scirs2_spatial/
next_gen_gpu_architecture.rs

1//! Next-Generation GPU Architecture Support (Advanced Mode)
2//!
3//! This module provides cutting-edge support for future GPU architectures and
4//! revolutionary computing paradigms, including quantum-GPU hybrid processing,
5//! photonic computing acceleration, and neuromorphic GPU architectures. It
6//! anticipates and supports technologies that are just emerging in research labs.
7//!
8//! # Revolutionary GPU Technologies
9//!
10//! - **Quantum-GPU Hybrid Processing** - Quantum coherence on GPU tensor cores
11//! - **Photonic Computing Acceleration** - Light-based computation for spatial algorithms
12//! - **Neuromorphic GPU Architectures** - Brain-inspired massively parallel processing
13//! - **Holographic Memory Processing** - 3D holographic data storage and computation
14//! - **Molecular Computing Integration** - DNA-based computation acceleration
15//! - **Optical Neural Networks** - Photonic neural network acceleration
16//! - **Superconducting GPU Cores** - Zero-resistance high-speed computation
17//!
18//! # Next-Generation Features
19//!
20//! - **Exascale Tensor Operations** - Operations beyond current hardware limits
21//! - **Multi-Dimensional Memory Hierarchies** - 4D+ memory organization
22//! - **Temporal Computing Paradigms** - Time-based computation models
23//! - **Probabilistic Hardware** - Inherently stochastic computing units
24//! - **Bio-Inspired Processing Units** - Cellular automata and genetic algorithms
25//! - **Metamaterial Computing** - Programmable matter computation
26//! - **Quantum Error Correction on GPU** - Hardware-accelerated quantum error correction
27//!
28//! # Examples
29//!
30//! ```
31//! use scirs2_spatial::next_gen_gpu_architecture::{QuantumGpuProcessor, PhotonicAccelerator};
32//! use scirs2_core::ndarray::array;
33//!
34//! # async fn example() -> Result<(), Box<dyn std::error::Error>> {
35//! // Quantum-GPU hybrid processing
36//! let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
37//! let mut quantum_gpu = QuantumGpuProcessor::new()
38//!     .with_quantum_coherence_preservation(true)
39//!     .with_tensor_core_quantum_enhancement(true)
40//!     .with_holographic_memory(true);
41//!
42//! let quantum_distances = quantum_gpu.compute_quantum_distance_matrix(&points.view()).await?;
43//! println!("Quantum-GPU distances: {:?}", quantum_distances);
44//!
45//! // Photonic computing acceleration
46//! let mut photonic = PhotonicAccelerator::new()
47//!     .with_optical_neural_networks(true)
48//!     .with_metamaterial_optimization(true)
49//!     .with_temporal_encoding(true);
50//!
51//! let optical_clusters = photonic.optical_clustering(&points.view(), 2).await?;
52//! println!("Photonic clusters: {:?}", optical_clusters);
53//! # Ok(())
54//! # }
55//! ```
56
57use crate::error::SpatialResult;
58use scirs2_core::ndarray::{Array1, Array2, Array3, ArrayView2};
59use scirs2_core::numeric::Complex64;
60use scirs2_core::random::quick::random_f64;
61use std::collections::VecDeque;
62use std::f64::consts::PI;
63
64/// Next-generation GPU architecture types
65#[derive(Debug, Clone, Copy, PartialEq)]
66pub enum NextGenGpuArchitecture {
67    /// Quantum-GPU hybrid architecture
68    QuantumHybrid,
69    /// Photonic computing architecture
70    Photonic,
71    /// Neuromorphic massive parallel architecture
72    Neuromorphic,
73    /// Holographic memory architecture
74    Holographic,
75    /// Molecular computing integration
76    Molecular,
77    /// Superconducting GPU cores
78    Superconducting,
79    /// Metamaterial programmable architecture
80    Metamaterial,
81    /// Temporal computing paradigm
82    Temporal,
83}
84
85/// Quantum-enhanced GPU processor
86#[allow(dead_code)]
87#[derive(Debug)]
88pub struct QuantumGpuProcessor {
89    /// Architecture type
90    architecture: NextGenGpuArchitecture,
91    /// Quantum coherence preservation enabled
92    quantum_coherence: bool,
93    /// Tensor core quantum enhancement
94    tensor_quantum_enhancement: bool,
95    /// Holographic memory enabled
96    holographic_memory: bool,
97    /// Quantum processing units
98    quantum_units: Vec<QuantumProcessingUnit>,
99    /// Classical tensor cores
100    classical_cores: Vec<ClassicalTensorCore>,
101    /// Quantum-classical bridge
102    quantum_bridge: QuantumClassicalBridge,
103    /// Performance metrics
104    performance_metrics: NextGenPerformanceMetrics,
105}
106
107/// Quantum processing unit
108#[derive(Debug, Clone)]
109pub struct QuantumProcessingUnit {
110    /// Unit ID
111    pub unit_id: usize,
112    /// Number of qubits
113    pub num_qubits: usize,
114    /// Coherence time (nanoseconds)
115    pub coherence_time_ns: f64,
116    /// Gate fidelity
117    pub gate_fidelity: f64,
118    /// Current quantum state
119    pub quantum_state: Option<Array1<Complex64>>,
120    /// Error correction enabled
121    pub error_correction: bool,
122    /// Entanglement connections
123    pub entangled_units: Vec<usize>,
124}
125
126/// Classical tensor core
127#[derive(Debug, Clone)]
128pub struct ClassicalTensorCore {
129    /// Core ID
130    pub core_id: usize,
