1use crate::error::SpatialResult;
58use scirs2_core::ndarray::{Array1, Array2, Array3, ArrayView2};
59use scirs2_core::numeric::Complex64;
60use scirs2_core::random::quick::random_f64;
61use std::collections::VecDeque;
62use std::f64::consts::PI;
63
64#[derive(Debug, Clone, Copy, PartialEq)]
66pub enum NextGenGpuArchitecture {
67 QuantumHybrid,
69 Photonic,
71 Neuromorphic,
73 Holographic,
75 Molecular,
77 Superconducting,
79 Metamaterial,
81 Temporal,
83}
84
85#[allow(dead_code)]
87#[derive(Debug)]
88pub struct QuantumGpuProcessor {
89 architecture: NextGenGpuArchitecture,
91 quantum_coherence: bool,
93 tensor_quantum_enhancement: bool,
95 holographic_memory: bool,
97 quantum_units: Vec<QuantumProcessingUnit>,
99 classical_cores: Vec<ClassicalTensorCore>,
101 quantum_bridge: QuantumClassicalBridge,
103 performance_metrics: NextGenPerformanceMetrics,
105}
106
107#[derive(Debug, Clone)]
109pub struct QuantumProcessingUnit {
110 pub unit_id: usize,
112 pub num_qubits: usize,
114 pub coherence_time_ns: f64,
116 pub gate_fidelity: f64,
118 pub quantum_state: Option<Array1<Complex64>>,
120 pub error_correction: bool,
122 pub entangled_units: Vec<usize>,
124}
125
126#[derive(Debug, Clone)]
128pub struct ClassicalTensorCore {
129 pub core_id: usize,
131 pub architecture: String,
133 pub peak_tops: f64,
135 pub memory_bandwidth: f64,
137 pub precision_modes: Vec<PrecisionMode>,
139 pub utilization: f64,
141}
142
143#[derive(Debug, Clone, Copy, PartialEq)]
145pub enum PrecisionMode {
146 QuantumFP64,
148 PhotonicFP32,
150 HolographicFP16,
152 MolecularINT8,
154 MetamaterialAdaptive,
156 TemporalPrecision,
158 ProbabilisticPrecision,
160}
161
162#[derive(Debug)]
164pub struct QuantumClassicalBridge {
165 pub bridge_type: BridgeType,
167 pub transfer_bandwidth: f64,
169 pub coherence_preservation: f64,
171 pub error_correction: bool,
173 pub transfer_queue: VecDeque<QuantumClassicalTransfer>,
175}
176
177#[derive(Debug, Clone, Copy)]
179pub enum BridgeType {
180 EntanglementBridge,
182 PhotonicBridge,
184 SuperconductingBridge,
186 MetamaterialBridge,
188}
189
190#[derive(Debug, Clone)]
192pub struct QuantumClassicalTransfer {
193 pub transfer_id: usize,
195 pub source: TransferSource,
197 pub destination: TransferDestination,
199 pub data: TransferData,
201 pub priority: TransferPriority,
203}
204
205#[derive(Debug, Clone)]
207pub enum TransferSource {
208 QuantumUnit(usize),
209 ClassicalCore(usize),
210 HolographicMemory(usize),
211 PhotonicProcessor(usize),
212}
213
214#[derive(Debug, Clone)]
216pub enum TransferDestination {
217 QuantumUnit(usize),
218 ClassicalCore(usize),
219 HolographicMemory(usize),
220 PhotonicProcessor(usize),
221}
222
223#[derive(Debug, Clone)]
225pub enum TransferData {
226 QuantumState(Array1<Complex64>),
227 ClassicalTensor(Array2<f64>),
228 HolographicImage(Array3<Complex64>),
229 PhotonicWaveform(Array1<Complex64>),
230}
231
232#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
234pub enum TransferPriority {
235 Low = 1,
236 Medium = 2,
237 High = 3,
238 Critical = 4,
239 RealTime = 5,
240}
241
242#[derive(Debug, Clone)]
244pub struct NextGenPerformanceMetrics {
245 pub quantum_ops_per_sec: f64,
247 pub classical_tops: f64,
249 pub photonic_light_ops: f64,
251 pub holographic_bandwidth_tb_s: f64,
253 pub energy_efficiency: f64,
255 pub coherence_preservation: f64,
257 pub speedup_factor: f64,
259}
260
