scirs2_spatial/
ai_driven_optimization.rs

1//! AI-Driven Algorithm Selection and Optimization (Advanced Mode)
2//!
3//! This module represents the pinnacle of spatial computing intelligence, using
4//! advanced machine learning techniques to automatically select optimal algorithms,
5//! tune hyperparameters, and adapt to data characteristics in real-time. It
6//! combines reinforcement learning, neural architecture search, and meta-learning
7//! to achieve unprecedented spatial computing performance.
8//!
9//! # Revolutionary AI Features
10//!
11//! - **Meta-Learning Algorithm Selection** - Learn to learn optimal algorithm choices
12//! - **Neural Architecture Search (NAS)** - Automatically design optimal spatial networks
13//! - **Reinforcement Learning Optimization** - Learn optimal hyperparameters through experience
14//! - **Real-Time Performance Prediction** - Predict algorithm performance before execution
15//! - **Adaptive Resource Allocation** - Dynamically allocate computing resources
16//! - **Multi-Objective Optimization** - Balance accuracy, speed, and energy efficiency
17//! - **Continual Learning** - Continuously improve from new data and tasks
18//!
19//! # Advanced AI Techniques
20//!
21//! - **Transformer-Based Algorithm Embeddings** - Deep representations of algorithms
22//! - **Graph Neural Networks for Data Analysis** - Understand spatial data structure
23//! - **Bayesian Optimization** - Efficient hyperparameter search
24//! - **AutoML Pipelines** - Fully automated machine learning workflows
25//! - **Neural ODE-Based Optimization** - Continuous optimization dynamics
26//! - **Attention Mechanisms** - Focus on important data characteristics
27//! - **Federated Learning** - Learn from distributed spatial computing tasks
28//!
29//! # Examples
30//!
31//! ```
32//! use scirs2_spatial::ai_driven_optimization::{AIAlgorithmSelector, MetaLearningOptimizer};
33//! use scirs2_core::ndarray::array;
34//!
35//! # async fn example() -> Result<(), Box<dyn std::error::Error>> {
36//! // AI-driven algorithm selection
37//! let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
38//! let mut ai_selector = AIAlgorithmSelector::new()
39//!     .with_meta_learning(true)
40//!     .with_neural_architecture_search(true)
41//!     .with_real_time_adaptation(true)
42//!     .with_multi_objective_optimization(true);
43//!
44//! // AI automatically selects optimal algorithm and parameters
45//! let (optimal_algorithm, parameters, performance_prediction) =
46//!     ai_selector.select_optimal_algorithm(&points.view(), "clustering").await?;
47//!
48//! println!("AI selected: {} with performance prediction: {:.3}",
49//!          optimal_algorithm, performance_prediction.expected_accuracy);
50//!
51//! // Meta-learning optimizer that learns from experience
52//! let mut meta_optimizer = MetaLearningOptimizer::new()
53//!     .with_continual_learning(true)
54//!     .with_transformer_embeddings(true)
55//!     .with_graph_neural_networks(true);
56//!
57//! let optimized_result = meta_optimizer.optimize_spatial_task(&points.view()).await?;
58//! # Ok(())
59//! # }
60//! ```
61
62use crate::error::{SpatialError, SpatialResult};
63use scirs2_core::ndarray::{Array1, Array2, ArrayView2, Axis};
64use std::collections::{HashMap, VecDeque};
65use std::time::Instant;
66
67/// AI-driven algorithm selector
68#[allow(dead_code)]
69#[derive(Debug)]
70pub struct AIAlgorithmSelector {
71    /// Meta-learning enabled
72    meta_learning: bool,
73    /// Neural architecture search enabled
74    neural_architecture_search: bool,
75    /// Real-time adaptation enabled
76    real_time_adaptation: bool,
77    /// Multi-objective optimization enabled
78    multi_objective: bool,
79    /// Algorithm knowledge base
80    algorithm_knowledge: AlgorithmKnowledgeBase,
81    /// Neural networks for prediction
82    neural_networks: PredictionNetworks,
83    /// Reinforcement learning agent
84    rl_agent: ReinforcementLearningAgent,
85    /// Performance history
86    performance_history: Vec<PerformanceRecord>,
87    /// Meta-learning model
88    meta_learner: MetaLearningModel,
89}
90
91/// Algorithm knowledge base
92#[derive(Debug)]
93pub struct AlgorithmKnowledgeBase {
94    /// Available algorithms
95    pub algorithms: HashMap<String, AlgorithmMetadata>,
96    /// Algorithm embeddings
97    pub embeddings: HashMap<String, Array1<f64>>,
98    /// Performance characteristics
99    pub performance_models: HashMap<String, PerformanceModel>,
100    /// Complexity models
101    pub complexity_models: HashMap<String, ComplexityModel>,
102}
103
104/// Algorithm metadata
105#[derive(Debug, Clone)]
106pub struct AlgorithmMetadata {
107    /// Algorithm name
108    pub name: String,
109    /// Algorithm category
110    pub category: AlgorithmCategory,
111    /// Hyperparameters
112    pub hyperparameters: Vec<HyperparameterMetadata>,
113    /// Computational complexity
114    pub time_complexity: String,
115    /// Memory complexity
116    pub space_complexity: String,
117    /// Best use cases
118    pub use_cases: Vec<String>,
119    /// Strengths and weaknesses
120    pub characteristics: AlgorithmCharacteristics,
121}
122
123/// Algorithm categories
124#[derive(Debug, Clone, PartialEq)]
125pub enum AlgorithmCategory {
126    Clustering,
127    Classification,
128    NearestNeighbor,
129    DistanceMatrix,
130    Optimization,
131    Interpolation,
132    Triangulation,
133    ConvexHull,
134    PathPlanning,
135    Quantum,
136    Neuromorphic,
137    Hybrid,
138}
139
140/// Hyperparameter metadata
141#[derive(Debug, Clone)]
142pub struct HyperparameterMetadata {
143    /// Parameter name
144    pub name: String,
145    /// Parameter type
146    pub param_type: ParameterType,
147    /// Value range
148    pub range: ParameterRange,
149    /// Default value
150    pub default: f64,
151    /// Importance score
152    pub importance: f64,
153}
154
155/// Parameter types
156#[derive(Debug, Clone)]
157pub enum ParameterType {
158    Continuous,
159    Discrete,
160    Categorical,
161    Boolean,
162}
163
164/// Parameter range
165#[derive(Debug, Clone)]
166pub enum ParameterRange {
167    Continuous(f64, f64),
168    Discrete(Vec<i32>),
169    Categorical(Vec<String>),
170    Boolean,
171}
172
173/// Algorithm characteristics
174#[derive(Debug, Clone)]
175pub struct AlgorithmCharacteristics {
176    /// Scalability score (0-1)
177    pub scalability: f64,
178    /// Accuracy score (0-1)
179    pub accuracy: f64,
180    /// Speed score (0-1)
181    pub speed: f64,
182    /// Memory efficiency score (0-1)
183    pub memory_efficiency: f64,
184    /// Robustness score (0-1)
185    pub robustness: f64,
186    /// Interpretability score (0-1)
187    pub interpretability: f64,
188}
189
190/// Performance prediction model
191#[derive(Debug, Clone)]
192pub struct PerformanceModel {
193    /// Model type
194    pub model_type: ModelType,
195    /// Model weights
196    pub weights: Array2<f64>,
197    /// Model biases
198    pub biases: Array1<f64>,
199    /// Feature importance
200    pub feature_importance: Array1<f64>,
201    /// Prediction accuracy
202    pub accuracy: f64,
203}
204
205/// Model types for performance prediction
206#[derive(Debug, Clone)]
207pub enum ModelType {
208    LinearRegression,
209    RandomForest,
210    NeuralNetwork,
211    GaussianProcess,
212    XGBoost,
213    Transformer,
214}
215
216/// Complexity analysis model
217#[derive(Debug, Clone)]
218pub struct ComplexityModel {
219    /// Time complexity model
220    pub time_model: ComplexityFunction,
221    /// Space complexity model
222    pub space_model: ComplexityFunction,
223    /// Empirical measurements
224    pub empirical_data: Vec<ComplexityMeasurement>,
225}
226
227/// Complexity function representation
228#[derive(Debug, Clone)]
229pub struct ComplexityFunction {
230    /// Function type (linear, quadratic, exponential, etc.)
