErrorType::InvalidValues);
1793                break;
1794            }
1795        }
1796
1797        // Check for overflow/underflow
1798        let max_val = data.fold(0.0f64, |acc, &x| acc.max(x.abs()));
1799        if max_val > 1e100 {
1800            self.error_types.push(NumericalErrorType::Overflow);
1801        } else if max_val < 1e-100 && max_val > 0.0 {
1802            self.error_types.push(NumericalErrorType::Underflow);
1803        }
1804
1805        // Check for precision loss
1806        if self.digit_loss > 6.0 {
1807            self.error_types.push(NumericalErrorType::PrecisionLoss);
1808        }
1809
1810        // Check for ill-conditioning
1811        if self.condition_number > 1e12 {
1812            self.error_types.push(NumericalErrorType::IllConditioned);
1813        }
1814    }
1815}
1816
1817impl Default for DynamicPrecisionConfig {
1818    fn default() -> Self {
1819        Self {
1820            strategy: ScalingStrategy::Balanced,
1821            min_precision: PrecisionMode::Int8Dynamic,
1822            max_precision: PrecisionMode::Full32,
1823            stability_threshold_up: 1e-6,
1824            stability_threshold_down: 1e-9,
1825            performance_weight: 0.6,
1826            accuracy_weight: 0.4,
1827            max_changes_per_operation: 3,
1828            change_cooldown: Duration::from_millis(100),
1829        }
1830    }
1831}
1832
1833impl NumericalStabilityMonitor {
1834    /// Create new stability monitor
1835    pub fn new(config: DynamicPrecisionConfig) -> Self {
1836        Self {
1837            current_metrics: StabilityMetrics::new(),
1838            stability_history: VecDeque::new(),
1839            precision_config: config,
1840            current_precision: PrecisionMode::Mixed16,
1841            precision_history: VecDeque::new(),
1842            recovery_attempts: 0,
1843            max_history_length: 1000,
1844            last_precision_change: None,
1845        }
1846    }
1847
1848    /// Monitor stability during computation
1849    pub fn monitor_stability(
1850        &mut self,
1851        data: &Array2<f64>,
1852        computation_result: &Array2<f64>,
1853    ) -> SpatialResult<()> {
1854        // Compute condition number estimate
1855        self.current_metrics.condition_number =
1856            NumericalStabilityMonitor::estimate_condition_number(data);
1857
1858        // Estimate relative error
1859        self.current_metrics.relative_error =
1860            self.estimate_relative_error(data, computation_result);
1861
1862        // Compute forward and backward error bounds
1863        self.current_metrics.forward_error = self.estimate_forward_error(data, computation_result);
1864        self.current_metrics.backward_error =
1865            self.estimate_backward_error(data, computation_result);
1866
1867        // Estimate digit loss
1868        self.current_metrics.digit_loss = self.estimate_digit_loss();
1869
1870        // Update stability level
1871        self.current_metrics.update_stability_level();
1872
1873        // Detect errors
1874        self.current_metrics.detect_errors(computation_result);
1875
1876        // Update timestamp
1877        self.current_metrics.timestamp = Instant::now();
1878
1879        // Add to history
1880        self.stability_history
1881            .push_back(self.current_metrics.clone());
1882        if self.stability_history.len() > self.max_history_length {
1883            self.stability_history.pop_front();
1884        }
1885
1886        Ok(())
1887    }
1888
1889    /// Dynamically adjust precision based on stability
1890    pub fn adjust_precision(&mut self) -> SpatialResult<PrecisionMode> {
1891        // Check cooldown period
1892        if let Some(last_change) = self.last_precision_change {
1893            if last_change.elapsed() < self.precision_config.change_cooldown {
1894                return Ok(self.current_precision);
1895            }
1896        }
1897
1898        let new_precision = match self.current_metrics.stability_level {
1899            StabilityLevel::Critical => {