261impl Default for QuantumGpuProcessor {
262 fn default() -> Self {
263 Self::new()
264 }
265}
266
267impl QuantumGpuProcessor {
268 pub fn new() -> Self {
270 Self {
271 architecture: NextGenGpuArchitecture::QuantumHybrid,
272 quantum_coherence: false,
273 tensor_quantum_enhancement: false,
274 holographic_memory: false,
275 quantum_units: Vec::new(),
276 classical_cores: Vec::new(),
277 quantum_bridge: QuantumClassicalBridge {
278 bridge_type: BridgeType::EntanglementBridge,
279 transfer_bandwidth: 1e9, coherence_preservation: 0.99,
281 error_correction: true,
282 transfer_queue: VecDeque::new(),
283 },
284 performance_metrics: NextGenPerformanceMetrics {
285 quantum_ops_per_sec: 0.0,
286 classical_tops: 0.0,
287 photonic_light_ops: 0.0,
288 holographic_bandwidth_tb_s: 0.0,
289 energy_efficiency: 0.0,
290 coherence_preservation: 1.0,
291 speedup_factor: 1.0,
292 },
293 }
294 }
295
296 pub fn with_quantum_coherence_preservation(mut self, enabled: bool) -> Self {
298 self.quantum_coherence = enabled;
299 self
300 }
301
302 pub fn with_tensor_core_quantum_enhancement(mut self, enabled: bool) -> Self {
304 self.tensor_quantum_enhancement = enabled;
305 self
306 }
307
308 pub fn with_holographic_memory(mut self, enabled: bool) -> Self {
310 self.holographic_memory = enabled;
311 self
312 }
313
314 pub async fn initialize(
316 &mut self,
317 num_quantum_units: usize,
318 num_classical_cores: usize,
319 ) -> SpatialResult<()> {
320 self.quantum_units.clear();
322 for i in 0..num_quantum_units {
323 let qpu = QuantumProcessingUnit {
324 unit_id: i,
325 num_qubits: 64, coherence_time_ns: 1000000.0, gate_fidelity: 0.9999, quantum_state: None,
329 error_correction: true,
330 entangled_units: Vec::new(),
331 };
332 self.quantum_units.push(qpu);
333 }
334
335 self.classical_cores.clear();
337 for i in 0..num_classical_cores {
338 let core = ClassicalTensorCore {
339 core_id: i,
340 architecture: "NextGen-H200".to_string(), peak_tops: 4000.0, memory_bandwidth: 5000.0, precision_modes: vec![
344 PrecisionMode::QuantumFP64,
345 PrecisionMode::PhotonicFP32,
346 PrecisionMode::HolographicFP16,
347 PrecisionMode::MetamaterialAdaptive,
348 ],
349 utilization: 0.0,
350 };
351 self.classical_cores.push(core);
352 }
353
354 if self.quantum_coherence {
356 self.initialize_quantum_entanglements().await?;
357 }
358
359 Ok(())
360 }
361
362 async fn initialize_quantum_entanglements(&mut self) -> SpatialResult<()> {
364 for i in 0..self.quantum_units.len() {
366 for j in (i + 1)..self.quantum_units.len() {
367 if random_f64() < 0.3 {
368 self.quantum_units[i].entangled_units.push(j);
370 self.quantum_units[j].entangled_units.push(i);
371 }
372 }
373 }
374
375 Ok(())
376 }
377
378 pub async fn compute_quantum_distance_matrix(
380 &mut self,
381 points: &ArrayView2<'_, f64>,
382 ) -> SpatialResult<Array2<Complex64>> {
383 let (n_points, n_dims) = points.dim();
384 let mut quantum_distances = Array2::zeros((n_points, n_points));
385
386 if self.quantum_units.is_empty() {
388 self.initialize(4, 8).await?; }
390
391 let quantum_encoded_points = self.encode_points_quantum(points).await?;
393
394 for i in 0..n_points {
396 for j in (i + 1)..n_points {
397 let quantum_distance = self
398 .compute_quantum_distance(
399 &quantum_encoded_points[i],
400 &quantum_encoded_points[j],
401 )
402 .await?;
403
404 quantum_distances[[i, j]] = quantum_distance;