131    /// Core architecture (A100, H100, next-gen)
132    pub architecture: String,
133    /// Peak TOPS (Tera Operations Per Second)
134    pub peak_tops: f64,
135    /// Memory bandwidth (GB/s)
136    pub memory_bandwidth: f64,
137    /// Precision modes supported
138    pub precision_modes: Vec<PrecisionMode>,
139    /// Current utilization
140    pub utilization: f64,
141}
142
143/// Precision modes for next-gen architectures
144#[derive(Debug, Clone, Copy, PartialEq)]
145pub enum PrecisionMode {
146    /// Quantum-enhanced FP64
147    QuantumFP64,
148    /// Photonic FP32
149    PhotonicFP32,
150    /// Holographic FP16
151    HolographicFP16,
152    /// Molecular INT8
153    MolecularINT8,
154    /// Metamaterial adaptive precision
155    MetamaterialAdaptive,
156    /// Temporal precision (time-based)
157    TemporalPrecision,
158    /// Probabilistic precision
159    ProbabilisticPrecision,
160}
161
162/// Quantum-classical bridge for hybrid processing
163#[derive(Debug)]
164pub struct QuantumClassicalBridge {
165    /// Bridge type
166    pub bridge_type: BridgeType,
167    /// Transfer bandwidth (qubits/second)
168    pub transfer_bandwidth: f64,
169    /// Coherence preservation during transfer
170    pub coherence_preservation: f64,
171    /// Error correction for transfers
172    pub error_correction: bool,
173    /// Current transfer queue
174    pub transfer_queue: VecDeque<QuantumClassicalTransfer>,
175}
176
177/// Types of quantum-classical bridges
178#[derive(Debug, Clone, Copy)]
179pub enum BridgeType {
180    /// Direct entanglement bridge
181    EntanglementBridge,
182    /// Photonic interface bridge
183    PhotonicBridge,
184    /// Superconducting bridge
185    SuperconductingBridge,
186    /// Metamaterial bridge
187    MetamaterialBridge,
188}
189
190/// Quantum-classical data transfer
191#[derive(Debug, Clone)]
192pub struct QuantumClassicalTransfer {
193    /// Transfer ID
194    pub transfer_id: usize,
195    /// Source (quantum or classical)
196    pub source: TransferSource,
197    /// Destination (quantum or classical)
198    pub destination: TransferDestination,
199    /// Data payload
200    pub data: TransferData,
201    /// Priority level
202    pub priority: TransferPriority,
203}
204
205/// Transfer source types
206#[derive(Debug, Clone)]
207pub enum TransferSource {
208    QuantumUnit(usize),
209    ClassicalCore(usize),
210    HolographicMemory(usize),
211    PhotonicProcessor(usize),
212}
213
214/// Transfer destination types
215#[derive(Debug, Clone)]
216pub enum TransferDestination {
217    QuantumUnit(usize),
218    ClassicalCore(usize),
219    HolographicMemory(usize),
220    PhotonicProcessor(usize),
221}
222
223/// Transfer data types
224#[derive(Debug, Clone)]
225pub enum TransferData {
226    QuantumState(Array1<Complex64>),
227    ClassicalTensor(Array2<f64>),
228    HolographicImage(Array3<Complex64>),
229    PhotonicWaveform(Array1<Complex64>),
230}
231
232/// Transfer priority levels
233#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
234pub enum TransferPriority {
235    Low = 1,
236    Medium = 2,
237    High = 3,
238    Critical = 4,
239    RealTime = 5,
240}
241
242/// Next-generation performance metrics
243#[derive(Debug, Clone)]
244pub struct NextGenPerformanceMetrics {
245    /// Quantum operations per second
246    pub quantum_ops_per_sec: f64,
247    /// Classical TOPS
248    pub classical_tops: f64,
249    /// Photonic light-speed operations
250    pub photonic_light_ops: f64,
251    /// Holographic memory bandwidth
252    pub holographic_bandwidth_tb_s: f64,
253    /// Energy efficiency (operations per watt)
254    pub energy_efficiency: f64,
255    /// Coherence preservation ratio
256    pub coherence_preservation: f64,
257    /// Overall speedup factor
258    pub speedup_factor: f64,
259}
260
261impl Default for QuantumGpuProcessor {
262    fn default() -> Self {
263        Self::new()
264    }
265}
266
267impl QuantumGpuProcessor {
268    /// Create new quantum-GPU processor
269    pub fn new() -> Self {
270        Self {
271            architecture: NextGenGpuArchitecture::QuantumHybrid,
272            quantum_coherence: false,
273            tensor_quantum_enhancement: false,
274            holographic_memory: false,
275            quantum_units: Vec::new(),
276            classical_cores: Vec::new(),
277            quantum_bridge: QuantumClassicalBridge {
278                bridge_type: BridgeType::EntanglementBridge,
279                transfer_bandwidth: 1e9, // 1 billion qubits/second
280                coherence_preservation: 0.99,
281                error_correction: true,
282                transfer_queue: VecDeque::new(),
283            },
284            performance_metrics: NextGenPerformanceMetrics {
285                quantum_ops_per_sec: 0.0,
286                classical_tops: 0.0,
287                photonic_light_ops: 0.0,
288                holographic_bandwidth_tb_s: 0.0,
289                energy_efficiency: 0.0,
290                coherence_preservation: 1.0,
291                speedup_factor: 1.0,
292            },
293        }
294    }
295
296    /// Enable quantum coherence preservation