1900                // Use highest precision for critical stability
1901                self.precision_config.max_precision
1902            }
1903            StabilityLevel::Poor => {
1904                // Increase precision
1905                NumericalStabilityMonitor::increase_precision(self.current_precision)
1906            }
1907            StabilityLevel::Moderate => {
1908                // Maintain current precision or slightly adjust
1909                if self.current_metrics.relative_error
1910                    > self.precision_config.stability_threshold_up
1911                {
1912                    NumericalStabilityMonitor::increase_precision(self.current_precision)
1913                } else {
1914                    self.current_precision
1915                }
1916            }
1917            StabilityLevel::Good => {
1918                // Can potentially decrease precision for performance
1919                if self.current_metrics.relative_error
1920                    < self.precision_config.stability_threshold_down
1921                {
1922                    NumericalStabilityMonitor::decrease_precision(self.current_precision)
1923                } else {
1924                    self.current_precision
1925                }
1926            }
1927            StabilityLevel::Excellent => {
1928                // Use lowest precision for maximum performance
1929                if self.precision_config.strategy == ScalingStrategy::Aggressive {
1930                    self.precision_config.min_precision
1931                } else {
1932                    NumericalStabilityMonitor::decrease_precision(self.current_precision)
1933                }
1934            }
1935        };
1936
1937        // Update precision if changed
1938        if new_precision != self.current_precision {
1939            self.precision_history.push_back((
1940                Instant::now(),
1941                new_precision,
1942                self.current_metrics.relative_error,
1943            ));
1944            self.current_precision = new_precision;
1945            self.last_precision_change = Some(Instant::now());
1946        }
1947
1948        Ok(new_precision)
1949    }
1950
1951    /// Increase precision mode
1952    fn increase_precision(current: PrecisionMode) -> PrecisionMode {
1953        match current {
1954            PrecisionMode::Int4Advanced => PrecisionMode::Int8Dynamic,
1955            PrecisionMode::Int8Dynamic => PrecisionMode::Mixed16,
1956            PrecisionMode::Mixed16 => PrecisionMode::BrainFloat16,
1957            PrecisionMode::BrainFloat16 => PrecisionMode::Full32,
1958            PrecisionMode::Full32 => PrecisionMode::Full32, // Already at max
1959            _ => PrecisionMode::Mixed16,
1960        }
1961    }
1962
1963    /// Decrease precision mode
1964    fn decrease_precision(current: PrecisionMode) -> PrecisionMode {
1965        match current {
1966            PrecisionMode::Full32 => PrecisionMode::BrainFloat16,
1967            PrecisionMode::BrainFloat16 => PrecisionMode::Mixed16,
1968            PrecisionMode::Mixed16 => PrecisionMode::Int8Dynamic,
1969            PrecisionMode::Int8Dynamic => PrecisionMode::Int4Advanced,
1970            PrecisionMode::Int4Advanced => PrecisionMode::Int4Advanced, // Already at min
1971            _ => PrecisionMode::Mixed16,
1972        }
1973    }
1974
1975    /// Estimate condition number
1976    fn estimate_condition_number(data: &Array2<f64>) -> f64 {
1977        // Simplified condition number estimation
1978        let max_val = data.fold(0.0f64, |acc, &x| acc.max(x.abs()));
1979        let min_val = data.fold(f64::INFINITY, |acc, &x| {
1980            if x.abs() > 1e-15 {
1981                acc.min(x.abs())
1982            } else {
1983                acc
1984            }
1985        });
1986
1987        if min_val.is_finite() && min_val > 0.0 {
1988            max_val / min_val
1989        } else {
1990            1e12 // High condition number for near-singular cases
1991        }
1992    }
1993
1994    /// Estimate relative error
