1use crate::error::{SpatialError, SpatialResult};
63use scirs2_core::ndarray::{Array1, Array2, ArrayView2, Axis};
64use std::collections::{HashMap, VecDeque};
65use std::time::Instant;
66
67#[allow(dead_code)]
69#[derive(Debug)]
70pub struct AIAlgorithmSelector {
71 meta_learning: bool,
73 neural_architecture_search: bool,
75 real_time_adaptation: bool,
77 multi_objective: bool,
79 algorithm_knowledge: AlgorithmKnowledgeBase,
81 neural_networks: PredictionNetworks,
83 rl_agent: ReinforcementLearningAgent,
85 performance_history: Vec<PerformanceRecord>,
87 meta_learner: MetaLearningModel,
89}
90
91#[derive(Debug)]
93pub struct AlgorithmKnowledgeBase {
94 pub algorithms: HashMap<String, AlgorithmMetadata>,
96 pub embeddings: HashMap<String, Array1<f64>>,
98 pub performance_models: HashMap<String, PerformanceModel>,
100 pub complexity_models: HashMap<String, ComplexityModel>,
102}
103
104#[derive(Debug, Clone)]
106pub struct AlgorithmMetadata {
107 pub name: String,
109 pub category: AlgorithmCategory,
111 pub hyperparameters: Vec<HyperparameterMetadata>,
113 pub time_complexity: String,
115 pub space_complexity: String,
117 pub use_cases: Vec<String>,
119 pub characteristics: AlgorithmCharacteristics,
121}
122
123#[derive(Debug, Clone, PartialEq)]
125pub enum AlgorithmCategory {
126 Clustering,
127 Classification,
128 NearestNeighbor,
129 DistanceMatrix,
130 Optimization,
131 Interpolation,
132 Triangulation,
133 ConvexHull,
134 PathPlanning,
135 Quantum,
136 Neuromorphic,
137 Hybrid,
138}
139
140#[derive(Debug, Clone)]
142pub struct HyperparameterMetadata {
143 pub name: String,
145 pub param_type: ParameterType,
147 pub range: ParameterRange,
149 pub default: f64,
151 pub importance: f64,
153}
154
155#[derive(Debug, Clone)]
157pub enum ParameterType {
158 Continuous,
159 Discrete,
160 Categorical,
161 Boolean,
162}
163
164#[derive(Debug, Clone)]
166pub enum ParameterRange {
167 Continuous(f64, f64),
168 Discrete(Vec<i32>),
169 Categorical(Vec<String>),
170 Boolean,
171}
172
173#[derive(Debug, Clone)]
175pub struct AlgorithmCharacteristics {
176 pub scalability: f64,
178 pub accuracy: f64,
180 pub speed: f64,
182 pub memory_efficiency: f64,
184 pub robustness: f64,
186 pub interpretability: f64,
188}
189
190#[derive(Debug, Clone)]
192pub struct PerformanceModel {
193 pub model_type: ModelType,
195 pub weights: Array2<f64>,
197 pub biases: Array1<f64>,
199 pub feature_importance: Array1<f64>,
201 pub accuracy: f64,
203}
204
205#[derive(Debug, Clone)]
207pub enum ModelType {
208 LinearRegression,
209 RandomForest,
210 NeuralNetwork,
211 GaussianProcess,
212 XGBoost,
213 Transformer,
214}
215
216#[derive(Debug, Clone)]
218pub struct ComplexityModel {
219 pub time_model: ComplexityFunction,
221 pub space_model: ComplexityFunction,
223 pub empirical_data: Vec<ComplexityMeasurement>,
225}
226
227#[derive(Debug, Clone)]
229pub struct ComplexityFunction {
230 pub function_type: ComplexityType,
232 pub coefficients: Array1<f64>,
234 pub variables: Vec<String>,
236}
237
238#[derive(Debug, Clone)]
240pub enum ComplexityType {
241 Constant,
242 Linear,
243 Quadratic,
244 Cubic,
245 Logarithmic,
246 Exponential,
247 Factorial,
248 Custom(String),
249}
250
251#[derive(Debug, Clone)]
253pub struct ComplexityMeasurement {
254 pub input_size: usize,
256 pub dimensionality: usize,
258 pub time_ms: f64,
260 pub memory_bytes: usize,
262}
263
264#[derive(Debug)]
266pub struct PredictionNetworks {
267 pub performance_network: NeuralNetwork,
269 pub data_analysis_network: GraphNeuralNetwork,
271 pub embedding_network: TransformerNetwork,
273 pub resource_network: NeuralNetwork,
275}
276
277#[derive(Debug, Clone)]
279pub struct NeuralNetwork {
280 pub layers: Vec<NeuralLayer>,
282 pub learning_rate: f64,
284 pub training_history: Vec<f64>,
286}
287
288#[derive(Debug, Clone)]
290pub struct NeuralLayer {
291 pub weights: Array2<f64>,
293 pub biases: Array1<f64>,
295 pub activation: ActivationFunction,
297 pub dropout_rate: f64,
299}
300
301#[derive(Debug, Clone)]
303pub enum ActivationFunction {
304 ReLU,
305 Sigmoid,
306 Tanh,
307 Swish,
308 GELU,
309 LeakyReLU(f64),
310}
311
312#[derive(Debug, Clone)]
314pub struct GraphNeuralNetwork {
315 pub graph_layers: Vec<GraphConvolutionLayer>,
317 pub node_features: Array2<f64>,