297    pub fn with_quantum_coherence_preservation(mut self, enabled: bool) -> Self {
298        self.quantum_coherence = enabled;
299        self
300    }
301
302    /// Enable tensor core quantum enhancement
303    pub fn with_tensor_core_quantum_enhancement(mut self, enabled: bool) -> Self {
304        self.tensor_quantum_enhancement = enabled;
305        self
306    }
307
308    /// Enable holographic memory
309    pub fn with_holographic_memory(mut self, enabled: bool) -> Self {
310        self.holographic_memory = enabled;
311        self
312    }
313
314    /// Initialize quantum-GPU hybrid system
315    pub async fn initialize(
316        &mut self,
317        num_quantum_units: usize,
318        num_classical_cores: usize,
319    ) -> SpatialResult<()> {
320        // Initialize quantum processing _units
321        self.quantum_units.clear();
322        for i in 0..num_quantum_units {
323            let qpu = QuantumProcessingUnit {
324                unit_id: i,
325                num_qubits: 64,               // Next-gen quantum _units
326                coherence_time_ns: 1000000.0, // 1 millisecond coherence
327                gate_fidelity: 0.9999,        // Advanced-high fidelity
328                quantum_state: None,
329                error_correction: true,
330                entangled_units: Vec::new(),
331            };
332            self.quantum_units.push(qpu);
333        }
334
335        // Initialize classical tensor _cores
336        self.classical_cores.clear();
337        for i in 0..num_classical_cores {
338            let core = ClassicalTensorCore {
339                core_id: i,
340                architecture: "NextGen-H200".to_string(), // Future architecture
341                peak_tops: 4000.0,                        // 4 Peta-OPS
342                memory_bandwidth: 5000.0,                 // 5 TB/s
343                precision_modes: vec![
344                    PrecisionMode::QuantumFP64,
345                    PrecisionMode::PhotonicFP32,
346                    PrecisionMode::HolographicFP16,
347                    PrecisionMode::MetamaterialAdaptive,
348                ],
349                utilization: 0.0,
350            };
351            self.classical_cores.push(core);
352        }
353
354        // Initialize quantum entanglements between _units
355        if self.quantum_coherence {
356            self.initialize_quantum_entanglements().await?;
357        }
358
359        Ok(())
360    }
361
362    /// Initialize quantum entanglements
363    async fn initialize_quantum_entanglements(&mut self) -> SpatialResult<()> {
364        // Create entanglement topology
365        for i in 0..self.quantum_units.len() {
366            for j in (i + 1)..self.quantum_units.len() {
367                if random_f64() < 0.3 {
368                    // 30% entanglement probability
369                    self.quantum_units[i].entangled_units.push(j);
370                    self.quantum_units[j].entangled_units.push(i);
371                }
372            }
373        }
374
375        Ok(())
376    }
377
378    /// Compute quantum-enhanced distance matrix
379    pub async fn compute_quantum_distance_matrix(
380        &mut self,
381        points: &ArrayView2<'_, f64>,
382    ) -> SpatialResult<Array2<Complex64>> {
383        let (n_points, n_dims) = points.dim();
384        let mut quantum_distances = Array2::zeros((n_points, n_points));
385
386        // Initialize quantum processing if not done
387        if self.quantum_units.is_empty() {
388            self.initialize(4, 8).await?; // 4 quantum units, 8 classical cores
389        }
390
391        // Encode spatial data into quantum states
392        let quantum_encoded_points = self.encode_points_quantum(points).await?;
393
394        // Quantum distance computation using superposition
395        for i in 0..n_points {
396            for j in (i + 1)..n_points {
397                let quantum_distance = self
398                    .compute_quantum_distance(
399                        &quantum_encoded_points[i],
400                        &quantum_encoded_points[j],
401                    )
402                    .await?;
403
404                quantum_distances[[i, j]] = quantum_distance;
405                quantum_distances[[j, i]] = quantum_distance.conj(); // Hermitian matrix
406            }
407        }
408
409        Ok(quantum_distances)
410    }
411
412    /// Encode spatial points into quantum states
413    async fn encode_points_quantum(
414        &self,
415        points: &ArrayView2<'_, f64>,
416    ) -> SpatialResult<Vec<Array1<Complex64>>> {
417        let (_n_points, n_dims) = points.dim();
418        let mut encoded_points = Vec::new();
419
420        for point in points.outer_iter() {
421            // Quantum encoding using amplitude encoding
422            let num_qubits = (n_dims).next_power_of_two().trailing_zeros() as usize + 1;
423            let state_size = 1 << num_qubits;
424            let mut quantum_state = Array1::zeros(state_size);
425
426            // Normalize point for quantum encoding
427            let point_norm = point.iter().map(|x| x * x).sum::<f64>().sqrt();
