scirs2_spatial/quantum_inspired/algorithms/
quantum_search.rs

1//! Quantum-Enhanced Search Algorithms
2//!
3//! This module provides quantum-inspired search algorithms that leverage quantum computing
4//! principles for enhanced spatial data retrieval and neighbor searching.
5
6use crate::error::{SpatialError, SpatialResult};
7use scirs2_core::ndarray::{Array2, ArrayView1, ArrayView2};
8use scirs2_core::numeric::Complex64;
9use std::f64::consts::PI;
10
11// Import quantum concepts
12use super::super::concepts::QuantumState;
13
14/// Quantum-Enhanced Nearest Neighbor Search
15///
16/// This structure implements a quantum-inspired nearest neighbor search algorithm
17/// that uses quantum state representations and amplitude amplification to enhance
18/// search performance. The algorithm can operate in pure quantum mode or fall back
19/// to classical computation for compatibility.
20///
21/// # Features
22/// - Quantum state encoding of reference points
23/// - Amplitude amplification using Grover-like algorithms
24/// - Quantum fidelity-based distance computation
25/// - Classical fallback for robustness
26///
27/// # Example
28/// ```rust
29/// use scirs2_core::ndarray::Array2;
30/// use scirs2_spatial::quantum_inspired::algorithms::QuantumNearestNeighbor;
31///
32/// let points = Array2::from_shape_vec((3, 2), vec![0.0, 0.0, 1.0, 1.0, 2.0, 2.0]).unwrap();
33/// let mut searcher = QuantumNearestNeighbor::new(&points.view())
34///     .unwrap()
35///     .with_quantum_encoding(true)
36///     .with_amplitude_amplification(true);
37///
38/// let query = scirs2_core::ndarray::arr1(&[0.5, 0.5]);
39/// let (indices, distances) = searcher.query_quantum(&query.view(), 2).unwrap();
40/// ```
41#[derive(Debug, Clone)]
42pub struct QuantumNearestNeighbor {
43    /// Reference points encoded as quantum states
44    quantum_points: Vec<QuantumState>,
45    /// Classical reference points
46    classical_points: Array2<f64>,
47    /// Enable quantum encoding
48    quantum_encoding: bool,
49    /// Enable amplitude amplification
50    amplitude_amplification: bool,
51    /// Grover iterations for search enhancement
52    grover_iterations: usize,
53}
54
55impl QuantumNearestNeighbor {
56    /// Create new quantum nearest neighbor searcher
57    ///
58    /// # Arguments
59    /// * `points` - Reference points for nearest neighbor search
60    ///
61    /// # Returns
62    /// A new `QuantumNearestNeighbor` instance with default configuration
63    pub fn new(points: &ArrayView2<'_, f64>) -> SpatialResult<Self> {
64        let classical_points = points.to_owned();
65        let quantum_points = Vec::new(); // Will be initialized when quantum encoding is enabled
66
67        Ok(Self {
68            quantum_points,
69            classical_points,
70            quantum_encoding: false,
71            amplitude_amplification: false,
72            grover_iterations: 3,
73        })
74    }
75
76    /// Enable quantum encoding of reference points
77    ///
78    /// When enabled, reference points are encoded as quantum states which can
79    /// provide enhanced search performance through quantum parallelism.
80    ///
81    /// # Arguments
82    /// * `enabled` - Whether to enable quantum encoding
83    pub fn with_quantum_encoding(mut self, enabled: bool) -> Self {
84        self.quantum_encoding = enabled;
85
86        if enabled {
87            // Initialize quantum encoding
88            if let Ok(encoded) = self.encode_reference_points() {
89                self.quantum_points = encoded;
90            }
91        }
92
93        self
94    }
95
96    /// Enable amplitude amplification (Grover-like algorithm)
97    ///
98    /// Amplitude amplification can enhance search performance by amplifying
99    /// the probability amplitudes of good solutions.