231    pub function_type: ComplexityType,
232    /// Coefficients
233    pub coefficients: Array1<f64>,
234    /// Variables (n, d, k, etc.)
235    pub variables: Vec<String>,
236}
237
238/// Complexity types
239#[derive(Debug, Clone)]
240pub enum ComplexityType {
241    Constant,
242    Linear,
243    Quadratic,
244    Cubic,
245    Logarithmic,
246    Exponential,
247    Factorial,
248    Custom(String),
249}
250
251/// Complexity measurement
252#[derive(Debug, Clone)]
253pub struct ComplexityMeasurement {
254    /// Input size
255    pub input_size: usize,
256    /// Dimensionality
257    pub dimensionality: usize,
258    /// Measured time (milliseconds)
259    pub time_ms: f64,
260    /// Memory usage (bytes)
261    pub memory_bytes: usize,
262}
263
264/// Neural networks for prediction
265#[derive(Debug)]
266pub struct PredictionNetworks {
267    /// Performance prediction network
268    pub performance_network: NeuralNetwork,
269    /// Data characteristics analysis network
270    pub data_analysis_network: GraphNeuralNetwork,
271    /// Algorithm embedding network
272    pub embedding_network: TransformerNetwork,
273    /// Resource prediction network
274    pub resource_network: NeuralNetwork,
275}
276
277/// Basic neural network
278#[derive(Debug, Clone)]
279pub struct NeuralNetwork {
280    /// Network layers
281    pub layers: Vec<NeuralLayer>,
282    /// Learning rate
283    pub learning_rate: f64,
284    /// Training history
285    pub training_history: Vec<f64>,
286}
287
288/// Neural network layer
289#[derive(Debug, Clone)]
290pub struct NeuralLayer {
291    /// Layer weights
292    pub weights: Array2<f64>,
293    /// Layer biases
294    pub biases: Array1<f64>,
295    /// Activation function
296    pub activation: ActivationFunction,
297    /// Dropout rate
298    pub dropout_rate: f64,
299}
300
301/// Activation functions
302#[derive(Debug, Clone)]
303pub enum ActivationFunction {
304    ReLU,
305    Sigmoid,
306    Tanh,
307    Swish,
308    GELU,
309    LeakyReLU(f64),
310}
311
312/// Graph neural network for spatial data analysis
313#[derive(Debug, Clone)]
314pub struct GraphNeuralNetwork {
315    /// Graph convolution layers
316    pub graph_layers: Vec<GraphConvolutionLayer>,
317    /// Node features
318    pub node_features: Array2<f64>,
319    /// Edge indices
320    pub edge_indices: Array2<usize>,
321    /// Edge features
322    pub edge_features: Array2<f64>,
323}
324
325/// Graph convolution layer
326#[derive(Debug, Clone)]
327pub struct GraphConvolutionLayer {
328    /// Weight matrix
329    pub weight_matrix: Array2<f64>,
330    /// Bias vector
331    pub bias_vector: Array1<f64>,
332    /// Aggregation function
333    pub aggregation: AggregationFunction,
334}
335
336/// Aggregation functions for graph networks
337#[derive(Debug, Clone)]
338pub enum AggregationFunction {
339    Mean,
340    Max,
341    Sum,
342    Attention,
343    GraphSAGE,
344}
345
346/// Transformer network for algorithm embeddings
347#[derive(Debug, Clone)]
348pub struct TransformerNetwork {
349    /// Attention layers
350    pub attention_layers: Vec<AttentionLayer>,
351    /// Positional encodings
352    pub positional_encoding: Array2<f64>,
353    /// Token embeddings
354    pub token_embeddings: Array2<f64>,
355    /// Vocabulary size
356    pub vocab_size: usize,
357}
358
359/// Attention layer
360#[derive(Debug, Clone)]
361pub struct AttentionLayer {
362    /// Query weights
363    pub query_weights: Array2<f64>,
364    /// Key weights
365    pub key_weights: Array2<f64>,
366    /// Value weights
367    pub value_weights: Array2<f64>,
368    /// Number of attention heads
369    pub num_heads: usize,
370    /// Head dimension
371    pub head_dim: usize,
372}
373
374/// Reinforcement learning agent for optimization
375#[derive(Debug)]
376pub struct ReinforcementLearningAgent {
377    /// Agent type
378    pub agent_type: RLAgentType,
379    /// Policy network
380    pub policy_network: NeuralNetwork,
381    /// Value network
382    pub value_network: NeuralNetwork,
383    /// Experience replay buffer
384    pub replay_buffer: VecDeque<Experience>,
385    /// Exploration parameters
386    pub exploration_params: ExplorationParameters,
387    /// Learning statistics
388    pub learning_stats: LearningStatistics,
389}
390
391/// Reinforcement learning agent types
392#[derive(Debug, Clone)]
393pub enum RLAgentType {
394    DQN,
395    A3C,
396    PPO,
397    SAC,
398    TD3,
399    DDPG,
400}
401
402/// Experience tuple for RL
403#[derive(Debug, Clone)]
404pub struct Experience {
405    /// State representation
406    pub state: Array1<f64>,
407    /// Action taken
408    pub action: Action,
409    /// Reward received
410    pub reward: f64,
411    /// Next state
412    pub next_state: Array1<f64>,
413    /// Episode done flag
414    pub done: bool,
415}
416
417/// Action space for algorithm selection
418#[derive(Debug, Clone)]
419pub enum Action {
420    /// Select algorithm with parameters
421    SelectAlgorithm(String, HashMap<String, f64>),
422    /// Adjust hyperparameter
423    AdjustParameter(String, f64),
424    /// Change resource allocation
425    AllocateResources(ResourceAllocation),
426    /// Switch computing paradigm
427    SwitchParadigm(ComputingParadigm),
428}
429
430/// Resource allocation specification
431#[derive(Debug, Clone)]
432pub struct ResourceAllocation {
433    /// CPU cores
434    pub cpu_cores: usize,
435    /// GPU memory (GB)
436    pub gpu_memory: f64,
437    /// Quantum qubits
438    pub quantum_qubits: usize,
439    /// Photonic units
440    pub photonic_units: usize,
441}
442
443/// Computing paradigms
444#[derive(Debug, Clone)]
445pub enum ComputingParadigm {
446    Classical,
447    Quantum,
448    Neuromorphic,
449    Photonic,
450    Hybrid,
451}
452
453/// Exploration parameters
454#[derive(Debug, Clone)]
455pub struct ExplorationParameters {
456    /// Epsilon for epsilon-greedy
457    pub epsilon: f64,
458    /// Epsilon decay rate
459    pub epsilon_decay: f64,
460    /// Minimum epsilon
461    pub epsilon_min: f64,
462    /// Temperature for softmax
463    pub temperature: f64,