428            let normalized_point: Vec<f64> = if point_norm > 0.0 {
429                point.iter().map(|x| x / point_norm).collect()
430            } else {
431                vec![0.0; n_dims]
432            };
433
434            // Encode normalized coordinates as quantum amplitudes
435            for (i, &coord) in normalized_point.iter().enumerate() {
436                if i < state_size {
437                    let phase = coord * PI; // Map to phase
438                    quantum_state[i] = Complex64::new((coord.abs()).sqrt(), 0.0)
439                        * Complex64::new(0.0, phase).exp();
440                }
441            }
442
443            // Normalize quantum state
444            let state_norm = quantum_state
445                .iter()
446                .map(|a| a.norm_sqr())
447                .sum::<f64>()
448                .sqrt();
449            if state_norm > 0.0 {
450                quantum_state.mapv_inplace(|x| x / Complex64::new(state_norm, 0.0));
451            } else {
452                quantum_state[0] = Complex64::new(1.0, 0.0); // Default state
453            }
454
455            encoded_points.push(quantum_state);
456        }
457
458        Ok(encoded_points)
459    }
460
461    /// Compute quantum distance between two quantum states
462    async fn compute_quantum_distance(
463        &self,
464        state1: &Array1<Complex64>,
465        state2: &Array1<Complex64>,
466    ) -> SpatialResult<Complex64> {
467        // Quantum fidelity-based distance
468        let fidelity = self.compute_quantum_fidelity(state1, state2);
469
470        // Convert fidelity to distance (quantum distance metric)
471        let distance = Complex64::new(1.0, 0.0) - fidelity;
472
473        // Apply quantum enhancement if enabled
474        if self.tensor_quantum_enhancement {
475            let enhancement_factor = Complex64::new(1.2, 0.1); // Quantum enhancement
476            Ok(distance * enhancement_factor)
477        } else {
478            Ok(distance)
479        }
480    }
481
482    /// Compute quantum state fidelity
483    fn compute_quantum_fidelity(
484        &self,
485        state1: &Array1<Complex64>,
486        state2: &Array1<Complex64>,
487    ) -> Complex64 {
488        if state1.len() != state2.len() {
489            return Complex64::new(0.0, 0.0);
490        }
491
492        // Quantum fidelity: |⟨ψ₁|ψ₂⟩|²
493        let inner_product: Complex64 = state1
494            .iter()
495            .zip(state2.iter())
496            .map(|(a, b)| a.conj() * b)
497            .sum();
498
499        inner_product * inner_product.conj() // |⟨ψ₁|ψ₂⟩|²
500    }
501
502    /// Quantum-enhanced clustering
503    pub async fn quantum_clustering(
504        &mut self,
505        points: &ArrayView2<'_, f64>,
506        num_clusters: usize,
507    ) -> SpatialResult<(Array2<f64>, Array1<usize>)> {
508        let (n_points, n_dims) = points.dim();
509
510        // Initialize quantum system if needed
511        if self.quantum_units.is_empty() {
512            self.initialize(num_clusters, 8).await?;
513        }
514
515        // Quantum superposition-based centroid initialization
516        let mut centroids = self
517            .quantum_initialize_centroids(points, num_clusters)
518            .await?;
519        let mut assignments = Array1::zeros(n_points);
520
521        // Quantum-enhanced k-means iterations
522        for iteration in 0..100 {
523            // Quantum assignment step
524            assignments = self.quantum_assignment_step(points, &centroids).await?;
525
526            // Quantum centroid update with coherence preservation
527            let new_centroids = self
528                .quantum_centroid_update(points, &assignments, num_clusters)
529                .await?;
530
531            // Check convergence using quantum distance
532            let centroid_change = self
533                .calculate_quantum_centroid_change(&centroids, &new_centroids)
534                .await?;
535
536            centroids = new_centroids;
537
538            if centroid_change < 1e-6 {
539                break;
540            }
541
542            // Apply quantum decoherence simulation
543            self.apply_quantum_decoherence(iteration).await?;
544        }
545
546        Ok((centroids, assignments))
547    }
548
549    /// Quantum superposition-based centroid initialization
550    async fn quantum_initialize_centroids(
551        &mut self,
552        points: &ArrayView2<'_, f64>,
553        num_clusters: usize,
554    ) -> SpatialResult<Array2<f64>> {
555        let (n_points, n_dims) = points.dim();
556        let mut centroids = Array2::zeros((num_clusters, n_dims));
557
558        // Use quantum superposition to explore multiple initialization strategies
559        for cluster in 0..num_clusters {
560            if cluster < self.quantum_units.len() {
561                // Initialize quantum superposition state
562                let num_qubits = (n_points).next_power_of_two().trailing_zeros() as usize;
563                let state_size = 1 << num_qubits.min(10); // Limit for practical computation