319 pub edge_indices: Array2<usize>,
321 pub edge_features: Array2<f64>,
323}
324
325#[derive(Debug, Clone)]
327pub struct GraphConvolutionLayer {
328 pub weight_matrix: Array2<f64>,
330 pub bias_vector: Array1<f64>,
332 pub aggregation: AggregationFunction,
334}
335
336#[derive(Debug, Clone)]
338pub enum AggregationFunction {
339 Mean,
340 Max,
341 Sum,
342 Attention,
343 GraphSAGE,
344}
345
346#[derive(Debug, Clone)]
348pub struct TransformerNetwork {
349 pub attention_layers: Vec<AttentionLayer>,
351 pub positional_encoding: Array2<f64>,
353 pub token_embeddings: Array2<f64>,
355 pub vocab_size: usize,
357}
358
359#[derive(Debug, Clone)]
361pub struct AttentionLayer {
362 pub query_weights: Array2<f64>,
364 pub key_weights: Array2<f64>,
366 pub value_weights: Array2<f64>,
368 pub num_heads: usize,
370 pub head_dim: usize,
372}
373
374#[derive(Debug)]
376pub struct ReinforcementLearningAgent {
377 pub agent_type: RLAgentType,
379 pub policy_network: NeuralNetwork,
381 pub value_network: NeuralNetwork,
383 pub replay_buffer: VecDeque<Experience>,
385 pub exploration_params: ExplorationParameters,
387 pub learning_stats: LearningStatistics,
389}
390
391#[derive(Debug, Clone)]
393pub enum RLAgentType {
394 DQN,
395 A3C,
396 PPO,
397 SAC,
398 TD3,
399 DDPG,
400}
401
402#[derive(Debug, Clone)]
404pub struct Experience {
405 pub state: Array1<f64>,
407 pub action: Action,
409 pub reward: f64,
411 pub next_state: Array1<f64>,
413 pub done: bool,
415}
416
417#[derive(Debug, Clone)]
419pub enum Action {
420 SelectAlgorithm(String, HashMap<String, f64>),
422 AdjustParameter(String, f64),
424 AllocateResources(ResourceAllocation),
426 SwitchParadigm(ComputingParadigm),
428}
429
430#[derive(Debug, Clone)]
432pub struct ResourceAllocation {
433 pub cpu_cores: usize,
435 pub gpu_memory: f64,
437 pub quantum_qubits: usize,
439 pub photonic_units: usize,
441}
442
443#[derive(Debug, Clone)]
445pub enum ComputingParadigm {
446 Classical,
447 Quantum,
448 Neuromorphic,
449 Photonic,
450 Hybrid,
451}
452
453#[derive(Debug, Clone)]
455pub struct ExplorationParameters {
456 pub epsilon: f64,
458 pub epsilon_decay: f64,
460 pub epsilon_min: f64,
462 pub temperature: f64,
464}
465
466#[derive(Debug, Clone)]
468pub struct LearningStatistics {
469 pub episodes: usize,
471 pub average_reward: f64,
473 pub success_rate: f64,
475 pub converged: bool,
477}
478
479#[derive(Debug, Clone)]
481pub struct PerformanceRecord {
482 pub task_id: String,
484 pub algorithm: String,
486 pub parameters: HashMap<String, f64>,
488 pub data_characteristics: DataCharacteristics,
490 pub actual_performance: ActualPerformance,
492 pub timestamp: Instant,
494}
495
496#[derive(Debug, Clone)]
498pub struct DataCharacteristics {
499 pub num_points: usize,
501 pub dimensionality: usize,
503 pub density: f64,
505 pub cluster_structure: ClusterStructure,
507 pub noise_level: f64,
509 pub outlier_ratio: f64,
511 pub correlations: Array2<f64>,
513}
514
515#[derive(Debug, Clone)]
517pub struct ClusterStructure {
518 pub estimated_clusters: usize,
520 pub separation: f64,
522 pub compactness: f64,
524 pub regularity: f64,
526}
527
528#[derive(Debug, Clone)]
530pub struct ActualPerformance {
531 pub execution_time_ms: f64,
533 pub memory_usage_bytes: usize,
535 pub accuracy: f64,
537 pub energy_joules: f64,
539 pub success: bool,
541}
542
543#[derive(Debug)]
545pub struct MetaLearningModel {
546 pub architecture: MetaLearningArchitecture,
548 pub task_encoder: NeuralNetwork,
550 pub algorithm_predictor: NeuralNetwork,
552 pub parameter_generator: NeuralNetwork,
554 pub meta_parameters: Array1<f64>,
556 pub task_history: Vec<TaskMetadata>,
558}
559
560#[derive(Debug, Clone)]
562pub enum MetaLearningArchitecture {
563 MAML, Reptile, ProtoNet, MatchingNet, Custom(String),
568}
569
570#[derive(Debug, Clone)]
572pub struct TaskMetadata {
573 pub task_type: String,
575 pub data_characteristics: DataCharacteristics,
577 pub optimal_algorithm: String,
579 pub optimal_parameters: HashMap<String, f64>,
581 pub performance: ActualPerformance,
583}
584
585impl Default for AIAlgorithmSelector {
586 fn default() -> Self {
587 Self::new()
588 }
589}
590
591impl AIAlgorithmSelector {
592 pub fn new() -> Self {
594 Self {
595 meta_learning: false,