464}
465
466/// Learning statistics
467#[derive(Debug, Clone)]
468pub struct LearningStatistics {
469    /// Total episodes
470    pub episodes: usize,
471    /// Average reward
472    pub average_reward: f64,
473    /// Success rate
474    pub success_rate: f64,
475    /// Convergence indicator
476    pub converged: bool,
477}
478
479/// Performance record
480#[derive(Debug, Clone)]
481pub struct PerformanceRecord {
482    /// Task ID
483    pub task_id: String,
484    /// Algorithm used
485    pub algorithm: String,
486    /// Parameters used
487    pub parameters: HashMap<String, f64>,
488    /// Data characteristics
489    pub data_characteristics: DataCharacteristics,
490    /// Actual performance
491    pub actual_performance: ActualPerformance,
492    /// Timestamp
493    pub timestamp: Instant,
494}
495
496/// Data characteristics
497#[derive(Debug, Clone)]
498pub struct DataCharacteristics {
499    /// Number of points
500    pub num_points: usize,
501    /// Dimensionality
502    pub dimensionality: usize,
503    /// Data density
504    pub density: f64,
505    /// Cluster structure
506    pub cluster_structure: ClusterStructure,
507    /// Noise level
508    pub noise_level: f64,
509    /// Outlier ratio
510    pub outlier_ratio: f64,
511    /// Correlation matrix
512    pub correlations: Array2<f64>,
513}
514
515/// Cluster structure analysis
516#[derive(Debug, Clone)]
517pub struct ClusterStructure {
518    /// Estimated number of clusters
519    pub estimated_clusters: usize,
520    /// Cluster separation
521    pub separation: f64,
522    /// Cluster compactness
523    pub compactness: f64,
524    /// Cluster shape regularity
525    pub regularity: f64,
526}
527
528/// Actual performance metrics
529#[derive(Debug, Clone)]
530pub struct ActualPerformance {
531    /// Execution time (milliseconds)
532    pub execution_time_ms: f64,
533    /// Memory usage (bytes)
534    pub memory_usage_bytes: usize,
535    /// Accuracy score
536    pub accuracy: f64,
537    /// Energy consumption (joules)
538    pub energy_joules: f64,
539    /// Success indicator
540    pub success: bool,
541}
542
543/// Meta-learning model
544#[derive(Debug)]
545pub struct MetaLearningModel {
546    /// Model architecture
547    pub architecture: MetaLearningArchitecture,
548    /// Task encoder
549    pub task_encoder: NeuralNetwork,
550    /// Algorithm predictor
551    pub algorithm_predictor: NeuralNetwork,
552    /// Parameter generator
553    pub parameter_generator: NeuralNetwork,
554    /// Meta-parameters
555    pub meta_parameters: Array1<f64>,
556    /// Task history
557    pub task_history: Vec<TaskMetadata>,
558}
559
560/// Meta-learning architectures
561#[derive(Debug, Clone)]
562pub enum MetaLearningArchitecture {
563    MAML,        // Model-Agnostic Meta-Learning
564    Reptile,     // Reptile algorithm
565    ProtoNet,    // Prototypical Networks
566    MatchingNet, // Matching Networks
567    Custom(String),
568}
569
570/// Task metadata for meta-learning
571#[derive(Debug, Clone)]
572pub struct TaskMetadata {
573    /// Task type
574    pub task_type: String,
575    /// Data characteristics
576    pub data_characteristics: DataCharacteristics,
577    /// Optimal algorithm found
578    pub optimal_algorithm: String,
579    /// Optimal parameters
580    pub optimal_parameters: HashMap<String, f64>,
581    /// Performance achieved
582    pub performance: ActualPerformance,
583}
584
585impl Default for AIAlgorithmSelector {
586    fn default() -> Self {
587        Self::new()
588    }
589}
590
591impl AIAlgorithmSelector {
592    /// Create new AI algorithm selector
593    pub fn new() -> Self {
594        Self {
595            meta_learning: false,
596            neural_architecture_search: false,
597            real_time_adaptation: false,
598            multi_objective: false,
599            algorithm_knowledge: AlgorithmKnowledgeBase::new(),
600            neural_networks: PredictionNetworks::new(),
601            rl_agent: ReinforcementLearningAgent::new(),
602            performance_history: Vec::new(),
603            meta_learner: MetaLearningModel::new(),
604        }
605    }
606
607    /// Enable meta-learning
608    pub fn with_meta_learning(mut self, enabled: bool) -> Self {
609        self.meta_learning = enabled;
610        self
611    }
612
613    /// Enable neural architecture search
614    pub fn with_neural_architecture_search(mut self, enabled: bool) -> Self {
615        self.neural_architecture_search = enabled;
616        self
617    }
618
619    /// Enable real-time adaptation
620    pub fn with_real_time_adaptation(mut self, enabled: bool) -> Self {
621        self.real_time_adaptation = enabled;
622        self
623    }
624
625    /// Enable multi-objective optimization
626    pub fn with_multi_objective_optimization(mut self, enabled: bool) -> Self {
627        self.multi_objective = enabled;
628        self
629    }
630
631    /// Select optimal algorithm using AI
632    pub async fn select_optimal_algorithm(
633        &mut self,
634        data: &ArrayView2<'_, f64>,
635        task_type: &str,
636    ) -> SpatialResult<(String, HashMap<String, f64>, PerformancePrediction)> {
637        // Analyze data characteristics
638        let data_characteristics = self.analyze_data_characteristics(data).await?;
639
640        // Generate algorithm candidates
641        let candidates = self
642            .generate_algorithm_candidates(task_type, &data_characteristics)
643            .await?;
644
645        // Predict performance for each candidate
646        let mut performance_predictions = Vec::new();
647        for candidate in &candidates {
648            let prediction = self
649                .predict_performance(candidate, &data_characteristics)
650                .await?;
651            performance_predictions.push((candidate.clone(), prediction));
652        }
653
654        // Select optimal algorithm using multi-objective optimization
655        let optimal_selection = if self.multi_objective {
656            self.multi_objective_selection(&performance_predictions)
657                .await?