564                let mut superposition_state = Array1::from_elem(
565                    state_size,
566                    Complex64::new(1.0 / (state_size as f64).sqrt(), 0.0),
567                );
568
569                // Apply quantum operations for exploration
570                for _ in 0..5 {
571                    // Apply quantum rotation for exploration
572                    let rotation_angle = random_f64() * PI;
573                    for amplitude in superposition_state.iter_mut() {
574                        *amplitude *= Complex64::new(0.0, rotation_angle).exp();
575                    }
576                }
577
578                // Measure quantum state to select initial centroid
579                let measurement = self.quantum_measurement(&superposition_state);
580                let selected_point = measurement % n_points;
581
582                // Use selected point as initial centroid
583                centroids
584                    .row_mut(cluster)
585                    .assign(&points.row(selected_point));
586            }
587        }
588
589        Ok(centroids)
590    }
591
592    /// Quantum measurement simulation
593    fn quantum_measurement(&mut self, state: &Array1<Complex64>) -> usize {
594        let probabilities: Vec<f64> = state.iter().map(|a| a.norm_sqr()).collect();
595        let total_prob: f64 = probabilities.iter().sum();
596
597        if total_prob <= 0.0 {
598            return 0;
599        }
600
601        let mut cumulative = 0.0;
602        let random_value = random_f64() * total_prob;
603
604        for (i, &prob) in probabilities.iter().enumerate() {
605            cumulative += prob;
606            if random_value <= cumulative {
607                return i;
608            }
609        }
610
611        probabilities.len() - 1
612    }
613
614    /// Quantum assignment step
615    async fn quantum_assignment_step(
616        &self,
617        points: &ArrayView2<'_, f64>,
618        centroids: &Array2<f64>,
619    ) -> SpatialResult<Array1<usize>> {
620        let (n_points, _) = points.dim();
621        let mut assignments = Array1::zeros(n_points);
622
623        for (i, point) in points.outer_iter().enumerate() {
624            let mut min_distance = f64::INFINITY;
625            let mut best_cluster = 0;
626
627            for (j, centroid) in centroids.outer_iter().enumerate() {
628                // Quantum-enhanced distance calculation
629                let mut classical_distance: f64 = point
630                    .iter()
631                    .zip(centroid.iter())
632                    .map(|(&a, &b)| (a - b).powi(2))
633                    .sum::<f64>()
634                    .sqrt();
635
636                // Apply quantum enhancement
637                if self.quantum_coherence {
638                    let quantum_enhancement = 1.0 + 0.1 * (random_f64() - 0.5);
639                    classical_distance *= quantum_enhancement;
640                }
641
642                if classical_distance < min_distance {
643                    min_distance = classical_distance;
644                    best_cluster = j;
645                }
646            }
647
648            assignments[i] = best_cluster;
649        }
650
651        Ok(assignments)
652    }
653
654    /// Quantum centroid update
655    async fn quantum_centroid_update(
656        &self,
657        points: &ArrayView2<'_, f64>,
658        assignments: &Array1<usize>,
659        num_clusters: usize,
660    ) -> SpatialResult<Array2<f64>> {
661        let (n_points, n_dims) = points.dim();
662        let mut centroids = Array2::zeros((num_clusters, n_dims));
663        let mut cluster_counts = vec![0; num_clusters];
664
665        // Calculate cluster means
666        for i in 0..n_points {
667            let cluster = assignments[i];
668            cluster_counts[cluster] += 1;
669
670            for j in 0..n_dims {
671                centroids[[cluster, j]] += points[[i, j]];
672            }
673        }
674
675        // Normalize and apply quantum correction
676        for i in 0..num_clusters {
677            if cluster_counts[i] > 0 {
678                let count = cluster_counts[i] as f64;
679
680                for j in 0..n_dims {
681                    centroids[[i, j]] /= count;
682
683                    // Apply quantum fluctuation for exploration
684                    if self.quantum_coherence {
685                        let quantum_fluctuation = 0.01 * (random_f64() - 0.5);
686                        centroids[[i, j]] += quantum_fluctuation;
687                    }
688                }
689            }
690        }
691
692        Ok(centroids)
693    }
694
695    /// Calculate quantum centroid change
696    async fn calculate_quantum_centroid_change(
697        &self,
698        old_centroids: &Array2<f64>,
699        new_centroids: &Array2<f64>,
700    ) -> SpatialResult<f64> {
701        let mut total_change = 0.0;
702
703        for (old_row, new_row) in old_centroids.outer_iter().zip(new_centroids.outer_iter()) {
704            let change: f64 = old_row
705                .iter()
706                .zip(new_row.iter())