1995    fn estimate_relative_error(&mut self, input: &Array2<f64>, output: &Array2<f64>) -> f64 {
1996        // Simplified relative error estimation
1997        let mean_val = output.mean_or(0.0);
1998        if mean_val.abs() > 1e-15 {
1999            // Use machine epsilon scaled by condition number
2000            let machine_eps = match self.current_precision {
2001                PrecisionMode::Full32 => 2.22e-16,
2002                PrecisionMode::Mixed16 | PrecisionMode::BrainFloat16 => 9.77e-4,
2003                PrecisionMode::Int8Dynamic => 1.0 / 256.0,
2004                PrecisionMode::Int4Advanced => 1.0 / 16.0,
2005                _ => 1e-6,
2006            };
2007            machine_eps * self.current_metrics.condition_number
2008        } else {
2009            0.0
2010        }
2011    }
2012
2013    /// Estimate forward error
2014    fn estimate_forward_error(&mut self, _input: &Array2<f64>, output: &Array2<f64>) -> f64 {
2015        // Forward error bound estimate
2016        self.current_metrics.relative_error * self.current_metrics.condition_number
2017    }
2018
2019    /// Estimate backward error
2020    fn estimate_backward_error(&mut self, _input: &Array2<f64>, output: &Array2<f64>) -> f64 {
2021        // Backward error bound estimate
2022        self.current_metrics.relative_error
2023    }
2024
2025    /// Estimate digit loss
2026    fn estimate_digit_loss(&self) -> f64 {
2027        if self.current_metrics.condition_number > 1.0 {
2028            self.current_metrics.condition_number.log10().max(0.0)
2029        } else {
2030            0.0
2031        }
2032    }
2033}
2034
2035impl Default for ErrorRecoverySystem {
2036    fn default() -> Self {
2037        Self::new()
2038    }
2039}
2040
2041impl ErrorRecoverySystem {
2042    /// Create new error recovery system
2043    pub fn new() -> Self {
2044        let mut recovery_strategies = HashMap::new();
2045
2046        // Define recovery strategies for each error type
2047        recovery_strategies.insert(
2048            NumericalErrorType::Overflow,
2049            vec![
2050                RecoveryAction::IncreasePrecision,
2051                RecoveryAction::ReduceTileSize,
2052                RecoveryAction::NumericalStabilization,
2053            ],
2054        );
2055        recovery_strategies.insert(
2056            NumericalErrorType::Underflow,
2057            vec![
2058                RecoveryAction::IncreasePrecision,
2059                RecoveryAction::NumericalStabilization,
2060            ],
2061        );
2062        recovery_strategies.insert(
2063            NumericalErrorType::PrecisionLoss,
2064            vec![
2065                RecoveryAction::IncreasePrecision,
2066                RecoveryAction::RetryWithNewParams,
2067            ],
2068        );
2069        recovery_strategies.insert(
2070            NumericalErrorType::IllConditioned,
2071            vec![
2072                RecoveryAction::IncreasePrecision,
2073                RecoveryAction::NumericalStabilization,
2074                RecoveryAction::SwitchToCPU,
2075            ],
2076        );
2077        recovery_strategies.insert(
2078            NumericalErrorType::InvalidValues,
2079            vec![
2080                RecoveryAction::FallbackAlgorithm,
2081                RecoveryAction::SwitchToCPU,
2082            ],
2083        );
2084
2085        Self {
2086            recovery_strategies,
2087            recovery_history: VecDeque::new(),
2088            max_recovery_attempts: 3,
2089            success_rates: HashMap::new(),
2090        }
2091    }
2092
2093    /// Attempt recovery from numerical error
2094    pub async fn attempt_recovery(
2095        &mut self,
2096        error_type: NumericalErrorType,
2097    ) -> SpatialResult<RecoveryAction> {
2098        let start_time = Instant::now();
2099
2100        // Get recovery strategies for this error _type
2101        let strategies = self
2102            .recovery_strategies
2103            .get(&error_type)
2104            .ok_or_else(|| SpatialError::InvalidInput("Unknown error _type".to_string()))?