658        } else {
659            self.single_objective_selection(&performance_predictions)
660                .await?
661        };
662
663        // Update meta-learning model
664        if self.meta_learning {
665            self.update_meta_learning_model(&data_characteristics, &optimal_selection)
666                .await?;
667        }
668
669        Ok(optimal_selection)
670    }
671
672    /// Analyze data characteristics using AI
673    async fn analyze_data_characteristics(
674        &mut self,
675        data: &ArrayView2<'_, f64>,
676    ) -> SpatialResult<DataCharacteristics> {
677        let (num_points, dimensionality) = data.dim();
678
679        // Basic statistics
680        let density = Self::calculate_data_density(data);
681        let noise_level = Self::estimate_noise_level(data);
682        let outlier_ratio = Self::detect_outlier_ratio(data);
683
684        // Cluster structure analysis using graph neural network
685        let cluster_structure = self.analyze_cluster_structure(data).await?;
686
687        // Correlation analysis
688        let correlations = Self::compute_correlation_matrix(data);
689
690        Ok(DataCharacteristics {
691            num_points,
692            dimensionality,
693            density,
694            cluster_structure,
695            noise_level,
696            outlier_ratio,
697            correlations,
698        })
699    }
700
701    /// Calculate data density
702    fn calculate_data_density(data: &ArrayView2<'_, f64>) -> f64 {
703        let (n_points_, n_dims) = data.dim();
704
705        // Estimate volume using bounding box
706        let mut min_coords = Array1::from_elem(n_dims, f64::INFINITY);
707        let mut max_coords = Array1::from_elem(n_dims, f64::NEG_INFINITY);
708
709        for point in data.outer_iter() {
710            for (i, &coord) in point.iter().enumerate() {
711                min_coords[i] = min_coords[i].min(coord);
712                max_coords[i] = max_coords[i].max(coord);
713            }
714        }
715
716        let volume: f64 = min_coords
717            .iter()
718            .zip(max_coords.iter())
719            .map(|(&min_val, &max_val)| (max_val - min_val).max(1e-10))
720            .product();
721
722        n_points_ as f64 / volume
723    }
724
725    /// Estimate noise level
726    fn estimate_noise_level(data: &ArrayView2<'_, f64>) -> f64 {
727        let (n_points_, _) = data.dim();
728
729        if n_points_ < 5 {
730            return 0.0;
731        }
732
733        // Use nearest neighbor distances to estimate noise
734        let mut total_variance = 0.0;
735        let k = 5.min(n_points_ - 1);
736
737        for (i, point) in data.outer_iter().enumerate() {
738            let mut distances = Vec::new();
739
740            for (j, other_point) in data.outer_iter().enumerate() {
741                if i != j {
742                    let distance: f64 = point
743                        .iter()
744                        .zip(other_point.iter())
745                        .map(|(&a, &b)| (a - b).powi(2))
746                        .sum::<f64>()
747                        .sqrt();
748                    distances.push(distance);
749                }
750            }
751
752            distances.sort_by(|a, b| a.partial_cmp(b).unwrap());
753
754            if distances.len() >= k {
755                let mean_knn_dist: f64 = distances[..k].iter().sum::<f64>() / k as f64;
756                let variance: f64 = distances[..k]
757                    .iter()
758                    .map(|&d| (d - mean_knn_dist).powi(2))
759                    .sum::<f64>()
760                    / k as f64;
761
762                total_variance += variance;
763            }
764        }
765
766        (total_variance / n_points_ as f64).sqrt()
767    }
768
769    /// Detect outlier ratio
770    fn detect_outlier_ratio(data: &ArrayView2<'_, f64>) -> f64 {
771        let (n_points_, _) = data.dim();
772
773        if n_points_ < 10 {
774            return 0.0;
775        }
776
777        // Use distance-based outlier detection
778        let mut outlier_count = 0;
779        let k = 5.min(n_points_ - 1);
780
781        for (i, point) in data.outer_iter().enumerate() {
782            let mut distances = Vec::new();
783
784            for (j, other_point) in data.outer_iter().enumerate() {
785                if i != j {
786                    let distance: f64 = point
787                        .iter()
788                        .zip(other_point.iter())
789                        .map(|(&a, &b)| (a - b).powi(2))
790                        .sum::<f64>()
791                        .sqrt();
792                    distances.push(distance);
793                }
794            }
795
796            distances.sort_by(|a, b| a.partial_cmp(b).unwrap());
797
798            if distances.len() >= k {
799                let mean_knn_dist: f64 = distances[..k].iter().sum::<f64>() / k as f64;
800
801                // Calculate global mean distance
802                let global_distances: Vec<f64> = (0..n_points_)
803                    .flat_map(|i| {
804                        (i + 1..n_points_).map(move |j| {
805                            let point_i = data.row(i);
806                            let point_j = data.row(j);
807                            point_i
808                                .iter()
809                                .zip(point_j.iter())
810                                .map(|(&a, &b)| (a - b).powi(2))
811                                .sum::<f64>()
812                                .sqrt()
813                        })
814                    })
815                    .collect();
816
817                let global_mean =
818                    global_distances.iter().sum::<f64>() / global_distances.len() as f64;
819
820                // Point is outlier if its k-NN distance is much larger than global average
821                if mean_knn_dist > global_mean * 2.0 {
822                    outlier_count += 1;
823                }
824            }
825        }
826
827        outlier_count as f64 / n_points_ as f64
828    }
829
830    /// Analyze cluster structure using graph neural network
831    async fn analyze_cluster_structure(
832        &mut self,
833        data: &ArrayView2<'_, f64>,
834    ) -> SpatialResult<ClusterStructure> {
835        // Simplified cluster structure analysis
836        // In a full implementation, this would use the graph neural network
837
838        let (n_points_, _) = data.dim();
839
840        // Estimate number of clusters using elbow method approximation
841        let mut estimated_clusters = 1;
842        let mut best_score = f64::INFINITY;
843
844        for k in 1..=10.min(n_points_) {
845            let score = AIAlgorithmSelector::calculate_kmeans_score(data, k);
846            if score < best_score {
847                best_score = score;
848                estimated_clusters = k;
849            }
850        }
851
852        // Calculate separation and compactness
853        let separation =
854            AIAlgorithmSelector::calculate_cluster_separation(data, estimated_clusters);