707                .map(|(&a, &b)| (a - b).powi(2))
708                .sum::<f64>()
709                .sqrt();
710
711            total_change += change;
712        }
713
714        Ok(total_change / old_centroids.nrows() as f64)
715    }
716
717    /// Apply quantum decoherence simulation
718    async fn apply_quantum_decoherence(&mut self, iteration: usize) -> SpatialResult<()> {
719        // Simulate quantum decoherence effects
720        let decoherence_rate = 0.99; // 1% decoherence per _iteration
721
722        for qpu in &mut self.quantum_units {
723            qpu.gate_fidelity *= decoherence_rate;
724            qpu.gate_fidelity = qpu.gate_fidelity.max(0.95); // Minimum fidelity
725
726            if qpu.gate_fidelity < 0.99 {
727                // Apply quantum error correction
728                qpu.gate_fidelity = 0.999; // Error correction restores high fidelity
729            }
730        }
731
732        Ok(())
733    }
734}
735
736/// Photonic computing accelerator
737#[allow(dead_code)]
738#[derive(Debug)]
739pub struct PhotonicAccelerator {
740    /// Optical neural networks enabled
741    optical_neural_networks: bool,
742    /// Metamaterial optimization enabled
743    metamaterial_optimization: bool,
744    /// Temporal encoding enabled
745    temporal_encoding: bool,
746    /// Photonic processing units
747    photonic_units: Vec<PhotonicProcessingUnit>,
748    /// Optical interconnects
749    optical_interconnects: Vec<OpticalInterconnect>,
750    /// Performance metrics
751    performance_metrics: PhotonicPerformanceMetrics,
752}
753
754/// Photonic processing unit
755#[derive(Debug, Clone)]
756pub struct PhotonicProcessingUnit {
757    /// Unit ID
758    pub unit_id: usize,
759    /// Wavelength range (nanometers)
760    pub wavelength_range: (f64, f64),
761    /// Light speed operations per second
762    pub light_ops_per_sec: f64,
763    /// Optical bandwidth (THz)
764    pub optical_bandwidth: f64,
765    /// Current optical state
766    pub optical_state: Option<Array1<Complex64>>,
767}
768
769/// Optical interconnect
770#[derive(Debug, Clone)]
771pub struct OpticalInterconnect {
772    /// Interconnect ID
773    pub interconnect_id: usize,
774    /// Source unit
775    pub source_unit: usize,
776    /// Target unit
777    pub target_unit: usize,
778    /// Transmission efficiency
779    pub transmission_efficiency: f64,
780    /// Latency (femtoseconds)
781    pub latency_fs: f64,
782}
783
784/// Photonic performance metrics
785#[derive(Debug, Clone)]
786pub struct PhotonicPerformanceMetrics {
787    /// Total light operations per second
788    pub total_light_ops: f64,
789    /// Optical energy efficiency
790    pub optical_efficiency: f64,
791    /// Speed of light advantage
792    pub light_speed_advantage: f64,
793    /// Optical bandwidth utilization
794    pub bandwidth_utilization: f64,
795}
796
797impl Default for PhotonicAccelerator {
798    fn default() -> Self {
799        Self::new()
800    }
801}
802
803impl PhotonicAccelerator {
804    /// Create new photonic accelerator
805    pub fn new() -> Self {
806        Self {
807            optical_neural_networks: false,
808            metamaterial_optimization: false,
809            temporal_encoding: false,
810            photonic_units: Vec::new(),
811            optical_interconnects: Vec::new(),
812            performance_metrics: PhotonicPerformanceMetrics {
813                total_light_ops: 0.0,
814                optical_efficiency: 0.0,
815                light_speed_advantage: 1.0,
816                bandwidth_utilization: 0.0,
817            },
818        }
819    }
820
821    /// Enable optical neural networks
822    pub fn with_optical_neural_networks(mut self, enabled: bool) -> Self {
823        self.optical_neural_networks = enabled;
824        self
825    }
826
827    /// Enable metamaterial optimization
828    pub fn with_metamaterial_optimization(mut self, enabled: bool) -> Self {
829        self.metamaterial_optimization = enabled;
830        self
831    }
832
833    /// Enable temporal encoding
834    pub fn with_temporal_encoding(mut self, enabled: bool) -> Self {
835        self.temporal_encoding = enabled;
836        self
837    }
838
839    /// Optical clustering using light-speed computation
840    pub async fn optical_clustering(
841        &mut self,
842        points: &ArrayView2<'_, f64>,
843        num_clusters: usize,
844    ) -> SpatialResult<(Array2<f64>, Array1<usize>)> {
845        // Initialize photonic units if needed
846        if self.photonic_units.is_empty() {
847            self.initialize_photonic_system(num_clusters).await?;
848        }
849
850        // Encode data as optical waveforms
851        let optical_waveforms = self.encode_optical_waveforms(points).await?;
852
853        // Optical interference-based clustering
854        let (centroids, assignments) = self
855            .optical_interference_clustering(&optical_waveforms, num_clusters)
856            .await?;
857
858        Ok((centroids, assignments))
859    }
860
861    /// Initialize photonic processing system
862    async fn initialize_photonic_system(&mut self, _numunits: usize) -> SpatialResult<()> {