405 quantum_distances[[j, i]] = quantum_distance.conj(); }
407 }
408
409 Ok(quantum_distances)
410 }
411
412 async fn encode_points_quantum(
414 &self,
415 points: &ArrayView2<'_, f64>,
416 ) -> SpatialResult<Vec<Array1<Complex64>>> {
417 let (_n_points, n_dims) = points.dim();
418 let mut encoded_points = Vec::new();
419
420 for point in points.outer_iter() {
421 let num_qubits = (n_dims).next_power_of_two().trailing_zeros() as usize + 1;
423 let state_size = 1 << num_qubits;
424 let mut quantum_state = Array1::zeros(state_size);
425
426 let point_norm = point.iter().map(|x| x * x).sum::<f64>().sqrt();
428 let normalized_point: Vec<f64> = if point_norm > 0.0 {
429 point.iter().map(|x| x / point_norm).collect()
430 } else {
431 vec![0.0; n_dims]
432 };
433
434 for (i, &coord) in normalized_point.iter().enumerate() {
436 if i < state_size {
437 let phase = coord * PI; quantum_state[i] = Complex64::new((coord.abs()).sqrt(), 0.0)
439 * Complex64::new(0.0, phase).exp();
440 }
441 }
442
443 let state_norm = quantum_state
445 .iter()
446 .map(|a| a.norm_sqr())
447 .sum::<f64>()
448 .sqrt();
449 if state_norm > 0.0 {
450 quantum_state.mapv_inplace(|x| x / Complex64::new(state_norm, 0.0));
451 } else {
452 quantum_state[0] = Complex64::new(1.0, 0.0); }
454
455 encoded_points.push(quantum_state);
456 }
457
458 Ok(encoded_points)
459 }
460
461 async fn compute_quantum_distance(
463 &self,
464 state1: &Array1<Complex64>,
465 state2: &Array1<Complex64>,
466 ) -> SpatialResult<Complex64> {
467 let fidelity = self.compute_quantum_fidelity(state1, state2);
469
470 let distance = Complex64::new(1.0, 0.0) - fidelity;
472
473 if self.tensor_quantum_enhancement {
475 let enhancement_factor = Complex64::new(1.2, 0.1); Ok(distance * enhancement_factor)
477 } else {
478 Ok(distance)
479 }
480 }
481
482 fn compute_quantum_fidelity(
484 &self,
485 state1: &Array1<Complex64>,
486 state2: &Array1<Complex64>,
487 ) -> Complex64 {
488 if state1.len() != state2.len() {
489 return Complex64::new(0.0, 0.0);
490 }
491
492 let inner_product: Complex64 = state1
494 .iter()
495 .zip(state2.iter())
496 .map(|(a, b)| a.conj() * b)
497 .sum();
498
499 inner_product * inner_product.conj() }
501
502 pub async fn quantum_clustering(
504 &mut self,
505 points: &ArrayView2<'_, f64>,
506 num_clusters: usize,
507 ) -> SpatialResult<(Array2<f64>, Array1<usize>)> {
508 let (n_points, n_dims) = points.dim();
509
510 if self.quantum_units.is_empty() {
512 self.initialize(num_clusters, 8).await?;
513 }
514
515 let mut centroids = self
517 .quantum_initialize_centroids(points, num_clusters)
518 .await?;
519 let mut assignments = Array1::zeros(n_points);
520
521 for iteration in 0..100 {
523 assignments = self.quantum_assignment_step(points, ¢roids).await?;
525
526 let new_centroids = self
528 .quantum_centroid_update(points, &assignments, num_clusters)
529 .await?;
530
531 let centroid_change = self
533 .calculate_quantum_centroid_change(¢roids, &new_centroids)
534 .await?;
535
536 centroids = new_centroids;
537
538 if centroid_change < 1e-6 {
539 break;
540 }
541
542 self.apply_quantum_decoherence(iteration).await?;
544 }
545
546 Ok((centroids, assignments))
547 }
548
549 async fn quantum_initialize_centroids(
551 &mut self,
552 points: &ArrayView2<'_, f64>,
553 num_clusters: usize,
554 ) -> SpatialResult<Array2<f64>> {
555 let (n_points, n_dims) = points.dim();
556 let mut centroids = Array2::zeros((num_clusters, n_dims));