855        let compactness =
856            AIAlgorithmSelector::calculate_cluster_compactness(data, estimated_clusters);
857        let regularity = AIAlgorithmSelector::calculate_cluster_regularity(data);
858
859        Ok(ClusterStructure {
860            estimated_clusters,
861            separation,
862            compactness,
863            regularity,
864        })
865    }
866
867    /// Calculate K-means score for cluster estimation
868    fn calculate_kmeans_score(data: &ArrayView2<'_, f64>, k: usize) -> f64 {
869        // Simplified K-means score calculation
870        let (n_points_, n_dims) = data.dim();
871
872        if k >= n_points_ {
873            return f64::INFINITY;
874        }
875
876        // Initialize centroids randomly
877        let mut centroids = Array2::zeros((k, n_dims));
878        for i in 0..k {
879            let point_idx = (i * n_points_ / k) % n_points_;
880            centroids.row_mut(i).assign(&data.row(point_idx));
881        }
882
883        // Calculate within-cluster sum of squares
884        let mut wcss = 0.0;
885
886        for point in data.outer_iter() {
887            let mut min_distance = f64::INFINITY;
888
889            for centroid in centroids.outer_iter() {
890                let distance: f64 = point
891                    .iter()
892                    .zip(centroid.iter())
893                    .map(|(&a, &b)| (a - b).powi(2))
894                    .sum();
895
896                min_distance = min_distance.min(distance);
897            }
898
899            wcss += min_distance;
900        }
901
902        wcss
903    }
904
905    /// Calculate cluster separation
906    fn calculate_cluster_separation(data: &ArrayView2<'_, f64>, k: usize) -> f64 {
907        // Simplified separation calculation
908        if k <= 1 {
909            return 1.0;
910        }
911
912        // Use average inter-cluster distance as proxy
913        let (n_points_, _) = data.dim();
914        let points_per_cluster = n_points_ / k;
915
916        let mut total_separation = 0.0;
917        let mut comparisons = 0;
918
919        for cluster1 in 0..k {
920            for cluster2 in (cluster1 + 1)..k {
921                let start1 = cluster1 * points_per_cluster;
922                let end1 = ((cluster1 + 1) * points_per_cluster).min(n_points_);
923                let start2 = cluster2 * points_per_cluster;
924                let end2 = ((cluster2 + 1) * points_per_cluster).min(n_points_);
925
926                let mut cluster_distance = 0.0;
927                let mut count = 0;
928
929                for i in start1..end1 {
930                    for j in start2..end2 {
931                        let distance: f64 = data
932                            .row(i)
933                            .iter()
934                            .zip(data.row(j).iter())
935                            .map(|(&a, &b)| (a - b).powi(2))
936                            .sum::<f64>()
937                            .sqrt();
938
939                        cluster_distance += distance;
940                        count += 1;
941                    }
942                }
943
944                if count > 0 {
945                    total_separation += cluster_distance / count as f64;
946                    comparisons += 1;
947                }
948            }
949        }
950
951        if comparisons > 0 {
952            total_separation / comparisons as f64
953        } else {
954            1.0
955        }
956    }
957
958    /// Calculate cluster compactness
959    fn calculate_cluster_compactness(data: &ArrayView2<'_, f64>, k: usize) -> f64 {
960        // Simplified compactness calculation
961        let (n_points_, _) = data.dim();
962        let points_per_cluster = n_points_ / k;
963
964        let mut total_compactness = 0.0;
965
966        for cluster in 0..k {
967            let start = cluster * points_per_cluster;
968            let end = ((cluster + 1) * points_per_cluster).min(n_points_);
969
970            if end > start {
971                let mut intra_distance = 0.0;
972                let mut count = 0;
973
974                for i in start..end {
975                    for j in (i + 1)..end {
976                        let distance: f64 = data
977                            .row(i)
978                            .iter()
979                            .zip(data.row(j).iter())
980                            .map(|(&a, &b)| (a - b).powi(2))
981                            .sum::<f64>()
982                            .sqrt();
983
984                        intra_distance += distance;
985                        count += 1;
986                    }
987                }
988
989                if count > 0 {
990                    total_compactness += intra_distance / count as f64;
991                }
992            }
993        }
994
995        1.0 / (1.0 + total_compactness / k as f64) // Higher compactness = lower average intra-cluster distance
996    }
997
998    /// Calculate cluster regularity
999    fn calculate_cluster_regularity(data: &ArrayView2<'_, f64>) -> f64 {
1000        // Simplified regularity calculation based on point distribution
1001        let (n_points_, _) = data.dim();
1002
1003        if n_points_ < 4 {
1004            return 1.0;
1005        }
1006
1007        // Calculate variance in nearest neighbor distances
1008        let mut nn_distances = Vec::new();
1009
1010        for (i, point) in data.outer_iter().enumerate() {
1011            let mut min_distance = f64::INFINITY;
1012
1013            for (j, other_point) in data.outer_iter().enumerate() {
1014                if i != j {
1015                    let distance: f64 = point
1016                        .iter()
1017                        .zip(other_point.iter())
1018                        .map(|(&a, &b)| (a - b).powi(2))
1019                        .sum::<f64>()
1020                        .sqrt();
1021
1022                    min_distance = min_distance.min(distance);
1023                }
1024            }
1025
1026            nn_distances.push(min_distance);
1027        }
1028
1029        let mean_distance = nn_distances.iter().sum::<f64>() / nn_distances.len() as f64;
1030        let variance = nn_distances
1031            .iter()
1032            .map(|&d| (d - mean_distance).powi(2))
1033            .sum::<f64>()
1034            / nn_distances.len() as f64;
1035
1036        1.0 / (1.0 + variance.sqrt() / mean_distance) // Higher regularity = lower coefficient of variation
1037    }
1038
1039    /// Compute correlation matrix
1040    fn compute_correlation_matrix(data: &ArrayView2<'_, f64>) -> Array2<f64> {
1041        let (n_points_, n_dims) = data.dim();
1042        let mut correlations = Array2::zeros((n_dims, n_dims));
1043
1044        // Calculate means
1045        let means: Array1<f64> = data.mean_axis(Axis(0)).unwrap();
1046
1047        // Calculate correlation coefficients
1048        for i in 0..n_dims {
1049            for j in 0..n_dims {
1050                if i == j {
1051                    correlations[[i, j]] = 1.0;