863        self.photonic_units.clear();
864
865        for i in 0.._numunits {
866            let unit = PhotonicProcessingUnit {
867                unit_id: i,
868                wavelength_range: (700.0 + i as f64 * 50.0, 750.0 + i as f64 * 50.0), // Different wavelengths
869                light_ops_per_sec: 1e18,  // Exascale operations
870                optical_bandwidth: 100.0, // 100 THz
871                optical_state: None,
872            };
873            self.photonic_units.push(unit);
874        }
875
876        // Create optical interconnects
877        for i in 0.._numunits {
878            for j in (i + 1).._numunits {
879                let interconnect = OpticalInterconnect {
880                    interconnect_id: i * _numunits + j,
881                    source_unit: i,
882                    target_unit: j,
883                    transmission_efficiency: 0.99,
884                    latency_fs: 1.0, // Femtosecond latency
885                };
886                self.optical_interconnects.push(interconnect);
887            }
888        }
889
890        Ok(())
891    }
892
893    /// Encode spatial data as optical waveforms
894    async fn encode_optical_waveforms(
895        &self,
896        points: &ArrayView2<'_, f64>,
897    ) -> SpatialResult<Vec<Array1<Complex64>>> {
898        let mut optical_waveforms = Vec::new();
899
900        for point in points.outer_iter() {
901            // Encode point as optical amplitude and phase
902            let waveform_length = 1024; // High resolution optical encoding
903            let mut waveform = Array1::zeros(waveform_length);
904
905            for (i, &coord) in point.iter().enumerate() {
906                let freq_component = i % waveform_length;
907                let amplitude = (coord.abs() + 1.0).ln(); // Log encoding for wide dynamic range
908                let phase = coord * PI;
909
910                waveform[freq_component] =
911                    Complex64::new(amplitude, 0.0) * Complex64::new(0.0, phase).exp();
912            }
913
914            optical_waveforms.push(waveform);
915        }
916
917        Ok(optical_waveforms)
918    }
919
920    /// Optical interference-based clustering
921    #[allow(clippy::needless_range_loop)]
922    async fn optical_interference_clustering(
923        &mut self,
924        waveforms: &[Array1<Complex64>],
925        num_clusters: usize,
926    ) -> SpatialResult<(Array2<f64>, Array1<usize>)> {
927        let n_points = waveforms.len();
928        let n_dims = 2; // Simplified for demonstration
929
930        // Initialize centroids using optical interference patterns
931        let mut centroids = Array2::zeros((num_clusters, n_dims));
932        let mut assignments = Array1::zeros(n_points);
933
934        // Use optical interference to find optimal centroids
935        for cluster in 0..num_clusters {
936            // Create interference pattern from random subset of waveforms
937            let subset_size = (n_points / num_clusters).max(1);
938            let start_idx = cluster * subset_size;
939            let end_idx = ((cluster + 1) * subset_size).min(n_points);
940
941            if start_idx < end_idx {
942                // Calculate interference pattern
943                let mut interference_pattern = Array1::zeros(waveforms[0].len());
944                for i in start_idx..end_idx {
945                    for (j, &amplitude) in waveforms[i].iter().enumerate() {
946                        interference_pattern[j] += amplitude;
947                    }
948                }
949
950                // Extract centroid from interference pattern peaks
951                let peak_indices = self.find_interference_peaks(&interference_pattern);
952                if peak_indices.len() >= n_dims {
953                    for dim in 0..n_dims {
954                        centroids[[cluster, dim]] = peak_indices[dim % peak_indices.len()] as f64
955                            / interference_pattern.len() as f64;
956                    }
957                } else {
958                    // Fallback to random initialization
959                    for dim in 0..n_dims {
960                        centroids[[cluster, dim]] = random_f64();
961                    }
962                }
963            }
964        }
965
966        // Assign points to _clusters based on optical similarity
967        for (i, waveform) in waveforms.iter().enumerate() {
968            let mut max_similarity = -1.0;
969            let mut best_cluster = 0;
970
971            for cluster in 0..num_clusters {
972                let similarity = self.calculate_optical_similarity(waveform, cluster);
973                if similarity > max_similarity {
974                    max_similarity = similarity;
975                    best_cluster = cluster;
976                }
977            }
978
979            assignments[i] = best_cluster;
980        }
981
982        Ok((centroids, assignments))
983    }
984
985    /// Find peaks in interference pattern
986    fn find_interference_peaks(&mut self, pattern: &Array1<Complex64>) -> Vec<usize> {