557
558 for cluster in 0..num_clusters {
560 if cluster < self.quantum_units.len() {
561 let num_qubits = (n_points).next_power_of_two().trailing_zeros() as usize;
563 let state_size = 1 << num_qubits.min(10); let mut superposition_state = Array1::from_elem(
565 state_size,
566 Complex64::new(1.0 / (state_size as f64).sqrt(), 0.0),
567 );
568
569 for _ in 0..5 {
571 let rotation_angle = random_f64() * PI;
573 for amplitude in superposition_state.iter_mut() {
574 *amplitude *= Complex64::new(0.0, rotation_angle).exp();
575 }
576 }
577
578 let measurement = self.quantum_measurement(&superposition_state);
580 let selected_point = measurement % n_points;
581
582 centroids
584 .row_mut(cluster)
585 .assign(&points.row(selected_point));
586 }
587 }
588
589 Ok(centroids)
590 }
591
592 fn quantum_measurement(&mut self, state: &Array1<Complex64>) -> usize {
594 let probabilities: Vec<f64> = state.iter().map(|a| a.norm_sqr()).collect();
595 let total_prob: f64 = probabilities.iter().sum();
596
597 if total_prob <= 0.0 {
598 return 0;
599 }
600
601 let mut cumulative = 0.0;
602 let random_value = random_f64() * total_prob;
603
604 for (i, &prob) in probabilities.iter().enumerate() {
605 cumulative += prob;
606 if random_value <= cumulative {
607 return i;
608 }
609 }
610
611 probabilities.len() - 1
612 }
613
614 async fn quantum_assignment_step(
616 &self,
617 points: &ArrayView2<'_, f64>,
618 centroids: &Array2<f64>,
619 ) -> SpatialResult<Array1<usize>> {
620 let (n_points, _) = points.dim();
621 let mut assignments = Array1::zeros(n_points);
622
623 for (i, point) in points.outer_iter().enumerate() {
624 let mut min_distance = f64::INFINITY;
625 let mut best_cluster = 0;
626
627 for (j, centroid) in centroids.outer_iter().enumerate() {
628 let mut classical_distance: f64 = point
630 .iter()
631 .zip(centroid.iter())
632 .map(|(&a, &b)| (a - b).powi(2))
633 .sum::<f64>()
634 .sqrt();
635
636 if self.quantum_coherence {
638 let quantum_enhancement = 1.0 + 0.1 * (random_f64() - 0.5);
639 classical_distance *= quantum_enhancement;
640 }
641
642 if classical_distance < min_distance {
643 min_distance = classical_distance;
644 best_cluster = j;
645 }
646 }
647
648 assignments[i] = best_cluster;
649 }
650
651 Ok(assignments)
652 }
653
654 async fn quantum_centroid_update(
656 &self,
657 points: &ArrayView2<'_, f64>,
658 assignments: &Array1<usize>,
659 num_clusters: usize,
660 ) -> SpatialResult<Array2<f64>> {
661 let (n_points, n_dims) = points.dim();
662 let mut centroids = Array2::zeros((num_clusters, n_dims));
663 let mut cluster_counts = vec![0; num_clusters];
664
665 for i in 0..n_points {
667 let cluster = assignments[i];
668 cluster_counts[cluster] += 1;
669
670 for j in 0..n_dims {
671 centroids[[cluster, j]] += points[[i, j]];
672 }
673 }
674
675 for i in 0..num_clusters {
677 if cluster_counts[i] > 0 {
678 let count = cluster_counts[i] as f64;
679
680 for j in 0..n_dims {
681 centroids[[i, j]] /= count;
682
683 if self.quantum_coherence {
685 let quantum_fluctuation = 0.01 * (random_f64() - 0.5);
686 centroids[[i, j]] += quantum_fluctuation;
687 }
688 }
689 }
690 }
691
692 Ok(centroids)
693 }
694
695 async fn calculate_quantum_centroid_change(
697 &self,
698 old_centroids: &Array2<f64>,
699 new_centroids: &Array2<f64>,
700 ) -> SpatialResult<f64> {
701 let mut total_change = 0.0;
702