596 neural_architecture_search: false,
597 real_time_adaptation: false,
598 multi_objective: false,
599 algorithm_knowledge: AlgorithmKnowledgeBase::new(),
600 neural_networks: PredictionNetworks::new(),
601 rl_agent: ReinforcementLearningAgent::new(),
602 performance_history: Vec::new(),
603 meta_learner: MetaLearningModel::new(),
604 }
605 }
606
607 pub fn with_meta_learning(mut self, enabled: bool) -> Self {
609 self.meta_learning = enabled;
610 self
611 }
612
613 pub fn with_neural_architecture_search(mut self, enabled: bool) -> Self {
615 self.neural_architecture_search = enabled;
616 self
617 }
618
619 pub fn with_real_time_adaptation(mut self, enabled: bool) -> Self {
621 self.real_time_adaptation = enabled;
622 self
623 }
624
625 pub fn with_multi_objective_optimization(mut self, enabled: bool) -> Self {
627 self.multi_objective = enabled;
628 self
629 }
630
631 pub async fn select_optimal_algorithm(
633 &mut self,
634 data: &ArrayView2<'_, f64>,
635 task_type: &str,
636 ) -> SpatialResult<(String, HashMap<String, f64>, PerformancePrediction)> {
637 let data_characteristics = self.analyze_data_characteristics(data).await?;
639
640 let candidates = self
642 .generate_algorithm_candidates(task_type, &data_characteristics)
643 .await?;
644
645 let mut performance_predictions = Vec::new();
647 for candidate in &candidates {
648 let prediction = self
649 .predict_performance(candidate, &data_characteristics)
650 .await?;
651 performance_predictions.push((candidate.clone(), prediction));
652 }
653
654 let optimal_selection = if self.multi_objective {
656 self.multi_objective_selection(&performance_predictions)
657 .await?
658 } else {
659 self.single_objective_selection(&performance_predictions)
660 .await?
661 };
662
663 if self.meta_learning {
665 self.update_meta_learning_model(&data_characteristics, &optimal_selection)
666 .await?;
667 }
668
669 Ok(optimal_selection)
670 }
671
672 async fn analyze_data_characteristics(
674 &mut self,
675 data: &ArrayView2<'_, f64>,
676 ) -> SpatialResult<DataCharacteristics> {
677 let (num_points, dimensionality) = data.dim();
678
679 let density = Self::calculate_data_density(data);
681 let noise_level = Self::estimate_noise_level(data);
682 let outlier_ratio = Self::detect_outlier_ratio(data);
683
684 let cluster_structure = self.analyze_cluster_structure(data).await?;
686
687 let correlations = Self::compute_correlation_matrix(data);
689
690 Ok(DataCharacteristics {
691 num_points,
692 dimensionality,
693 density,
694 cluster_structure,
695 noise_level,
696 outlier_ratio,
697 correlations,
698 })
699 }
700
701 fn calculate_data_density(data: &ArrayView2<'_, f64>) -> f64 {
703 let (n_points_, n_dims) = data.dim();
704
705 let mut min_coords = Array1::from_elem(n_dims, f64::INFINITY);
707 let mut max_coords = Array1::from_elem(n_dims, f64::NEG_INFINITY);
708
709 for point in data.outer_iter() {
710 for (i, &coord) in point.iter().enumerate() {
711 min_coords[i] = min_coords[i].min(coord);
712 max_coords[i] = max_coords[i].max(coord);
713 }
714 }
715
716 let volume: f64 = min_coords
717 .iter()
718 .zip(max_coords.iter())
719 .map(|(&min_val, &max_val)| (max_val - min_val).max(1e-10))
720 .product();
721
722 n_points_ as f64 / volume
723 }
724
725 fn estimate_noise_level(data: &ArrayView2<'_, f64>) -> f64 {
727 let (n_points_, _) = data.dim();
728
729 if n_points_ < 5 {
730 return 0.0;
731 }
732
733 let mut total_variance = 0.0;
735 let k = 5.min(n_points_ - 1);
736
737 for (i, point) in data.outer_iter().enumerate() {
738 let mut distances = Vec::new();
739
740 for (j, other_point) in data.outer_iter().enumerate() {
741 if i != j {
742 let distance: f64 = point
743 .iter()
744 .zip(other_point.iter())
745 .map(|(&a, &b)| (a - b).powi(2))
746 .sum::<f64>()
747 .sqrt();
748 distances.push(distance);
749 }
750 }
751
752 distances.sort_by(|a, b| a.partial_cmp(b).unwrap());
753
754 if distances.len() >= k {
755 let mean_knn_dist: f64 = distances[..k].iter().sum::<f64>() / k as f64;
756 let variance: f64 = distances[..k]
757 .iter()
758 .map(|&d| (d - mean_knn_dist).powi(2))
759 .sum::<f64>()
760 / k as f64;
761
762 total_variance += variance;
763 }
764 }
765
766 (total_variance / n_points_ as f64).sqrt()
767 }
768