2105            .clone(); // Clone to avoid borrowing conflict
2106
2107        // Choose best strategy based on success rates
2108        let best_action = self.choose_best_recovery_action(&strategies);
2109
2110        // Record recovery attempt
2111        let attempt = RecoveryAttempt {
2112            error_type,
2113            action: best_action,
2114            success: false, // Will be updated after actual recovery
2115            duration: start_time.elapsed(),
2116            post_recovery_metrics: None,
2117            timestamp: start_time,
2118        };
2119
2120        self.recovery_history.push_back(attempt);
2121
2122        Ok(best_action)
2123    }
2124
2125    /// Choose best recovery action based on success rates
2126    fn choose_best_recovery_action(&mut self, strategies: &[RecoveryAction]) -> RecoveryAction {
2127        strategies
2128            .iter()
2129            .max_by(|&a, &b| {
2130                let rate_a = self.success_rates.get(a).unwrap_or(&0.5);
2131                let rate_b = self.success_rates.get(b).unwrap_or(&0.5);
2132                rate_a
2133                    .partial_cmp(rate_b)
2134                    .unwrap_or(std::cmp::Ordering::Equal)
2135            })
2136            .copied()
2137            .unwrap_or(RecoveryAction::IncreasePrecision)
2138    }
2139
2140    /// Update success rate for recovery action
2141    pub fn update_success_rate(&mut self, action: RecoveryAction, success: bool) {
2142        let current_rate = self.success_rates.get(&action).unwrap_or(&0.5);
2143        let new_rate = if success {
2144            current_rate * 0.9 + 0.1 // Exponential moving average
2145        } else {
2146            current_rate * 0.9
2147        };
2148        self.success_rates.insert(action, new_rate);
2149    }
2150}
2151
2152impl PerformanceAccuracyAnalyzer {
2153    /// Create new performance-accuracy analyzer
2154    pub fn new(params: TradeOffParams) -> Self {
2155        Self {
2156            performance_data: HashMap::new(),
2157            accuracy_data: HashMap::new(),
2158            optimization_params: params,
2159            pareto_frontier: Vec::new(),
2160        }
2161    }
2162
2163    /// Record performance measurement
2164    pub fn record_performance(&mut self, precision: PrecisionMode, duration: Duration) {
2165        self.performance_data
2166            .entry(precision)
2167            .or_default()
2168            .push_back(duration);
2169
2170        // Maintain reasonable history size
2171        if let Some(history) = self.performance_data.get_mut(&precision) {
2172            if history.len() > 100 {
2173                history.pop_front();
2174            }
2175        }
2176    }
2177
2178    /// Record accuracy measurement
2179    pub fn record_accuracy(&mut self, precision: PrecisionMode, accuracy: f64) {
2180        self.accuracy_data
2181            .entry(precision)
2182            .or_default()
2183            .push_back(accuracy);
2184
2185        // Maintain reasonable history size
2186        if let Some(history) = self.accuracy_data.get_mut(&precision) {
2187            if history.len() > 100 {
2188                history.pop_front();
2189            }
2190        }
2191    }
2192
2193    /// Optimize precision mode based on trade-offs
2194    pub fn optimize_precision(&mut self) -> PrecisionMode {
2195        self.update_pareto_frontier();
2196
2197        match self.optimization_params.objective {
2198            OptimizationObjective::MaxPerformance => self
2199                .pareto_frontier
2200                .iter()
2201                .min_by(|a, b| a.0.partial_cmp(&b.0).unwrap_or(std::cmp::Ordering::Equal))
2202                .map(|(_a, b, mode)| *mode)
2203                .unwrap_or(PrecisionMode::Mixed16),
2204            OptimizationObjective::MaxAccuracy => self
2205                .pareto_frontier
2206                .iter()
2207                .max_by(|a, b| a.1.partial_cmp(&b.1).unwrap_or(std::cmp::Ordering::Equal))
2208                .map(|(_a, b, mode)| *mode)
2209                .unwrap_or(PrecisionMode::Full32),
2210            OptimizationObjective::Balanced => {
2211                // Weighted combination - compute scores first to avoid borrowing conflict
2212                let mut best_score = f64::NEG_INFINITY;
2213                let mut best_mode = PrecisionMode::Mixed16;
2214
2215                // Extract weights to avoid borrowing conflict
2216                let performance_weight = self.optimization_params.performance_weight;
2217                let accuracy_weight = self.optimization_params.accuracy_weight;
2218
2219                for &(perf, acc, mode) in &self.pareto_frontier {
2220                    // Inline compute_weighted_score logic to avoid borrowing conflict
2221                    let perf_score = 1.0 / (perf + 1e-9);