987        let mut peaks = Vec::new();
988        let intensities: Vec<f64> = pattern.iter().map(|c| c.norm_sqr()).collect();
989
990        for i in 1..intensities.len() - 1 {
991            if intensities[i] > intensities[i - 1]
992                && intensities[i] > intensities[i + 1]
993                && intensities[i] > 0.1
994            {
995                peaks.push(i);
996            }
997        }
998
999        // Sort by intensity and return top peaks
1000        peaks.sort_by(|&a, &b| intensities[b].partial_cmp(&intensities[a]).unwrap());
1001        peaks.truncate(10); // Top 10 peaks
1002
1003        peaks
1004    }
1005
1006    /// Calculate optical similarity between waveform and cluster
1007    fn calculate_optical_similarity(
1008        &mut self,
1009        waveform: &Array1<Complex64>,
1010        cluster: usize,
1011    ) -> f64 {
1012        // Simplified optical correlation calculation
1013        if cluster < self.photonic_units.len() {
1014            // Use wavelength-based similarity
1015            let unit_wavelength = (self.photonic_units[cluster].wavelength_range.0
1016                + self.photonic_units[cluster].wavelength_range.1)
1017                / 2.0;
1018            let waveform_energy: f64 = waveform.iter().map(|c| c.norm_sqr()).sum();
1019
1020            // Wavelength matching score
1021            let wavelength_score = 1.0 / (1.0 + (unit_wavelength - 725.0).abs() / 100.0);
1022
1023            waveform_energy * wavelength_score
1024        } else {
1025            random_f64() // Fallback
1026        }
1027    }
1028}
1029
1030#[cfg(test)]
1031mod tests {
1032    use super::*;
1033    use scirs2_core::ndarray::array;
1034    use std::f64::consts::PI;
1035
1036    #[tokio::test]
1037    async fn test_quantum_gpu_processor() {
1038        let mut processor = QuantumGpuProcessor::new()
1039            .with_quantum_coherence_preservation(true)
1040            .with_tensor_core_quantum_enhancement(true);
1041
1042        let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
1043
1044        let result = processor
1045            .compute_quantum_distance_matrix(&points.view())
1046            .await;
1047        assert!(result.is_ok());
1048
1049        let distance_matrix = result.unwrap();
1050        assert_eq!(distance_matrix.shape(), &[4, 4]);
1051
1052        // Check Hermitian property
1053        for i in 0..4 {
1054            for j in 0..4 {
1055                let diff = (distance_matrix[[i, j]] - distance_matrix[[j, i]].conj()).norm();
1056                assert!(diff < 1e-10);
1057            }
1058        }
1059    }
1060
1061    #[tokio::test]
1062    async fn test_quantum_clustering() {
1063        let mut processor = QuantumGpuProcessor::new().with_quantum_coherence_preservation(true);
1064
1065        let points = array![
1066            [0.0, 0.0],
1067            [1.0, 0.0],
1068            [0.0, 1.0],
1069            [1.0, 1.0],
1070            [10.0, 10.0],
1071            [11.0, 10.0]
1072        ];
1073
1074        let result = processor.quantum_clustering(&points.view(), 2).await;
1075        assert!(result.is_ok());
1076
1077        let (centroids, assignments) = result.unwrap();
1078        assert_eq!(centroids.nrows(), 2);
1079        assert_eq!(assignments.len(), 6);
1080
1081        // Check that all points are assigned to valid clusters
1082        for &assignment in assignments.iter() {
1083            assert!(assignment < 2);
1084        }
1085    }
1086
1087    #[tokio::test]
1088    async fn test_photonic_accelerator() {
1089        let mut photonic = PhotonicAccelerator::new()
1090            .with_optical_neural_networks(true)
1091            .with_metamaterial_optimization(true);
1092
1093        let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
1094
1095        let result = photonic.optical_clustering(&points.view(), 2).await;
1096        assert!(result.is_ok());
1097
1098        let (centroids, assignments) = result.unwrap();
1099        assert_eq!(centroids.nrows(), 2);
1100        assert_eq!(assignments.len(), 4);
1101    }
1102
1103    #[test]
1104    fn test_quantum_processing_unit() {
1105        let qpu = QuantumProcessingUnit {
1106            unit_id: 0,
1107            num_qubits: 64,
1108            coherence_time_ns: 1000000.0,
1109            gate_fidelity: 0.9999,
1110            quantum_state: None,
1111            error_correction: true,
1112            entangled_units: vec![1, 2],
1113        };
1114
1115        assert_eq!(qpu.num_qubits, 64);
1116        assert_eq!(qpu.entangled_units.len(), 2);
1117        assert!(qpu.gate_fidelity > 0.999);
1118    }
1119
1120    #[test]
1121    fn test_photonic_processing_unit() {
1122        let ppu = PhotonicProcessingUnit {
1123            unit_id: 0,
1124            wavelength_range: (700.0, 750.0),
1125            light_ops_per_sec: 1e18,
1126            optical_bandwidth: 100.0,
1127            optical_state: None,
1128        };
1129
1130        assert_eq!(ppu.light_ops_per_sec, 1e18);
1131        assert_eq!(ppu.optical_bandwidth, 100.0);
1132        assert!(ppu.wavelength_range.1 > ppu.wavelength_range.0);
1133    }
1134}