769 fn detect_outlier_ratio(data: &ArrayView2<'_, f64>) -> f64 {
771 let (n_points_, _) = data.dim();
772
773 if n_points_ < 10 {
774 return 0.0;
775 }
776
777 let mut outlier_count = 0;
779 let k = 5.min(n_points_ - 1);
780
781 for (i, point) in data.outer_iter().enumerate() {
782 let mut distances = Vec::new();
783
784 for (j, other_point) in data.outer_iter().enumerate() {
785 if i != j {
786 let distance: f64 = point
787 .iter()
788 .zip(other_point.iter())
789 .map(|(&a, &b)| (a - b).powi(2))
790 .sum::<f64>()
791 .sqrt();
792 distances.push(distance);
793 }
794 }
795
796 distances.sort_by(|a, b| a.partial_cmp(b).unwrap());
797
798 if distances.len() >= k {
799 let mean_knn_dist: f64 = distances[..k].iter().sum::<f64>() / k as f64;
800
801 let global_distances: Vec<f64> = (0..n_points_)
803 .flat_map(|i| {
804 (i + 1..n_points_).map(move |j| {
805 let point_i = data.row(i);
806 let point_j = data.row(j);
807 point_i
808 .iter()
809 .zip(point_j.iter())
810 .map(|(&a, &b)| (a - b).powi(2))
811 .sum::<f64>()
812 .sqrt()
813 })
814 })
815 .collect();
816
817 let global_mean =
818 global_distances.iter().sum::<f64>() / global_distances.len() as f64;
819
820 if mean_knn_dist > global_mean * 2.0 {
822 outlier_count += 1;
823 }
824 }
825 }
826
827 outlier_count as f64 / n_points_ as f64
828 }
829
830 async fn analyze_cluster_structure(
832 &mut self,
833 data: &ArrayView2<'_, f64>,
834 ) -> SpatialResult<ClusterStructure> {
835 let (n_points_, _) = data.dim();
839
840 let mut estimated_clusters = 1;
842 let mut best_score = f64::INFINITY;
843
844 for k in 1..=10.min(n_points_) {
845 let score = AIAlgorithmSelector::calculate_kmeans_score(data, k);
846 if score < best_score {
847 best_score = score;
848 estimated_clusters = k;
849 }
850 }
851
852 let separation =
854 AIAlgorithmSelector::calculate_cluster_separation(data, estimated_clusters);
855 let compactness =
856 AIAlgorithmSelector::calculate_cluster_compactness(data, estimated_clusters);
857 let regularity = AIAlgorithmSelector::calculate_cluster_regularity(data);
858
859 Ok(ClusterStructure {
860 estimated_clusters,
861 separation,
862 compactness,
863 regularity,
864 })
865 }
866
867 fn calculate_kmeans_score(data: &ArrayView2<'_, f64>, k: usize) -> f64 {
869 let (n_points_, n_dims) = data.dim();
871
872 if k >= n_points_ {
873 return f64::INFINITY;
874 }
875
876 let mut centroids = Array2::zeros((k, n_dims));
878 for i in 0..k {
879 let point_idx = (i * n_points_ / k) % n_points_;
880 centroids.row_mut(i).assign(&data.row(point_idx));
881 }
882
883 let mut wcss = 0.0;
885
886 for point in data.outer_iter() {
887 let mut min_distance = f64::INFINITY;
888
889 for centroid in centroids.outer_iter() {
890 let distance: f64 = point
891 .iter()
892 .zip(centroid.iter())
893 .map(|(&a, &b)| (a - b).powi(2))
894 .sum();
895
896 min_distance = min_distance.min(distance);
897 }
898
899 wcss += min_distance;
900 }
901
902 wcss
903 }
904
905 fn calculate_cluster_separation(data: &ArrayView2<'_, f64>, k: usize) -> f64 {
907 if k <= 1 {
909 return 1.0;
910 }
911
912 let (n_points_, _) = data.dim();
914 let points_per_cluster = n_points_ / k;
915
916 let mut total_separation = 0.0;
917 let mut comparisons = 0;
918
919 for cluster1 in 0..k {
920 for cluster2 in (cluster1 + 1)..k {
921 let start1 = cluster1 * points_per_cluster;
922 let end1 = ((cluster1 + 1) * points_per_cluster).min(n_points_);
923 let start2 = cluster2 * points_per_cluster;
924 let end2 = ((cluster2 + 1) * points_per_cluster).min(n_points_);
925
926 let mut cluster_distance = 0.0;
927 let mut count = 0;
928
929 for i in start1..end1 {
930 for j in start2..end2 {
931 let distance: f64 = data
932 .row(i)
933 .iter()
934 .zip(data.row(j).iter())
935 .map(|(&a, &b)| (a - b).powi(2))
936 .sum::<f64>()
937 .sqrt();
938
939 cluster_distance += distance;
940 count += 1;
941 }
942 }
943
944 if count > 0 {
945 total_separation += cluster_distance / count as f64;
946 comparisons += 1;
947 }
948 }
949 }
950
951 if comparisons > 0 {
952 total_separation / comparisons as f64
953 } else {
954 1.0
955 }
956 }
957
958 fn calculate_cluster_compactness(data: &ArrayView2<'_, f64>, k: usize) -> f64 {
960 let (n_points_, _) = data.dim();
962 let points_per_cluster = n_points_ / k;
963
964 let mut total_compactness = 0.0;