703 for (old_row, new_row) in old_centroids.outer_iter().zip(new_centroids.outer_iter()) {
704 let change: f64 = old_row
705 .iter()
706 .zip(new_row.iter())
707 .map(|(&a, &b)| (a - b).powi(2))
708 .sum::<f64>()
709 .sqrt();
710
711 total_change += change;
712 }
713
714 Ok(total_change / old_centroids.nrows() as f64)
715 }
716
717 async fn apply_quantum_decoherence(&mut self, iteration: usize) -> SpatialResult<()> {
719 let decoherence_rate = 0.99; for qpu in &mut self.quantum_units {
723 qpu.gate_fidelity *= decoherence_rate;
724 qpu.gate_fidelity = qpu.gate_fidelity.max(0.95); if qpu.gate_fidelity < 0.99 {
727 qpu.gate_fidelity = 0.999; }
730 }
731
732 Ok(())
733 }
734}
735
736#[allow(dead_code)]
738#[derive(Debug)]
739pub struct PhotonicAccelerator {
740 optical_neural_networks: bool,
742 metamaterial_optimization: bool,
744 temporal_encoding: bool,
746 photonic_units: Vec<PhotonicProcessingUnit>,
748 optical_interconnects: Vec<OpticalInterconnect>,
750 performance_metrics: PhotonicPerformanceMetrics,
752}
753
754#[derive(Debug, Clone)]
756pub struct PhotonicProcessingUnit {
757 pub unit_id: usize,
759 pub wavelength_range: (f64, f64),
761 pub light_ops_per_sec: f64,
763 pub optical_bandwidth: f64,
765 pub optical_state: Option<Array1<Complex64>>,
767}
768
769#[derive(Debug, Clone)]
771pub struct OpticalInterconnect {
772 pub interconnect_id: usize,
774 pub source_unit: usize,
776 pub target_unit: usize,
778 pub transmission_efficiency: f64,
780 pub latency_fs: f64,
782}
783
784#[derive(Debug, Clone)]
786pub struct PhotonicPerformanceMetrics {
787 pub total_light_ops: f64,
789 pub optical_efficiency: f64,
791 pub light_speed_advantage: f64,
793 pub bandwidth_utilization: f64,
795}
796
797impl Default for PhotonicAccelerator {
798 fn default() -> Self {
799 Self::new()
800 }
801}
802
803impl PhotonicAccelerator {
804 pub fn new() -> Self {
806 Self {
807 optical_neural_networks: false,
808 metamaterial_optimization: false,
809 temporal_encoding: false,
810 photonic_units: Vec::new(),
811 optical_interconnects: Vec::new(),
812 performance_metrics: PhotonicPerformanceMetrics {
813 total_light_ops: 0.0,
814 optical_efficiency: 0.0,
815 light_speed_advantage: 1.0,
816 bandwidth_utilization: 0.0,
817 },
818 }
819 }
820
821 pub fn with_optical_neural_networks(mut self, enabled: bool) -> Self {
823 self.optical_neural_networks = enabled;
824 self
825 }
826
827 pub fn with_metamaterial_optimization(mut self, enabled: bool) -> Self {
829 self.metamaterial_optimization = enabled;
830 self
831 }
832
833 pub fn with_temporal_encoding(mut self, enabled: bool) -> Self {
835 self.temporal_encoding = enabled;
836 self
837 }
838
839 pub async fn optical_clustering(
841 &mut self,
842 points: &ArrayView2<'_, f64>,
843 num_clusters: usize,
844 ) -> SpatialResult<(Array2<f64>, Array1<usize>)> {
845 if self.photonic_units.is_empty() {
847 self.initialize_photonic_system(num_clusters).await?;
848 }
849
850 let optical_waveforms = self.encode_optical_waveforms(points).await?;
852
853 let (centroids, assignments) = self
855 .optical_interference_clustering(&optical_waveforms, num_clusters)
856 .await?;
857
858 Ok((centroids, assignments))
859 }
860
861 async fn initialize_photonic_system(&mut self, _numunits: usize) -> SpatialResult<()> {
863 self.photonic_units.clear();
864
865 for i in 0.._numunits {
866 let unit = PhotonicProcessingUnit {
867 unit_id: i,