2222                    let score = performance_weight * perf_score + accuracy_weight * acc;
2223                    if score > best_score {
2224                        best_score = score;
2225                        best_mode = mode;
2226                    }
2227                }
2228
2229                best_mode
2230            }
2231            _ => PrecisionMode::Mixed16,
2232        }
2233    }
2234
2235    /// Update Pareto frontier
2236    fn update_pareto_frontier(&mut self) {
2237        self.pareto_frontier.clear();
2238
2239        for precision in [
2240            PrecisionMode::Full32,
2241            PrecisionMode::BrainFloat16,
2242            PrecisionMode::Mixed16,
2243            PrecisionMode::Int8Dynamic,
2244            PrecisionMode::Int4Advanced,
2245        ] {
2246            if let (Some(perf_data), Some(acc_data)) = (
2247                self.performance_data.get(&precision),
2248                self.accuracy_data.get(&precision),
2249            ) {
2250                if !perf_data.is_empty() && !acc_data.is_empty() {
2251                    let avg_perf = perf_data.iter().map(|d| d.as_secs_f64()).sum::<f64>()
2252                        / perf_data.len() as f64;
2253                    let avg_acc = acc_data.iter().sum::<f64>() / acc_data.len() as f64;
2254
2255                    self.pareto_frontier.push((avg_perf, avg_acc, precision));
2256                }
2257            }
2258        }
2259    }
2260
2261    /// Compute weighted score for balanced optimization
2262    #[allow(dead_code)]
2263    fn compute_weighted_score(&mut self, performance: f64, accuracy: f64) -> f64 {
2264        // Performance score (inverse of time - higher is better)
2265        let perf_score = 1.0 / (performance + 1e-9);
2266
2267        // Weighted combination
2268        self.optimization_params.performance_weight * perf_score
2269            + self.optimization_params.accuracy_weight * accuracy
2270    }
2271}
2272
2273impl AdvancedTensorCoreDistanceMatrix {
2274    /// Create new advanced tensor core distance matrix computer
2275    pub fn new() -> SpatialResult<Self> {
2276        let base_computer = TensorCoreDistanceMatrix::new()?;
2277        let precision_config = DynamicPrecisionConfig::default();
2278        let stability_monitor =
2279            Arc::new(Mutex::new(NumericalStabilityMonitor::new(precision_config)));
2280        let recovery_system = ErrorRecoverySystem::new();
2281        let trade_off_params = TradeOffParams {
2282            performance_weight: 0.6,
2283            accuracy_weight: 0.4,
2284            energy_weight: 0.0,
2285            min_accuracy: 0.95,
2286            max_time: Duration::from_secs(30),
2287            objective: OptimizationObjective::Balanced,
2288        };
2289        let performance_analyzer = PerformanceAccuracyAnalyzer::new(trade_off_params);
2290
2291        Ok(Self {
2292            base_computer,
2293            stability_monitor,
2294            recovery_system,
2295            performance_analyzer,
2296            dynamic_precision_enabled: true,
2297            auto_recovery_enabled: true,
2298        })
2299    }
2300
2301    /// Configure dynamic precision scaling
2302    pub fn with_dynamic_precision(mut self, enabled: bool) -> Self {
2303        self.dynamic_precision_enabled = enabled;
2304        self
2305    }
2306
2307    /// Configure automatic error recovery
2308    pub fn with_auto_recovery(mut self, enabled: bool) -> Self {
2309        self.auto_recovery_enabled = enabled;
2310        self
2311    }
2312
2313    /// Compute distance matrix with advanced stability monitoring
2314    pub async fn compute_with_stability_monitoring(
2315        &mut self,
2316        points: &ArrayView2<'_, f64>,
2317    ) -> SpatialResult<Array2<f64>> {
2318        let start_time = Instant::now();
2319
2320        // Initial stability assessment
2321        {
2322            let mut monitor = self.stability_monitor.lock().unwrap();
2323            // Skip initial stability check as we don't have a result yet
2324
2325            if self.dynamic_precision_enabled {
2326                let optimal_precision = monitor.adjust_precision()?;
2327                self.base_computer.precision_mode = optimal_precision;
2328            }
2329        }
2330
2331        let mut result = None;
2332        let mut recovery_attempts = 0;
2333        let max_attempts = 3;
2334
2335        while result.is_none() && recovery_attempts < max_attempts {
2336            match self.base_computer.compute_parallel(points).await {
2337                Ok(distances) => {
2338                    // Monitor stability of result
2339                    {
2340                        let mut monitor = self.stability_monitor.lock().unwrap();
2341                        monitor.monitor_stability(&points.to_owned(), &distances)?;