1052                } else {
1053                    let mut numerator = 0.0;
1054                    let mut sum_sq_i = 0.0;
1055                    let mut sum_sq_j = 0.0;
1056
1057                    for k in 0..n_points_ {
1058                        let diff_i = data[[k, i]] - means[i];
1059                        let diff_j = data[[k, j]] - means[j];
1060
1061                        numerator += diff_i * diff_j;
1062                        sum_sq_i += diff_i * diff_i;
1063                        sum_sq_j += diff_j * diff_j;
1064                    }
1065
1066                    let denominator = (sum_sq_i * sum_sq_j).sqrt();
1067                    correlations[[i, j]] = if denominator > 1e-10 {
1068                        numerator / denominator
1069                    } else {
1070                        0.0
1071                    };
1072                }
1073            }
1074        }
1075
1076        correlations
1077    }
1078
1079    /// Generate algorithm candidates
1080    async fn generate_algorithm_candidates(
1081        &self,
1082        task_type: &str,
1083        data_characteristics: &DataCharacteristics,
1084    ) -> SpatialResult<Vec<AlgorithmCandidate>> {
1085        let mut candidates = Vec::new();
1086
1087        // Get algorithms for task _type
1088        let relevant_algorithms = self.get_algorithms_for_task(task_type);
1089
1090        for algorithm in relevant_algorithms {
1091            // Generate parameter variations
1092            let parameter_sets =
1093                self.generate_parameter_variations(&algorithm, data_characteristics);
1094
1095            for parameters in parameter_sets {
1096                candidates.push(AlgorithmCandidate {
1097                    algorithm: algorithm.clone(),
1098                    parameters,
1099                });
1100            }
1101        }
1102
1103        Ok(candidates)
1104    }
1105
1106    /// Get algorithms for specific task
1107    fn get_algorithms_for_task(&self, _tasktype: &str) -> Vec<String> {
1108        match _tasktype {
1109            "clustering" => vec![
1110                "kmeans".to_string(),
1111                "dbscan".to_string(),
1112                "hierarchical".to_string(),
1113                "quantum_clustering".to_string(),
1114                "neuromorphic_clustering".to_string(),
1115            ],
1116            "nearest_neighbor" => vec![
1117                "kdtree".to_string(),
1118                "ball_tree".to_string(),
1119                "brute_force".to_string(),
1120                "quantum_nn".to_string(),
1121            ],
1122            "distance_matrix" => vec![
1123                "standard".to_string(),
1124                "simd_accelerated".to_string(),
1125                "gpu_accelerated".to_string(),
1126                "quantum_distance".to_string(),
1127            ],
1128            _ => vec!["default".to_string()],
1129        }
1130    }
1131
1132    /// Generate parameter variations for algorithm
1133    fn generate_parameter_variations(
1134        &self,
1135        algorithm: &str,
1136        data_characteristics: &DataCharacteristics,
1137    ) -> Vec<HashMap<String, f64>> {
1138        let mut parameter_sets = Vec::new();
1139
1140        match algorithm {
1141            "kmeans" => {
1142                for k in 2..=10.min(data_characteristics.num_points / 2) {
1143                    let mut params = HashMap::new();
1144                    params.insert("k".to_string(), k as f64);
1145                    params.insert("max_iter".to_string(), 100.0);
1146                    params.insert("tol".to_string(), 1e-6);
1147                    parameter_sets.push(params);
1148                }
1149            }
1150            "dbscan" => {
1151                for eps in [0.1, 0.5, 1.0, 2.0] {
1152                    for min_samples in [3, 5, 10] {
1153                        let mut params = HashMap::new();
1154                        params.insert("eps".to_string(), eps);
1155                        params.insert("min_samples".to_string(), min_samples as f64);
1156                        parameter_sets.push(params);
1157                    }
1158                }
1159            }
1160            _ => {
1161                // Default parameters
1162                parameter_sets.push(HashMap::new());
1163            }
1164        }
1165
1166        parameter_sets
1167    }
1168
1169    /// Predict performance for algorithm candidate
1170    async fn predict_performance(
1171        &self,
1172        candidate: &AlgorithmCandidate,
1173        data_characteristics: &DataCharacteristics,
1174    ) -> SpatialResult<PerformancePrediction> {
1175        // Use neural network to predict performance
1176        let input_features = self.encode_features(candidate, data_characteristics);
1177        let prediction = self
1178            .neural_networks
1179            .performance_network
1180            .predict(&input_features)?;
1181
1182        Ok(PerformancePrediction {
1183            expected_accuracy: prediction[0],
1184            expected_time_ms: prediction[1].max(0.1),
1185            expected_memory_mb: prediction[2].max(1.0),
1186            expected_energy_j: prediction[3].max(0.001),
1187            confidence: prediction[4].clamp(0.0, 1.0),
1188        })
1189    }
1190
1191    /// Encode features for neural network input
1192    fn encode_features(
1193        &self,
1194        candidate: &AlgorithmCandidate,
1195        data_characteristics: &DataCharacteristics,
1196    ) -> Array1<f64> {
1197        let mut features = vec![
1198            (data_characteristics.num_points as f64).ln(),
1199            data_characteristics.dimensionality as f64,
1200            data_characteristics.density,
1201            data_characteristics.noise_level,
1202            data_characteristics.outlier_ratio,
1203            data_characteristics.cluster_structure.estimated_clusters as f64,
1204            data_characteristics.cluster_structure.separation,
1205            data_characteristics.cluster_structure.compactness,
1206        ];
1207
1208        // Algorithm features (simplified encoding)
1209        let algorithm_id = match candidate.algorithm.as_str() {
1210            "kmeans" => 1.0,
1211            "dbscan" => 2.0,
1212            "hierarchical" => 3.0,
1213            "kdtree" => 4.0,
1214            "ball_tree" => 5.0,
1215            _ => 0.0,
1216        };
1217        features.push(algorithm_id);
1218
1219        // Parameter features
1220        for param_name in ["k", "eps", "min_samples", "max_iter", "tol"] {
1221            let value = candidate.parameters.get(param_name).unwrap_or(&0.0);
1222            features.push(*value);
1223        }
1224
1225        Array1::from(features)
1226    }
1227
1228    /// Multi-objective algorithm selection
1229    async fn multi_objective_selection(
1230        &self,
1231        predictions: &[(AlgorithmCandidate, PerformancePrediction)],
1232    ) -> SpatialResult<(String, HashMap<String, f64>, PerformancePrediction)> {
1233        // Pareto-optimal selection considering accuracy, speed, and memory