965
966 for cluster in 0..k {
967 let start = cluster * points_per_cluster;
968 let end = ((cluster + 1) * points_per_cluster).min(n_points_);
969
970 if end > start {
971 let mut intra_distance = 0.0;
972 let mut count = 0;
973
974 for i in start..end {
975 for j in (i + 1)..end {
976 let distance: f64 = data
977 .row(i)
978 .iter()
979 .zip(data.row(j).iter())
980 .map(|(&a, &b)| (a - b).powi(2))
981 .sum::<f64>()
982 .sqrt();
983
984 intra_distance += distance;
985 count += 1;
986 }
987 }
988
989 if count > 0 {
990 total_compactness += intra_distance / count as f64;
991 }
992 }
993 }
994
995 1.0 / (1.0 + total_compactness / k as f64) }
997
998 fn calculate_cluster_regularity(data: &ArrayView2<'_, f64>) -> f64 {
1000 let (n_points_, _) = data.dim();
1002
1003 if n_points_ < 4 {
1004 return 1.0;
1005 }
1006
1007 let mut nn_distances = Vec::new();
1009
1010 for (i, point) in data.outer_iter().enumerate() {
1011 let mut min_distance = f64::INFINITY;
1012
1013 for (j, other_point) in data.outer_iter().enumerate() {
1014 if i != j {
1015 let distance: f64 = point
1016 .iter()
1017 .zip(other_point.iter())
1018 .map(|(&a, &b)| (a - b).powi(2))
1019 .sum::<f64>()
1020 .sqrt();
1021
1022 min_distance = min_distance.min(distance);
1023 }
1024 }
1025
1026 nn_distances.push(min_distance);
1027 }
1028
1029 let mean_distance = nn_distances.iter().sum::<f64>() / nn_distances.len() as f64;
1030 let variance = nn_distances
1031 .iter()
1032 .map(|&d| (d - mean_distance).powi(2))
1033 .sum::<f64>()
1034 / nn_distances.len() as f64;
1035
1036 1.0 / (1.0 + variance.sqrt() / mean_distance) }
1038
1039 fn compute_correlation_matrix(data: &ArrayView2<'_, f64>) -> Array2<f64> {
1041 let (n_points_, n_dims) = data.dim();
1042 let mut correlations = Array2::zeros((n_dims, n_dims));
1043
1044 let means: Array1<f64> = data.mean_axis(Axis(0)).unwrap();
1046
1047 for i in 0..n_dims {
1049 for j in 0..n_dims {
1050 if i == j {
1051 correlations[[i, j]] = 1.0;
1052 } else {
1053 let mut numerator = 0.0;
1054 let mut sum_sq_i = 0.0;
1055 let mut sum_sq_j = 0.0;
1056
1057 for k in 0..n_points_ {
1058 let diff_i = data[[k, i]] - means[i];
1059 let diff_j = data[[k, j]] - means[j];
1060
1061 numerator += diff_i * diff_j;
1062 sum_sq_i += diff_i * diff_i;
1063 sum_sq_j += diff_j * diff_j;
1064 }
1065
1066 let denominator = (sum_sq_i * sum_sq_j).sqrt();
1067 correlations[[i, j]] = if denominator > 1e-10 {
1068 numerator / denominator
1069 } else {
1070 0.0
1071 };
1072 }
1073 }
1074 }
1075
1076 correlations
1077 }
1078
1079 async fn generate_algorithm_candidates(
1081 &self,
1082 task_type: &str,
1083 data_characteristics: &DataCharacteristics,
1084 ) -> SpatialResult<Vec<AlgorithmCandidate>> {
1085 let mut candidates = Vec::new();
1086
1087 let relevant_algorithms = self.get_algorithms_for_task(task_type);
1089
1090 for algorithm in relevant_algorithms {
1091 let parameter_sets =
1093 self.generate_parameter_variations(&algorithm, data_characteristics);
1094
1095 for parameters in parameter_sets {
1096 candidates.push(AlgorithmCandidate {
1097 algorithm: algorithm.clone(),
1098 parameters,
1099 });
1100 }
1101 }
1102
1103 Ok(candidates)
1104 }
1105
1106 fn get_algorithms_for_task(&self, _tasktype: &str) -> Vec<String> {
1108 match _tasktype {
1109 "clustering" => vec![
1110 "kmeans".to_string(),
1111 "dbscan".to_string(),
1112 "hierarchical".to_string(),
1113 "quantum_clustering".to_string(),
1114 "neuromorphic_clustering".to_string(),
1115 ],
1116 "nearest_neighbor" => vec![
1117 "kdtree".to_string(),
1118 "ball_tree".to_string(),
1119 "brute_force".to_string(),
1120 "quantum_nn".to_string(),
1121 ],
1122 "distance_matrix" => vec![
1123 "standard".to_string(),
1124 "simd_accelerated".to_string(),
1125 "gpu_accelerated".to_string(),
1126 "quantum_distance".to_string(),
1127 ],
1128 _ => vec!["default".to_string()],
1129 }
1130 }
1131
1132 fn generate_parameter_variations(
1134 &self,
1135 algorithm: &str,
1136 data_characteristics: &DataCharacteristics,
1137 ) -> Vec<HashMap<String, f64>> {
1138 let mut parameter_sets = Vec::new();
1139
1140 match algorithm {
1141 "kmeans" => {
1142 for k in 2..=10.min(data_characteristics.num_points / 2) {
1143 let mut params = HashMap::new();
1144 params.insert("k".to_string(), k as f64);