2342                    }
2343
2344                    // Check for numerical errors
2345                    let stability_level = {
2346                        let monitor = self.stability_monitor.lock().unwrap();
2347                        monitor.current_metrics.stability_level
2348                    };
2349
2350                    if stability_level == StabilityLevel::Critical && self.auto_recovery_enabled {
2351                        // Attempt recovery
2352                        recovery_attempts += 1;
2353                        let recovery_action = self
2354                            .recovery_system
2355                            .attempt_recovery(NumericalErrorType::IllConditioned)
2356                            .await?;
2357
2358                        // Apply recovery action
2359                        self.apply_recovery_action(recovery_action).await?;
2360                        continue;
2361                    } else {
2362                        result = Some(distances);
2363                    }
2364                }
2365                Err(e) => {
2366                    if self.auto_recovery_enabled && recovery_attempts < max_attempts {
2367                        recovery_attempts += 1;
2368                        let recovery_action = self
2369                            .recovery_system
2370                            .attempt_recovery(NumericalErrorType::InvalidValues)
2371                            .await?;
2372                        self.apply_recovery_action(recovery_action).await?;
2373                        continue;
2374                    } else {
2375                        return Err(e);
2376                    }
2377                }
2378            }
2379        }
2380
2381        let final_result = result.ok_or_else(|| {
2382            SpatialError::InvalidInput(
2383                "Failed to compute stable result after recovery attempts".to_string(),
2384            )
2385        })?;
2386
2387        // Record performance data
2388        let duration = start_time.elapsed();
2389        let precision = self.base_computer.precision_mode;
2390        self.performance_analyzer
2391            .record_performance(precision, duration);
2392
2393        // Estimate accuracy (simplified)
2394        let accuracy = self.estimate_result_accuracy(&final_result);
2395        self.performance_analyzer
2396            .record_accuracy(precision, accuracy);
2397
2398        Ok(final_result)
2399    }
2400
2401    /// Apply recovery action
2402    async fn apply_recovery_action(&mut self, action: RecoveryAction) -> SpatialResult<()> {
2403        match action {
2404            RecoveryAction::IncreasePrecision => {
2405                self.base_computer.precision_mode = match self.base_computer.precision_mode {
2406                    PrecisionMode::Int4Advanced => PrecisionMode::Int8Dynamic,
2407                    PrecisionMode::Int8Dynamic => PrecisionMode::Mixed16,
2408                    PrecisionMode::Mixed16 => PrecisionMode::BrainFloat16,
2409                    PrecisionMode::BrainFloat16 => PrecisionMode::Full32,
2410                    PrecisionMode::Full32 => PrecisionMode::Full32,
2411                    _ => PrecisionMode::Mixed16,
2412                };
2413            }
2414            RecoveryAction::ReduceTileSize => {
2415                let (current_row, current_col) = self.base_computer.tile_size;
2416                self.base_computer.tile_size = (current_row / 2, current_col / 2);
2417                if self.base_computer.tile_size.0 < 16 {
2418                    self.base_computer.tile_size = (16, 16);
2419                }
2420            }
2421            RecoveryAction::FallbackAlgorithm => {
2422                // Switch to more conservative settings
2423                self.base_computer.precision_mode = PrecisionMode::Full32;
2424                self.base_computer.hierarchical_tiling = false;
2425            }
2426            RecoveryAction::NumericalStabilization => {
2427                // Apply numerical stabilization techniques
2428                self.base_computer.precision_mode = PrecisionMode::Full32;
2429                self.base_computer.tile_size = (64, 64);
2430            }
2431            _ => {
2432                // Default recovery
2433                self.base_computer.precision_mode = PrecisionMode::Full32;
2434            }
2435        }
2436
2437        Ok(())
2438    }
2439
2440    /// Estimate result accuracy (simplified)
2441    fn estimate_result_accuracy(&self, result: &Array2<f64>) -> f64 {
2442        // Simplified accuracy estimation based on numerical properties
2443        let has_invalid = result.iter().any(|&x| !x.is_finite());
2444        if has_invalid {
2445            return 0.0;
2446        }
2447
2448        let max_val = result.fold(0.0f64, |acc, &x| acc.max(x.abs()));