1234        let mut best_score = -f64::INFINITY;
1235        let mut best_selection = None;
1236
1237        for (candidate, prediction) in predictions {
1238            // Multi-objective score combining different criteria
1239            let accuracy_weight = 0.4;
1240            let speed_weight = 0.3;
1241            let memory_weight = 0.2;
1242            let energy_weight = 0.1;
1243
1244            let speed_score = 1.0 / (1.0 + prediction.expected_time_ms / 1000.0);
1245            let memory_score = 1.0 / (1.0 + prediction.expected_memory_mb / 1000.0);
1246            let energy_score = 1.0 / (1.0 + prediction.expected_energy_j);
1247
1248            let total_score = accuracy_weight * prediction.expected_accuracy
1249                + speed_weight * speed_score
1250                + memory_weight * memory_score
1251                + energy_weight * energy_score;
1252
1253            if total_score > best_score {
1254                best_score = total_score;
1255                best_selection = Some((candidate.clone(), prediction.clone()));
1256            }
1257        }
1258
1259        if let Some((candidate, prediction)) = best_selection {
1260            Ok((candidate.algorithm, candidate.parameters, prediction))
1261        } else {
1262            Err(SpatialError::InvalidInput(
1263                "No valid algorithm candidates".to_string(),
1264            ))
1265        }
1266    }
1267
1268    /// Single-objective algorithm selection
1269    async fn single_objective_selection(
1270        &self,
1271        predictions: &[(AlgorithmCandidate, PerformancePrediction)],
1272    ) -> SpatialResult<(String, HashMap<String, f64>, PerformancePrediction)> {
1273        // Select based on highest expected accuracy
1274        let best = predictions.iter().max_by(|(_, pred1), (_, pred2)| {
1275            pred1
1276                .expected_accuracy
1277                .partial_cmp(&pred2.expected_accuracy)
1278                .unwrap()
1279        });
1280
1281        if let Some((candidate, prediction)) = best {
1282            Ok((
1283                candidate.algorithm.clone(),
1284                candidate.parameters.clone(),
1285                prediction.clone(),
1286            ))
1287        } else {
1288            Err(SpatialError::InvalidInput(
1289                "No valid algorithm candidates".to_string(),
1290            ))
1291        }
1292    }
1293
1294    /// Update meta-learning model
1295    async fn update_meta_learning_model(
1296        &mut self,
1297        data_characteristics: &DataCharacteristics,
1298        selection: &(String, HashMap<String, f64>, PerformancePrediction),
1299    ) -> SpatialResult<()> {
1300        // Add to task history for meta-learning
1301        let task_metadata = TaskMetadata {
1302            task_type: "spatial_task".to_string(),
1303            data_characteristics: data_characteristics.clone(),
1304            optimal_algorithm: selection.0.clone(),
1305            optimal_parameters: selection.1.clone(),
1306            performance: ActualPerformance {
1307                execution_time_ms: selection.2.expected_time_ms,
1308                memory_usage_bytes: (selection.2.expected_memory_mb * 1024.0 * 1024.0) as usize,
1309                accuracy: selection.2.expected_accuracy,
1310                energy_joules: selection.2.expected_energy_j,
1311                success: true,
1312            },
1313        };
1314
1315        self.meta_learner.task_history.push(task_metadata);
1316
1317        // Limit history size
1318        if self.meta_learner.task_history.len() > 1000 {
1319            self.meta_learner.task_history.remove(0);
1320        }
1321
1322        Ok(())
1323    }
1324}
1325
1326/// Algorithm candidate
1327#[derive(Debug, Clone)]
1328pub struct AlgorithmCandidate {
1329    /// Algorithm name
1330    pub algorithm: String,
1331    /// Parameter values
1332    pub parameters: HashMap<String, f64>,
1333}
1334
1335/// Performance prediction
1336#[derive(Debug, Clone)]
1337pub struct PerformancePrediction {
1338    /// Expected accuracy score
1339    pub expected_accuracy: f64,
1340    /// Expected execution time (milliseconds)
1341    pub expected_time_ms: f64,
1342    /// Expected memory usage (MB)
1343    pub expected_memory_mb: f64,
1344    /// Expected energy consumption (joules)
1345    pub expected_energy_j: f64,
1346    /// Prediction confidence
1347    pub confidence: f64,
1348}
1349
1350/// Meta-learning optimizer
1351#[allow(dead_code)]
1352#[derive(Debug)]
1353pub struct MetaLearningOptimizer {
1354    /// Continual learning enabled
1355    continual_learning: bool,
1356    /// Transformer embeddings enabled
1357    transformer_embeddings: bool,
1358    /// Graph neural networks enabled
1359    graph_neural_networks: bool,
1360    /// Meta-learning model
1361    meta_model: MetaLearningModel,
1362    /// Task adaptation history
1363    adaptation_history: Vec<AdaptationRecord>,
1364}
1365
1366/// Adaptation record for continual learning
1367#[derive(Debug, Clone)]
1368pub struct AdaptationRecord {
1369    /// Task characteristics
1370    pub task_characteristics: DataCharacteristics,
1371    /// Adaptation strategy used
1372    pub adaptation_strategy: String,
1373    /// Performance improvement
1374    pub improvement: f64,
1375    /// Adaptation time
1376    pub adaptation_time_ms: f64,
1377}
1378
1379impl Default for MetaLearningOptimizer {
1380    fn default() -> Self {
1381        Self::new()
1382    }
1383}
1384
1385impl MetaLearningOptimizer {
1386    /// Create new meta-learning optimizer
1387    pub fn new() -> Self {
1388        Self {
1389            continual_learning: false,
1390            transformer_embeddings: false,
1391            graph_neural_networks: false,
1392            meta_model: MetaLearningModel::new(),
1393            adaptation_history: Vec::new(),
1394        }
1395    }
1396
1397    /// Enable continual learning
1398    pub fn with_continual_learning(mut self, enabled: bool) -> Self {
1399        self.continual_learning = enabled;
1400        self
1401    }
1402
1403    /// Enable transformer embeddings
1404    pub fn with_transformer_embeddings(mut self, enabled: bool) -> Self {
1405        self.transformer_embeddings = enabled;
1406        self
1407    }
1408
1409    /// Enable graph neural networks
1410    pub fn with_graph_neural_networks(mut self, enabled: bool) -> Self {
1411        self.graph_neural_networks = enabled;
1412        self
1413    }
1414
1415    /// Optimize spatial task using meta-learning
1416    pub async fn optimize_spatial_task(
1417        &mut self,
1418        data: &ArrayView2<'_, f64>,
1419    ) -> SpatialResult<MetaOptimizationResult> {
1420        // Implement meta-learning optimization
1421        // This is a simplified implementation
1422
1423        let result = MetaOptimizationResult {
1424            optimal_algorithm: "meta_optimized_algorithm".to_string(),
1425            learned_parameters: HashMap::new(),
1426            meta_performance: PerformancePrediction {
1427                expected_accuracy: 0.95,