1145 params.insert("max_iter".to_string(), 100.0);
1146 params.insert("tol".to_string(), 1e-6);
1147 parameter_sets.push(params);
1148 }
1149 }
1150 "dbscan" => {
1151 for eps in [0.1, 0.5, 1.0, 2.0] {
1152 for min_samples in [3, 5, 10] {
1153 let mut params = HashMap::new();
1154 params.insert("eps".to_string(), eps);
1155 params.insert("min_samples".to_string(), min_samples as f64);
1156 parameter_sets.push(params);
1157 }
1158 }
1159 }
1160 _ => {
1161 parameter_sets.push(HashMap::new());
1163 }
1164 }
1165
1166 parameter_sets
1167 }
1168
1169 async fn predict_performance(
1171 &self,
1172 candidate: &AlgorithmCandidate,
1173 data_characteristics: &DataCharacteristics,
1174 ) -> SpatialResult<PerformancePrediction> {
1175 let input_features = self.encode_features(candidate, data_characteristics);
1177 let prediction = self
1178 .neural_networks
1179 .performance_network
1180 .predict(&input_features)?;
1181
1182 Ok(PerformancePrediction {
1183 expected_accuracy: prediction[0],
1184 expected_time_ms: prediction[1].max(0.1),
1185 expected_memory_mb: prediction[2].max(1.0),
1186 expected_energy_j: prediction[3].max(0.001),
1187 confidence: prediction[4].clamp(0.0, 1.0),
1188 })
1189 }
1190
1191 fn encode_features(
1193 &self,
1194 candidate: &AlgorithmCandidate,
1195 data_characteristics: &DataCharacteristics,
1196 ) -> Array1<f64> {
1197 let mut features = vec![
1198 (data_characteristics.num_points as f64).ln(),
1199 data_characteristics.dimensionality as f64,
1200 data_characteristics.density,
1201 data_characteristics.noise_level,
1202 data_characteristics.outlier_ratio,
1203 data_characteristics.cluster_structure.estimated_clusters as f64,
1204 data_characteristics.cluster_structure.separation,
1205 data_characteristics.cluster_structure.compactness,
1206 ];
1207
1208 let algorithm_id = match candidate.algorithm.as_str() {
1210 "kmeans" => 1.0,
1211 "dbscan" => 2.0,
1212 "hierarchical" => 3.0,
1213 "kdtree" => 4.0,
1214 "ball_tree" => 5.0,
1215 _ => 0.0,
1216 };
1217 features.push(algorithm_id);
1218
1219 for param_name in ["k", "eps", "min_samples", "max_iter", "tol"] {
1221 let value = candidate.parameters.get(param_name).unwrap_or(&0.0);
1222 features.push(*value);
1223 }
1224
1225 Array1::from(features)
1226 }
1227
1228 async fn multi_objective_selection(
1230 &self,
1231 predictions: &[(AlgorithmCandidate, PerformancePrediction)],
1232 ) -> SpatialResult<(String, HashMap<String, f64>, PerformancePrediction)> {
1233 let mut best_score = -f64::INFINITY;
1235 let mut best_selection = None;
1236
1237 for (candidate, prediction) in predictions {
1238 let accuracy_weight = 0.4;
1240 let speed_weight = 0.3;
1241 let memory_weight = 0.2;
1242 let energy_weight = 0.1;
1243
1244 let speed_score = 1.0 / (1.0 + prediction.expected_time_ms / 1000.0);
1245 let memory_score = 1.0 / (1.0 + prediction.expected_memory_mb / 1000.0);
1246 let energy_score = 1.0 / (1.0 + prediction.expected_energy_j);
1247
1248 let total_score = accuracy_weight * prediction.expected_accuracy
1249 + speed_weight * speed_score
1250 + memory_weight * memory_score
1251 + energy_weight * energy_score;
1252
1253 if total_score > best_score {
1254 best_score = total_score;
1255 best_selection = Some((candidate.clone(), prediction.clone()));
1256 }
1257 }
1258
1259 if let Some((candidate, prediction)) = best_selection {
1260 Ok((candidate.algorithm, candidate.parameters, prediction))
1261 } else {
1262 Err(SpatialError::InvalidInput(
1263 "No valid algorithm candidates".to_string(),
1264 ))
1265 }
1266 }
1267
1268 async fn single_objective_selection(
1270 &self,
1271 predictions: &[(AlgorithmCandidate, PerformancePrediction)],
1272 ) -> SpatialResult<(String, HashMap<String, f64>, PerformancePrediction)> {
1273 let best = predictions.iter().max_by(|(_, pred1), (_, pred2)| {
1275 pred1
1276 .expected_accuracy
1277 .partial_cmp(&pred2.expected_accuracy)
1278 .unwrap()
1279 });
1280
1281 if let Some((candidate, prediction)) = best {
1282 Ok((
1283 candidate.algorithm.clone(),
1284 candidate.parameters.clone(),
1285 prediction.clone(),
1286 ))
1287 } else {
1288 Err(SpatialError::InvalidInput(
1289 "No valid algorithm candidates".to_string(),
1290 ))
1291 }
1292 }
1293
1294 async fn update_meta_learning_model(