100    ///
101    /// # Arguments
102    /// * `enabled` - Whether to enable amplitude amplification
103    pub fn with_amplitude_amplification(mut self, enabled: bool) -> Self {
104        self.amplitude_amplification = enabled;
105        self
106    }
107
108    /// Configure Grover iterations
109    ///
110    /// Sets the number of Grover iterations used in amplitude amplification.
111    /// More iterations can improve search quality but increase computation time.
112    ///
113    /// # Arguments
114    /// * `iterations` - Number of Grover iterations (typically 3-5 for best results)
115    pub fn with_grover_iterations(mut self, iterations: usize) -> Self {
116        self.grover_iterations = iterations;
117        self
118    }
119
120    /// Perform quantum-enhanced nearest neighbor search
121    ///
122    /// Finds the k nearest neighbors to a query point using quantum-enhanced
123    /// distance computation when quantum encoding is enabled, otherwise falls
124    /// back to classical Euclidean distance.
125    ///
126    /// # Arguments
127    /// * `query_point` - Point to search for neighbors
128    /// * `k` - Number of nearest neighbors to find
129    ///
130    /// # Returns
131    /// Tuple of (indices, distances) for the k nearest neighbors
132    pub fn query_quantum(
133        &self,
134        query_point: &ArrayView1<f64>,
135        k: usize,
136    ) -> SpatialResult<(Vec<usize>, Vec<f64>)> {
137        let n_points = self.classical_points.nrows();
138
139        if k > n_points {
140            return Err(SpatialError::InvalidInput(
141                "k cannot be larger than number of points".to_string(),
142            ));
143        }
144
145        let mut distances = if self.quantum_encoding && !self.quantum_points.is_empty() {
146            // Quantum-enhanced search
147            self.quantum_distance_computation(query_point)?
148        } else {
149            // Classical fallback
150            self.classical_distance_computation(query_point)
151        };
152
153        // Apply amplitude amplification if enabled
154        if self.amplitude_amplification {
155            distances = self.apply_amplitude_amplification(distances)?;
156        }
157
158        // Find k nearest neighbors
159        let mut indexed_distances: Vec<(usize, f64)> = distances.into_iter().enumerate().collect();
160        indexed_distances.sort_by(|a, b| a.1.partial_cmp(&b.1).unwrap());
161
162        let indices: Vec<usize> = indexed_distances
163            .iter()
164            .take(k)
165            .map(|(i_, _)| *i_)
166            .collect();
167        let dists: Vec<f64> = indexed_distances.iter().take(k).map(|(_, d)| *d).collect();
168
169        Ok((indices, dists))
170    }
171
172    /// Encode reference points into quantum states
173    ///
174    /// Converts classical reference points into quantum state representations
175    /// using phase encoding and entangling gates for better quantum parallelism.
176    fn encode_reference_points(&self) -> SpatialResult<Vec<QuantumState>> {
177        let (n_points, n_dims) = self.classical_points.dim();
178        let mut encoded_points = Vec::new();
179
180        for i in 0..n_points {
181            let point = self.classical_points.row(i);
182
183            // Determine number of qubits needed
184            let numqubits = (n_dims).next_power_of_two().trailing_zeros() as usize + 2;
185            let mut quantum_point = QuantumState::zero_state(numqubits);
186
187            // Encode each dimension
188            for (dim, &coord) in point.iter().enumerate() {
189                if dim < numqubits - 1 {
190                    // Normalize coordinate to [0, π] range
191                    let normalized_coord = (coord + 10.0) / 20.0; // Assumes data in [-10, 10]
192                    let angle = normalized_coord.clamp(0.0, 1.0) * PI;
193                    quantum_point.phase_rotation(dim, angle)?;
194                }
195            }
196
197            // Apply entangling gates for better representation
198            for i in 0..numqubits - 1 {
199                quantum_point.controlled_rotation(i, i + 1, PI / 4.0)?;
200            }
201
202            encoded_points.push(quantum_point);
203        }
204
205        Ok(encoded_points)
206    }
207
208    /// Compute distances using quantum state overlap
209    ///
210    /// Calculates distances between query point and reference points using
211    /// quantum state fidelity as a distance metric.