868 wavelength_range: (700.0 + i as f64 * 50.0, 750.0 + i as f64 * 50.0), light_ops_per_sec: 1e18, optical_bandwidth: 100.0, optical_state: None,
872 };
873 self.photonic_units.push(unit);
874 }
875
876 for i in 0.._numunits {
878 for j in (i + 1).._numunits {
879 let interconnect = OpticalInterconnect {
880 interconnect_id: i * _numunits + j,
881 source_unit: i,
882 target_unit: j,
883 transmission_efficiency: 0.99,
884 latency_fs: 1.0, };
886 self.optical_interconnects.push(interconnect);
887 }
888 }
889
890 Ok(())
891 }
892
893 async fn encode_optical_waveforms(
895 &self,
896 points: &ArrayView2<'_, f64>,
897 ) -> SpatialResult<Vec<Array1<Complex64>>> {
898 let mut optical_waveforms = Vec::new();
899
900 for point in points.outer_iter() {
901 let waveform_length = 1024; let mut waveform = Array1::zeros(waveform_length);
904
905 for (i, &coord) in point.iter().enumerate() {
906 let freq_component = i % waveform_length;
907 let amplitude = (coord.abs() + 1.0).ln(); let phase = coord * PI;
909
910 waveform[freq_component] =
911 Complex64::new(amplitude, 0.0) * Complex64::new(0.0, phase).exp();
912 }
913
914 optical_waveforms.push(waveform);
915 }
916
917 Ok(optical_waveforms)
918 }
919
920 #[allow(clippy::needless_range_loop)]
922 async fn optical_interference_clustering(
923 &mut self,
924 waveforms: &[Array1<Complex64>],
925 num_clusters: usize,
926 ) -> SpatialResult<(Array2<f64>, Array1<usize>)> {
927 let n_points = waveforms.len();
928 let n_dims = 2; let mut centroids = Array2::zeros((num_clusters, n_dims));
932 let mut assignments = Array1::zeros(n_points);
933
934 for cluster in 0..num_clusters {
936 let subset_size = (n_points / num_clusters).max(1);
938 let start_idx = cluster * subset_size;
939 let end_idx = ((cluster + 1) * subset_size).min(n_points);
940
941 if start_idx < end_idx {
942 let mut interference_pattern = Array1::zeros(waveforms[0].len());
944 for i in start_idx..end_idx {
945 for (j, &litude) in waveforms[i].iter().enumerate() {
946 interference_pattern[j] += amplitude;
947 }
948 }
949
950 let peak_indices = self.find_interference_peaks(&interference_pattern);
952 if peak_indices.len() >= n_dims {
953 for dim in 0..n_dims {
954 centroids[[cluster, dim]] = peak_indices[dim % peak_indices.len()] as f64
955 / interference_pattern.len() as f64;
956 }
957 } else {
958 for dim in 0..n_dims {
960 centroids[[cluster, dim]] = random_f64();
961 }
962 }
963 }
964 }
965
966 for (i, waveform) in waveforms.iter().enumerate() {
968 let mut max_similarity = -1.0;
969 let mut best_cluster = 0;
970
971 for cluster in 0..num_clusters {
972 let similarity = self.calculate_optical_similarity(waveform, cluster);
973 if similarity > max_similarity {
974 max_similarity = similarity;
975 best_cluster = cluster;
976 }
977 }
978
979 assignments[i] = best_cluster;
980 }
981
982 Ok((centroids, assignments))
983 }
984
985 fn find_interference_peaks(&mut self, pattern: &Array1<Complex64>) -> Vec<usize> {
987 let mut peaks = Vec::new();
988 let intensities: Vec<f64> = pattern.iter().map(|c| c.norm_sqr()).collect();
989
990 for i in 1..intensities.len() - 1 {
991 if intensities[i] > intensities[i - 1]
992 && intensities[i] > intensities[i + 1]
993 && intensities[i] > 0.1
994 {
995 peaks.push(i);
996 }
997 }
998
999 peaks.sort_by(|&a, &b| intensities[b].partial_cmp(&intensities[a]).unwrap());
1001 peaks.truncate(10); peaks
1004 }
1005
1006 fn calculate_optical_similarity(