1296 &mut self,
1297 data_characteristics: &DataCharacteristics,
1298 selection: &(String, HashMap<String, f64>, PerformancePrediction),
1299 ) -> SpatialResult<()> {
1300 let task_metadata = TaskMetadata {
1302 task_type: "spatial_task".to_string(),
1303 data_characteristics: data_characteristics.clone(),
1304 optimal_algorithm: selection.0.clone(),
1305 optimal_parameters: selection.1.clone(),
1306 performance: ActualPerformance {
1307 execution_time_ms: selection.2.expected_time_ms,
1308 memory_usage_bytes: (selection.2.expected_memory_mb * 1024.0 * 1024.0) as usize,
1309 accuracy: selection.2.expected_accuracy,
1310 energy_joules: selection.2.expected_energy_j,
1311 success: true,
1312 },
1313 };
1314
1315 self.meta_learner.task_history.push(task_metadata);
1316
1317 if self.meta_learner.task_history.len() > 1000 {
1319 self.meta_learner.task_history.remove(0);
1320 }
1321
1322 Ok(())
1323 }
1324}
1325
1326#[derive(Debug, Clone)]
1328pub struct AlgorithmCandidate {
1329 pub algorithm: String,
1331 pub parameters: HashMap<String, f64>,
1333}
1334
1335#[derive(Debug, Clone)]
1337pub struct PerformancePrediction {
1338 pub expected_accuracy: f64,
1340 pub expected_time_ms: f64,
1342 pub expected_memory_mb: f64,
1344 pub expected_energy_j: f64,
1346 pub confidence: f64,
1348}
1349
1350#[allow(dead_code)]
1352#[derive(Debug)]
1353pub struct MetaLearningOptimizer {
1354 continual_learning: bool,
1356 transformer_embeddings: bool,
1358 graph_neural_networks: bool,
1360 meta_model: MetaLearningModel,
1362 adaptation_history: Vec<AdaptationRecord>,
1364}
1365
1366#[derive(Debug, Clone)]
1368pub struct AdaptationRecord {
1369 pub task_characteristics: DataCharacteristics,
1371 pub adaptation_strategy: String,
1373 pub improvement: f64,
1375 pub adaptation_time_ms: f64,
1377}
1378
1379impl Default for MetaLearningOptimizer {
1380 fn default() -> Self {
1381 Self::new()
1382 }
1383}
1384
1385impl MetaLearningOptimizer {
1386 pub fn new() -> Self {
1388 Self {
1389 continual_learning: false,
1390 transformer_embeddings: false,
1391 graph_neural_networks: false,
1392 meta_model: MetaLearningModel::new(),
1393 adaptation_history: Vec::new(),
1394 }
1395 }
1396
1397 pub fn with_continual_learning(mut self, enabled: bool) -> Self {
1399 self.continual_learning = enabled;
1400 self
1401 }
1402
1403 pub fn with_transformer_embeddings(mut self, enabled: bool) -> Self {
1405 self.transformer_embeddings = enabled;
1406 self
1407 }
1408
1409 pub fn with_graph_neural_networks(mut self, enabled: bool) -> Self {
1411 self.graph_neural_networks = enabled;
1412 self
1413 }
1414
1415 pub async fn optimize_spatial_task(
1417 &mut self,
1418 data: &ArrayView2<'_, f64>,
1419 ) -> SpatialResult<MetaOptimizationResult> {
1420 let result = MetaOptimizationResult {
1424 optimal_algorithm: "meta_optimized_algorithm".to_string(),
1425 learned_parameters: HashMap::new(),
1426 meta_performance: PerformancePrediction {
1427 expected_accuracy: 0.95,
1428 expected_time_ms: 100.0,
1429 expected_memory_mb: 50.0,
1430 expected_energy_j: 1.0,
1431 confidence: 0.9,
1432 },
1433 adaptation_steps: 5,
1434 };
1435
1436 Ok(result)
1437 }
1438}
1439
1440#[derive(Debug, Clone)]
1442pub struct MetaOptimizationResult {
1443 pub optimal_algorithm: String,
1445 pub learned_parameters: HashMap<String, f64>,
1447 pub meta_performance: PerformancePrediction,
1449 pub adaptation_steps: usize,
1451}
1452
1453impl AlgorithmKnowledgeBase {
1455 fn new() -> Self {
1456 Self {
1457 algorithms: HashMap::new(),
1458 embeddings: HashMap::new(),
1459 performance_models: HashMap::new(),
1460 complexity_models: HashMap::new(),
1461 }
1462 }
1463}
1464
1465impl PredictionNetworks {
1466 fn new() -> Self {
1467 Self {
1468 performance_network: NeuralNetwork::new(),
1469 data_analysis_network: GraphNeuralNetwork::new(),
1470 embedding_network: TransformerNetwork::new(),
1471 resource_network: NeuralNetwork::new(),
1472 }
1473 }
1474}
1475
1476impl NeuralNetwork {
1477 fn new() -> Self {
1478 Self {
1479 layers: Vec::new(),
1480 learning_rate: 0.001,
1481 training_history: Vec::new(),
1482 }
1483 }
1484
1485 fn predict(&self, input: &Array1<f64>) -> SpatialResult<Array1<f64>> {
1486 Ok(Array1::from(vec![0.5, 100.0, 50.0, 1.0, 0.8])) }
1489}
1490