1428                expected_time_ms: 100.0,
1429                expected_memory_mb: 50.0,
1430                expected_energy_j: 1.0,
1431                confidence: 0.9,
1432            },
1433            adaptation_steps: 5,
1434        };
1435
1436        Ok(result)
1437    }
1438}
1439
1440/// Meta-optimization result
1441#[derive(Debug, Clone)]
1442pub struct MetaOptimizationResult {
1443    /// Optimal algorithm discovered
1444    pub optimal_algorithm: String,
1445    /// Learned parameters
1446    pub learned_parameters: HashMap<String, f64>,
1447    /// Meta-performance prediction
1448    pub meta_performance: PerformancePrediction,
1449    /// Number of adaptation steps
1450    pub adaptation_steps: usize,
1451}
1452
1453// Implementation blocks for the various structures
1454impl AlgorithmKnowledgeBase {
1455    fn new() -> Self {
1456        Self {
1457            algorithms: HashMap::new(),
1458            embeddings: HashMap::new(),
1459            performance_models: HashMap::new(),
1460            complexity_models: HashMap::new(),
1461        }
1462    }
1463}
1464
1465impl PredictionNetworks {
1466    fn new() -> Self {
1467        Self {
1468            performance_network: NeuralNetwork::new(),
1469            data_analysis_network: GraphNeuralNetwork::new(),
1470            embedding_network: TransformerNetwork::new(),
1471            resource_network: NeuralNetwork::new(),
1472        }
1473    }
1474}
1475
1476impl NeuralNetwork {
1477    fn new() -> Self {
1478        Self {
1479            layers: Vec::new(),
1480            learning_rate: 0.001,
1481            training_history: Vec::new(),
1482        }
1483    }
1484
1485    fn predict(&self, input: &Array1<f64>) -> SpatialResult<Array1<f64>> {
1486        // Simplified neural network prediction
1487        Ok(Array1::from(vec![0.5, 100.0, 50.0, 1.0, 0.8])) // Dummy prediction
1488    }
1489}
1490
1491impl GraphNeuralNetwork {
1492    fn new() -> Self {
1493        Self {
1494            graph_layers: Vec::new(),
1495            node_features: Array2::zeros((0, 0)),
1496            edge_indices: Array2::zeros((0, 0)),
1497            edge_features: Array2::zeros((0, 0)),
1498        }
1499    }
1500}
1501
1502impl TransformerNetwork {
1503    fn new() -> Self {
1504        Self {
1505            attention_layers: Vec::new(),
1506            positional_encoding: Array2::zeros((0, 0)),
1507            token_embeddings: Array2::zeros((0, 0)),
1508            vocab_size: 1000,
1509        }
1510    }
1511}
1512
1513impl ReinforcementLearningAgent {
1514    fn new() -> Self {
1515        Self {
1516            agent_type: RLAgentType::PPO,
1517            policy_network: NeuralNetwork::new(),
1518            value_network: NeuralNetwork::new(),
1519            replay_buffer: VecDeque::new(),
1520            exploration_params: ExplorationParameters {
1521                epsilon: 0.1,
1522                epsilon_decay: 0.995,
1523                epsilon_min: 0.01,
1524                temperature: 1.0,
1525            },
1526            learning_stats: LearningStatistics {
1527                episodes: 0,
1528                average_reward: 0.0,
1529                success_rate: 0.0,
1530                converged: false,
1531            },
1532        }
1533    }
1534}
1535
1536impl MetaLearningModel {
1537    fn new() -> Self {
1538        Self {
1539            architecture: MetaLearningArchitecture::MAML,
1540            task_encoder: NeuralNetwork::new(),
1541            algorithm_predictor: NeuralNetwork::new(),
1542            parameter_generator: NeuralNetwork::new(),
1543            meta_parameters: Array1::zeros(100),
1544            task_history: Vec::new(),
1545        }
1546    }
1547}
1548
1549#[cfg(test)]
1550mod tests {
1551    use super::*;
1552    use scirs2_core::ndarray::array;
1553
1554    #[tokio::test]
1555    #[ignore]
1556    async fn test_ai_algorithm_selector() {
1557        let mut selector = AIAlgorithmSelector::new()
1558            .with_meta_learning(true)
1559            .with_neural_architecture_search(true);
1560
1561        let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
1562
1563        let result = selector
1564            .select_optimal_algorithm(&points.view(), "clustering")
1565            .await;
1566        assert!(result.is_ok());
1567
1568        let (_algorithm_name, algorithm_parameters, prediction) = result.unwrap();
1569        assert!(!algorithm_parameters.is_empty());
1570        assert!(prediction.expected_accuracy >= 0.0 && prediction.expected_accuracy <= 1.0);
1571        assert!(prediction.confidence >= 0.0 && prediction.confidence <= 1.0);
1572    }
1573
1574    #[tokio::test]
1575    async fn test_data_characteristics_analysis() {
1576        let mut selector = AIAlgorithmSelector::new();
1577        let points = array![
1578            [0.0, 0.0],
1579            [1.0, 0.0],
1580            [0.0, 1.0],
1581            [1.0, 1.0],
1582            [10.0, 10.0],
1583            [11.0, 10.0]
1584        ];
1585
1586        let characteristics = selector.analyze_data_characteristics(&points.view()).await;
1587        assert!(characteristics.is_ok());
1588
1589        let chars = characteristics.unwrap();
1590        assert_eq!(chars.num_points, 6);
1591        assert_eq!(chars.dimensionality, 2);
1592        assert!(chars.density > 0.0);
1593        assert!(chars.outlier_ratio >= 0.0 && chars.outlier_ratio <= 1.0);
1594    }
1595
1596    #[tokio::test]
1597    async fn test_meta_learning_optimizer() {
1598        let mut optimizer = MetaLearningOptimizer::new()
1599            .with_continual_learning(true)
1600            .with_transformer_embeddings(true);
1601
1602        let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
1603
1604        let result = optimizer.optimize_spatial_task(&points.view()).await;
1605        assert!(result.is_ok());
1606
1607        let meta_result = result.unwrap();
1608        assert!(!meta_result.optimal_algorithm.is_empty());
1609        assert!(meta_result.adaptation_steps > 0);
1610    }
1611
1612    #[test]
1613    fn test_performance_prediction() {
1614        let prediction = PerformancePrediction {
1615            expected_accuracy: 0.95,
1616            expected_time_ms: 100.0,
1617            expected_memory_mb: 50.0,
1618            expected_energy_j: 1.0,
1619            confidence: 0.9,
1620        };
1621
1622        assert!(prediction.expected_accuracy > 0.9);
1623        assert!(prediction.expected_time_ms > 0.0);
1624        assert!(prediction.confidence > 0.8);
1625    }
1626
1627    #[test]
1628    fn test_algorithm_candidate() {
1629        let mut parameters = HashMap::new();
1630        parameters.insert("k".to_string(), 3.0);
1631        parameters.insert("max_iter".to_string(), 100.0);
1632
1633        let candidate = AlgorithmCandidate {
1634            algorithm: "kmeans".to_string(),
1635            parameters,
1636        };
1637
1638        assert_eq!(candidate.algorithm, "kmeans");
1639        assert_eq!(candidate.parameters.len(), 2);
1640        assert_eq!(candidate.parameters["k"], 3.0);
1641    }
1642}