212    fn quantum_distance_computation(
213        &self,
214        query_point: &ArrayView1<f64>,
215    ) -> SpatialResult<Vec<f64>> {
216        let n_dims = query_point.len();
217        let mut distances = Vec::new();
218
219        // Encode query point as quantum state
220        let numqubits = n_dims.next_power_of_two().trailing_zeros() as usize + 2;
221        let mut query_state = QuantumState::zero_state(numqubits);
222
223        for (dim, &coord) in query_point.iter().enumerate() {
224            if dim < numqubits - 1 {
225                let normalized_coord = (coord + 10.0) / 20.0;
226                let angle = normalized_coord.clamp(0.0, 1.0) * PI;
227                query_state.phase_rotation(dim, angle)?;
228            }
229        }
230
231        // Apply entangling gates to query state
232        for i in 0..numqubits - 1 {
233            query_state.controlled_rotation(i, i + 1, PI / 4.0)?;
234        }
235
236        // Calculate quantum fidelity with each reference point
237        for quantum_ref in &self.quantum_points {
238            let fidelity =
239                QuantumNearestNeighbor::calculate_quantum_fidelity(&query_state, quantum_ref);
240
241            // Convert fidelity to distance (higher fidelity = lower distance)
242            let quantum_distance = 1.0 - fidelity;
243            distances.push(quantum_distance);
244        }
245
246        Ok(distances)
247    }
248
249    /// Calculate classical distances as fallback
250    ///
251    /// Computes standard Euclidean distances when quantum encoding is disabled
252    /// or as a fallback mechanism.
253    fn classical_distance_computation(&self, query_point: &ArrayView1<f64>) -> Vec<f64> {
254        let mut distances = Vec::new();
255
256        for i in 0..self.classical_points.nrows() {
257            let ref_point = self.classical_points.row(i);
258            let distance: f64 = query_point
259                .iter()
260                .zip(ref_point.iter())
261                .map(|(&a, &b)| (a - b).powi(2))
262                .sum::<f64>()
263                .sqrt();
264
265            distances.push(distance);
266        }
267
268        distances
269    }
270
271    /// Calculate quantum state fidelity
272    ///
273    /// Computes the fidelity between two quantum states as |⟨ψ₁|ψ₂⟩|²
274    fn calculate_quantum_fidelity(state1: &QuantumState, state2: &QuantumState) -> f64 {
275        if state1.amplitudes.len() != state2.amplitudes.len() {
276            return 0.0;
277        }
278
279        // Calculate inner product of quantum states
280        let inner_product: Complex64 = state1
281            .amplitudes
282            .iter()
283            .zip(state2.amplitudes.iter())
284            .map(|(a, b)| a.conj() * b)
285            .sum();
286
287        // Fidelity is |⟨ψ₁|ψ₂⟩|²
288        inner_product.norm_sqr()
289    }
290
291    /// Apply amplitude amplification (Grover-like enhancement)
292    ///
293    /// Implements a Grover-like amplitude amplification algorithm to enhance
294    /// the probability of finding good solutions (nearest neighbors).