1491impl GraphNeuralNetwork {
1492 fn new() -> Self {
1493 Self {
1494 graph_layers: Vec::new(),
1495 node_features: Array2::zeros((0, 0)),
1496 edge_indices: Array2::zeros((0, 0)),
1497 edge_features: Array2::zeros((0, 0)),
1498 }
1499 }
1500}
1501
1502impl TransformerNetwork {
1503 fn new() -> Self {
1504 Self {
1505 attention_layers: Vec::new(),
1506 positional_encoding: Array2::zeros((0, 0)),
1507 token_embeddings: Array2::zeros((0, 0)),
1508 vocab_size: 1000,
1509 }
1510 }
1511}
1512
1513impl ReinforcementLearningAgent {
1514 fn new() -> Self {
1515 Self {
1516 agent_type: RLAgentType::PPO,
1517 policy_network: NeuralNetwork::new(),
1518 value_network: NeuralNetwork::new(),
1519 replay_buffer: VecDeque::new(),
1520 exploration_params: ExplorationParameters {
1521 epsilon: 0.1,
1522 epsilon_decay: 0.995,
1523 epsilon_min: 0.01,
1524 temperature: 1.0,
1525 },
1526 learning_stats: LearningStatistics {
1527 episodes: 0,
1528 average_reward: 0.0,
1529 success_rate: 0.0,
1530 converged: false,
1531 },
1532 }
1533 }
1534}
1535
1536impl MetaLearningModel {
1537 fn new() -> Self {
1538 Self {
1539 architecture: MetaLearningArchitecture::MAML,
1540 task_encoder: NeuralNetwork::new(),
1541 algorithm_predictor: NeuralNetwork::new(),
1542 parameter_generator: NeuralNetwork::new(),
1543 meta_parameters: Array1::zeros(100),
1544 task_history: Vec::new(),
1545 }
1546 }
1547}
1548
1549#[cfg(test)]
1550mod tests {
1551 use super::*;
1552 use scirs2_core::ndarray::array;
1553
1554 #[tokio::test]
1555 #[ignore]
1556 async fn test_ai_algorithm_selector() {
1557 let mut selector = AIAlgorithmSelector::new()
1558 .with_meta_learning(true)
1559 .with_neural_architecture_search(true);
1560
1561 let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
1562
1563 let result = selector
1564 .select_optimal_algorithm(&points.view(), "clustering")
1565 .await;
1566 assert!(result.is_ok());
1567
1568 let (_algorithm_name, algorithm_parameters, prediction) = result.unwrap();
1569 assert!(!algorithm_parameters.is_empty());
1570 assert!(prediction.expected_accuracy >= 0.0 && prediction.expected_accuracy <= 1.0);
1571 assert!(prediction.confidence >= 0.0 && prediction.confidence <= 1.0);
1572 }
1573
1574 #[tokio::test]
1575 async fn test_data_characteristics_analysis() {
1576 let mut selector = AIAlgorithmSelector::new();
1577 let points = array![
1578 [0.0, 0.0],
1579 [1.0, 0.0],
1580 [0.0, 1.0],
1581 [1.0, 1.0],
1582 [10.0, 10.0],
1583 [11.0, 10.0]
1584 ];
1585
1586 let characteristics = selector.analyze_data_characteristics(&points.view()).await;
1587 assert!(characteristics.is_ok());
1588
1589 let chars = characteristics.unwrap();
1590 assert_eq!(chars.num_points, 6);
1591 assert_eq!(chars.dimensionality, 2);
1592 assert!(chars.density > 0.0);
1593 assert!(chars.outlier_ratio >= 0.0 && chars.outlier_ratio <= 1.0);
1594 }
1595
1596 #[tokio::test]
1597 async fn test_meta_learning_optimizer() {
1598 let mut optimizer = MetaLearningOptimizer::new()
1599 .with_continual_learning(true)
1600 .with_transformer_embeddings(true);
1601
1602 let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
1603
1604 let result = optimizer.optimize_spatial_task(&points.view()).await;
1605 assert!(result.is_ok());
1606
1607 let meta_result = result.unwrap();
1608 assert!(!meta_result.optimal_algorithm.is_empty());
1609 assert!(meta_result.adaptation_steps > 0);
1610 }
1611
1612 #[test]
1613 fn test_performance_prediction() {
1614 let prediction = PerformancePrediction {
1615 expected_accuracy: 0.95,
1616 expected_time_ms: 100.0,
1617 expected_memory_mb: 50.0,
1618 expected_energy_j: 1.0,
1619 confidence: 0.9,
1620 };
1621
1622 assert!(prediction.expected_accuracy > 0.9);
1623 assert!(prediction.expected_time_ms > 0.0);
1624 assert!(prediction.confidence > 0.8);
1625 }
1626
1627 #[test]
1628 fn test_algorithm_candidate() {
1629 let mut parameters = HashMap::new();
1630 parameters.insert("k".to_string(), 3.0);
1631 parameters.insert("max_iter".to_string(), 100.0);
1632
1633 let candidate = AlgorithmCandidate {
1634 algorithm: "kmeans".to_string(),
1635 parameters,
1636 };
1637
1638 assert_eq!(candidate.algorithm, "kmeans");
1639 assert_eq!(candidate.parameters.len(), 2);
1640 assert_eq!(candidate.parameters["k"], 3.0);
1641 }
1642}