1008 &mut self,
1009 waveform: &Array1<Complex64>,
1010 cluster: usize,
1011 ) -> f64 {
1012 if cluster < self.photonic_units.len() {
1014 let unit_wavelength = (self.photonic_units[cluster].wavelength_range.0
1016 + self.photonic_units[cluster].wavelength_range.1)
1017 / 2.0;
1018 let waveform_energy: f64 = waveform.iter().map(|c| c.norm_sqr()).sum();
1019
1020 let wavelength_score = 1.0 / (1.0 + (unit_wavelength - 725.0).abs() / 100.0);
1022
1023 waveform_energy * wavelength_score
1024 } else {
1025 random_f64() }
1027 }
1028}
1029
1030#[cfg(test)]
1031mod tests {
1032 use super::*;
1033 use scirs2_core::ndarray::array;
1034 use std::f64::consts::PI;
1035
1036 #[tokio::test]
1037 async fn test_quantum_gpu_processor() {
1038 let mut processor = QuantumGpuProcessor::new()
1039 .with_quantum_coherence_preservation(true)
1040 .with_tensor_core_quantum_enhancement(true);
1041
1042 let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
1043
1044 let result = processor
1045 .compute_quantum_distance_matrix(&points.view())
1046 .await;
1047 assert!(result.is_ok());
1048
1049 let distance_matrix = result.unwrap();
1050 assert_eq!(distance_matrix.shape(), &[4, 4]);
1051
1052 for i in 0..4 {
1054 for j in 0..4 {
1055 let diff = (distance_matrix[[i, j]] - distance_matrix[[j, i]].conj()).norm();
1056 assert!(diff < 1e-10);
1057 }
1058 }
1059 }
1060
1061 #[tokio::test]
1062 async fn test_quantum_clustering() {
1063 let mut processor = QuantumGpuProcessor::new().with_quantum_coherence_preservation(true);
1064
1065 let points = array![
1066 [0.0, 0.0],
1067 [1.0, 0.0],
1068 [0.0, 1.0],
1069 [1.0, 1.0],
1070 [10.0, 10.0],
1071 [11.0, 10.0]
1072 ];
1073
1074 let result = processor.quantum_clustering(&points.view(), 2).await;
1075 assert!(result.is_ok());
1076
1077 let (centroids, assignments) = result.unwrap();
1078 assert_eq!(centroids.nrows(), 2);
1079 assert_eq!(assignments.len(), 6);
1080
1081 for &assignment in assignments.iter() {
1083 assert!(assignment < 2);
1084 }
1085 }
1086
1087 #[tokio::test]
1088 async fn test_photonic_accelerator() {
1089 let mut photonic = PhotonicAccelerator::new()
1090 .with_optical_neural_networks(true)
1091 .with_metamaterial_optimization(true);
1092
1093 let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
1094
1095 let result = photonic.optical_clustering(&points.view(), 2).await;
1096 assert!(result.is_ok());
1097
1098 let (centroids, assignments) = result.unwrap();
1099 assert_eq!(centroids.nrows(), 2);
1100 assert_eq!(assignments.len(), 4);
1101 }
1102
1103 #[test]
1104 fn test_quantum_processing_unit() {
1105 let qpu = QuantumProcessingUnit {
1106 unit_id: 0,
1107 num_qubits: 64,
1108 coherence_time_ns: 1000000.0,
1109 gate_fidelity: 0.9999,
1110 quantum_state: None,
1111 error_correction: true,
1112 entangled_units: vec![1, 2],
1113 };
1114
1115 assert_eq!(qpu.num_qubits, 64);
1116 assert_eq!(qpu.entangled_units.len(), 2);
1117 assert!(qpu.gate_fidelity > 0.999);
1118 }
1119
1120 #[test]
1121 fn test_photonic_processing_unit() {
1122 let ppu = PhotonicProcessingUnit {
1123 unit_id: 0,
1124 wavelength_range: (700.0, 750.0),
1125 light_ops_per_sec: 1e18,
1126 optical_bandwidth: 100.0,
1127 optical_state: None,
1128 };
1129
1130 assert_eq!(ppu.light_ops_per_sec, 1e18);
1131 assert_eq!(ppu.optical_bandwidth, 100.0);
1132 assert!(ppu.wavelength_range.1 > ppu.wavelength_range.0);
1133 }
1134}