2449        let min_val = result.fold(f64::INFINITY, |acc, &x| {
2450            if x.abs() > 1e-15 {
2451                acc.min(x.abs())
2452            } else {
2453                acc
2454            }
2455        });
2456
2457        if min_val.is_finite() && min_val > 0.0 {
2458            let dynamic_range = max_val / min_val;
2459            (1.0 / (1.0 + dynamic_range.log10() / 10.0)).clamp(0.0, 1.0)
2460        } else {
2461            0.95 // Default good accuracy
2462        }
2463    }
2464}
2465
2466/// Detect tensor core capabilities of available GPU hardware
2467#[allow(dead_code)]
2468pub fn detect_tensor_core_capabilities() -> SpatialResult<TensorCoreCapabilities> {
2469    // Simulate hardware detection
2470    // In a real implementation, this would use CUDA/ROCm/OpenCL APIs
2471
2472    Ok(TensorCoreCapabilities {
2473        tensor_core_types: vec![
2474            TensorCoreType::NvidiaTensorCore,
2475            TensorCoreType::StandardCores,
2476        ],
2477        supported_precisions: vec![
2478            PrecisionMode::Full32,
2479            PrecisionMode::Mixed16,
2480            PrecisionMode::BrainFloat16,
2481            PrecisionMode::Int8Dynamic,
2482        ],
2483        max_tensor_size: (4096, 4096, 4096),
2484        peak_throughput_tops: 312.0,   // A100 FP16 performance
2485        memory_bandwidth_gbps: 1555.0, // A100 HBM2 bandwidth
2486        l2_cache_mb: 40.0,
2487        num_sms: 108,
2488        architecture: GpuArchitecture::Ampere,
2489    })
2490}
2491
2492/// Extension trait for TensorCoreDistanceMatrix
2493impl TensorCoreDistanceMatrix {
2494    /// Compute distances from points to centroids
2495    pub async fn compute_distances_to_centroids(
2496        &self,
2497        points: &ArrayView2<'_, f64>,
2498        centroids: &ArrayView2<'_, f64>,
2499    ) -> SpatialResult<Array2<f64>> {
2500        let (npoints, ndims) = points.dim();
2501        let (n_clusters_, n_dims_c) = centroids.dim();
2502        let mut distances = Array2::zeros((npoints, n_clusters_));
2503
2504        // Compute distances using optimized tensor operations with loop unrolling
2505        let cluster_chunks = n_clusters_ / 4;
2506
2507        for i in 0..npoints {
2508            let point_row = points.row(i);
2509
2510            // Process clusters in chunks of 4 for instruction-level parallelism
2511            for j_chunk in 0..cluster_chunks {
2512                let j_base = j_chunk * 4;
2513
2514                // Unroll cluster distance computation for better performance
2515                let j0 = j_base;
2516                let j1 = j_base + 1;
2517                let j2 = j_base + 2;
2518                let j3 = j_base + 3;
2519
2520                let centroid_row0 = centroids.row(j0);
2521                let centroid_row1 = centroids.row(j1);
2522                let centroid_row2 = centroids.row(j2);
2523                let centroid_row3 = centroids.row(j3);
2524
2525                let distance0: f64 = point_row
2526                    .iter()
2527                    .zip(centroid_row0.iter())
2528                    .map(|(&a, &b)| (a - b).powi(2))
2529                    .sum::<f64>()
2530                    .sqrt();
2531
2532                let distance1: f64 = point_row
2533                    .iter()
2534                    .zip(centroid_row1.iter())
2535                    .map(|(&a, &b)| (a - b).powi(2))
2536                    .sum::<f64>()
2537                    .sqrt();
2538
2539                let distance2: f64 = point_row
2540                    .iter()
2541                    .zip(centroid_row2.iter())
2542                    .map(|(&a, &b)| (a - b).powi(2))
2543                    .sum::<f64>()
2544                    .sqrt();
2545
2546                let distance3: f64 = point_row
2547                    .iter()
2548                    .zip(centroid_row3.iter())
2549                    .map(|(&a, &b)| (a - b).powi(2))
2550                    .sum::<f64>()
2551                    .sqrt();
2552
2553                distances[[i, j0]] = distance0;
2554                distances[[i, j1]] = distance1;
2555                distances[[i, j2]] = distance2;
2556                distances[[i, j3]] = distance3;
2557            }
2558
2559            // Handle remaining clusters
2560            for j in (cluster_chunks * 4)..n_clusters_ {
2561                let distance: f64 = point_row
2562                    .iter()
2563                    .zip(centroids.row(j).iter())
2564                    .map(|(&a, &b)| (a - b).powi(2))
2565                    .sum::<f64>()
2566                    .sqrt();
2567                distances[[i, j]] = distance;
2568            }
2569        }
2570
2571        Ok(distances)
2572    }
2573}
2574
2575#[cfg(test)]
2576#[path = "tensor_cores_tests.rs"]
2577mod tests;