295    fn apply_amplitude_amplification(&self, mut distances: Vec<f64>) -> SpatialResult<Vec<f64>> {
296        if distances.is_empty() {
297            return Ok(distances);
298        }
299
300        // Find average distance
301        let avg_distance: f64 = distances.iter().sum::<f64>() / distances.len() as f64;
302
303        // Apply Grover-like amplitude amplification
304        for _ in 0..self.grover_iterations {
305            // Inversion about average (diffusion operator)
306            #[allow(clippy::manual_slice_fill)]
307            for distance in &mut distances {
308                *distance = 2.0 * avg_distance - *distance;
309            }
310
311            // Oracle: amplify distances below average
312            for distance in &mut distances {
313                if *distance < avg_distance {
314                    *distance *= 0.9; // Amplify by reducing distance
315                }
316            }
317        }
318
319        // Ensure all distances are positive
320        let min_distance = distances.iter().fold(f64::INFINITY, |a, &b| a.min(b));
321        if min_distance < 0.0 {
322            for distance in &mut distances {
323                *distance -= min_distance;
324            }
325        }
326
327        Ok(distances)
328    }
329
330    /// Get number of reference points
331    pub fn len(&self) -> usize {
332        self.classical_points.nrows()
333    }
334
335    /// Check if searcher is empty
336    pub fn is_empty(&self) -> bool {
337        self.classical_points.nrows() == 0
338    }
339
340    /// Get reference to classical points
341    pub fn classical_points(&self) -> &Array2<f64> {
342        &self.classical_points
343    }
344
345    /// Check if quantum encoding is enabled
346    pub fn is_quantum_enabled(&self) -> bool {
347        self.quantum_encoding
348    }
349
350    /// Check if amplitude amplification is enabled
351    pub fn is_amplification_enabled(&self) -> bool {
352        self.amplitude_amplification
353    }
354}
355
356#[cfg(test)]
357mod tests {
358    use super::*;
359    use scirs2_core::ndarray::Array2;
360
361    #[test]
362    fn test_quantum_nearest_neighbor_creation() {
363        let points = Array2::from_shape_vec((3, 2), vec![0.0, 0.0, 1.0, 1.0, 2.0, 2.0]).unwrap();
364        let searcher = QuantumNearestNeighbor::new(&points.view()).unwrap();
365
366        assert_eq!(searcher.len(), 3);
367        assert!(!searcher.is_quantum_enabled());
368        assert!(!searcher.is_amplification_enabled());
369    }
370
371    #[test]
372    fn test_classical_search() {
373        let points = Array2::from_shape_vec((3, 2), vec![0.0, 0.0, 1.0, 1.0, 2.0, 2.0]).unwrap();
374        let searcher = QuantumNearestNeighbor::new(&points.view()).unwrap();
375
376        let query = scirs2_core::ndarray::arr1(&[0.5, 0.5]);
377        let (indices, distances) = searcher.query_quantum(&query.view(), 2).unwrap();
378
379        assert_eq!(indices.len(), 2);
380        assert_eq!(distances.len(), 2);
381        // Should find point [0,0] and [1,1] as nearest
382        assert!(indices.contains(&0));
383        assert!(indices.contains(&1));
384    }
385
386    #[test]
387    fn test_quantum_configuration() {
388        let points = Array2::from_shape_vec((2, 2), vec![0.0, 0.0, 1.0, 1.0]).unwrap();
389        let searcher = QuantumNearestNeighbor::new(&points.view())
390            .unwrap()
391            .with_quantum_encoding(true)
392            .with_amplitude_amplification(true)
393            .with_grover_iterations(5);
394
395        assert!(searcher.is_quantum_enabled());
396        assert!(searcher.is_amplification_enabled());
397        assert_eq!(searcher.grover_iterations, 5);
398    }
399
400    #[test]
401    fn test_empty_points() {
402        let points = Array2::from_shape_vec((0, 2), vec![]).unwrap();
403        let searcher = QuantumNearestNeighbor::new(&points.view()).unwrap();
404
405        assert!(searcher.is_empty());
406        assert_eq!(searcher.len(), 0);
407    }
408
409    #[test]
410    fn test_invalid_k() {
411        let points = Array2::from_shape_vec((2, 2), vec![0.0, 0.0, 1.0, 1.0]).unwrap();
412        let searcher = QuantumNearestNeighbor::new(&points.view()).unwrap();
413
414        let query = scirs2_core::ndarray::arr1(&[0.5, 0.5]);
415        let result = searcher.query_quantum(&query.view(), 5);
416
417        assert!(result.is_err());
418    }
419}