Module ai_driven_optimization

Module ai_driven_optimization 

Source
Expand description

AI-Driven Algorithm Selection and Optimization (Advanced Mode)

This module represents the pinnacle of spatial computing intelligence, using advanced machine learning techniques to automatically select optimal algorithms, tune hyperparameters, and adapt to data characteristics in real-time. It combines reinforcement learning, neural architecture search, and meta-learning to achieve unprecedented spatial computing performance.

§Revolutionary AI Features

  • Meta-Learning Algorithm Selection - Learn to learn optimal algorithm choices
  • Neural Architecture Search (NAS) - Automatically design optimal spatial networks
  • Reinforcement Learning Optimization - Learn optimal hyperparameters through experience
  • Real-Time Performance Prediction - Predict algorithm performance before execution
  • Adaptive Resource Allocation - Dynamically allocate computing resources
  • Multi-Objective Optimization - Balance accuracy, speed, and energy efficiency
  • Continual Learning - Continuously improve from new data and tasks

§Advanced AI Techniques

  • Transformer-Based Algorithm Embeddings - Deep representations of algorithms
  • Graph Neural Networks for Data Analysis - Understand spatial data structure
  • Bayesian Optimization - Efficient hyperparameter search
  • AutoML Pipelines - Fully automated machine learning workflows
  • Neural ODE-Based Optimization - Continuous optimization dynamics
  • Attention Mechanisms - Focus on important data characteristics
  • Federated Learning - Learn from distributed spatial computing tasks

§Examples

use scirs2_spatial::ai_driven_optimization::{AIAlgorithmSelector, MetaLearningOptimizer};
use scirs2_core::ndarray::array;

// AI-driven algorithm selection
let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
let mut ai_selector = AIAlgorithmSelector::new()
    .with_meta_learning(true)
    .with_neural_architecture_search(true)
    .with_real_time_adaptation(true)
    .with_multi_objective_optimization(true);

// AI automatically selects optimal algorithm and parameters
let (optimal_algorithm, parameters, performance_prediction) =
    ai_selector.select_optimal_algorithm(&points.view(), "clustering").await?;

println!("AI selected: {} with performance prediction: {:.3}",
         optimal_algorithm, performance_prediction.expected_accuracy);

// Meta-learning optimizer that learns from experience
let mut meta_optimizer = MetaLearningOptimizer::new()
    .with_continual_learning(true)
    .with_transformer_embeddings(true)
    .with_graph_neural_networks(true);

let optimized_result = meta_optimizer.optimize_spatial_task(&points.view()).await?;

Structs§

AIAlgorithmSelector
AI-driven algorithm selector
ActualPerformance
Actual performance metrics
AdaptationRecord
Adaptation record for continual learning
AlgorithmCandidate
Algorithm candidate
AlgorithmCharacteristics
Algorithm characteristics
AlgorithmKnowledgeBase
Algorithm knowledge base
AlgorithmMetadata
Algorithm metadata
AttentionLayer
Attention layer
ClusterStructure
Cluster structure analysis
ComplexityFunction
Complexity function representation
ComplexityMeasurement
Complexity measurement
ComplexityModel
Complexity analysis model
DataCharacteristics
Data characteristics
Experience
Experience tuple for RL
ExplorationParameters
Exploration parameters
GraphConvolutionLayer
Graph convolution layer
GraphNeuralNetwork
Graph neural network for spatial data analysis
HyperparameterMetadata
Hyperparameter metadata
LearningStatistics
Learning statistics
MetaLearningModel
Meta-learning model
MetaLearningOptimizer
Meta-learning optimizer
MetaOptimizationResult
Meta-optimization result
NeuralLayer
Neural network layer
NeuralNetwork
Basic neural network
PerformanceModel
Performance prediction model
PerformancePrediction
Performance prediction
PerformanceRecord
Performance record
PredictionNetworks
Neural networks for prediction
ReinforcementLearningAgent
Reinforcement learning agent for optimization
ResourceAllocation
Resource allocation specification
TaskMetadata
Task metadata for meta-learning
TransformerNetwork
Transformer network for algorithm embeddings

Enums§

Action
Action space for algorithm selection
ActivationFunction
Activation functions
AggregationFunction
Aggregation functions for graph networks
AlgorithmCategory
Algorithm categories
ComplexityType
Complexity types
ComputingParadigm
Computing paradigms
MetaLearningArchitecture
Meta-learning architectures
ModelType
Model types for performance prediction
ParameterRange
Parameter range
ParameterType
Parameter types
RLAgentType
Reinforcement learning agent types