scirs2_spatial/neuromorphic/algorithms/
memristive_learning.rs

1//! Advanced Memristive Learning for Neuromorphic Computing
2//!
3//! This module implements sophisticated memristive computing paradigms including
4//! crossbar arrays with multiple device types, advanced plasticity mechanisms,
5//! homeostatic regulation, metaplasticity, and neuromodulation for spatial learning.
6
7use crate::error::SpatialResult;
8use scirs2_core::ndarray::{Array1, Array2, ArrayView1, ArrayView2};
9use scirs2_core::random::Rng;
10use std::collections::VecDeque;
11
12/// Advanced memristive learning system with synaptic plasticity and homeostasis
13///
14/// This system implements a comprehensive memristive computing framework with
15/// multiple types of plasticity, homeostatic regulation, and neuromodulation.
16/// It supports various memristive device types and advanced learning dynamics.
17///
18/// # Features
19/// - Multiple memristive device types (TiO2, HfO2, Phase Change, etc.)
20/// - Advanced plasticity mechanisms (STDP, homeostatic scaling, etc.)
21/// - Homeostatic regulation for stable learning
22/// - Metaplasticity for learning-to-learn capabilities
23/// - Neuromodulation systems (dopamine, serotonin, etc.)
24/// - Memory consolidation and forgetting protection
25/// - Comprehensive learning history tracking
26///
27/// # Example
28/// ```rust
29/// use scirs2_core::ndarray::{Array1, Array2};
30/// use scirs2_spatial::neuromorphic::algorithms::AdvancedMemristiveLearning;
31/// use scirs2_spatial::neuromorphic::MemristiveDeviceType;
32///
33/// let mut learning_system = AdvancedMemristiveLearning::new(4, 2, MemristiveDeviceType::TitaniumDioxide)
34///     .with_forgetting_protection(true);
35///
36/// // Training data
37/// let spatial_data = Array2::from_shape_vec((4, 4), vec![
38///     0.0, 0.0, 1.0, 1.0,
39///     1.0, 0.0, 0.0, 1.0,
40///     0.0, 1.0, 1.0, 0.0,
41///     1.0, 1.0, 0.0, 0.0
42/// ]).unwrap();
43/// let targets = Array1::from_vec(vec![0.0, 1.0, 1.0, 0.0]);
44///
45/// // Train the system
46/// # tokio_test::block_on(async {
47/// let result = learning_system.train_spatial_data(&spatial_data.view(), &targets.view(), 50).await.unwrap();
48/// println!("Final accuracy: {:.2}", result.training_metrics.last().unwrap().accuracy);
49/// # });
50/// ```
51#[derive(Debug, Clone)]
52pub struct AdvancedMemristiveLearning {
53    /// Memristive crossbar array
54    crossbar_array: MemristiveCrossbar,
55    /// Synaptic plasticity mechanisms
56    plasticity_mechanisms: Vec<PlasticityMechanism>,
57    /// Homeostatic regulation system
58    homeostatic_system: HomeostaticSystem,
59    /// Metaplasticity rules
60    metaplasticity: MetaplasticityRules,
61    /// Neuromodulation system
62    neuromodulation: NeuromodulationSystem,
63    /// Learning history
64    learning_history: LearningHistory,
65    /// Enable online learning
66    #[allow(dead_code)]
67    online_learning: bool,
68    /// Enable catastrophic forgetting protection
69    forgetting_protection: bool,
70}
71
72/// Memristive crossbar array with advanced properties
73///
74/// Represents a physical memristive crossbar array with realistic device
75/// characteristics including conductance, resistance, switching dynamics,
76/// and aging effects.
77#[derive(Debug, Clone)]
78pub struct MemristiveCrossbar {
79    /// Device conductances
80    pub conductances: Array2<f64>,
81    /// Device resistances
82    pub resistances: Array2<f64>,
83    /// Switching thresholds
84    pub switching_thresholds: Array2<f64>,
85    /// Retention times
86    pub retention_times: Array2<f64>,
87    /// Endurance cycles
88    pub endurance_cycles: Array2<usize>,
89    /// Programming voltages
90    pub programming_voltages: Array2<f64>,
91    /// Temperature effects
92    pub temperature_coefficients: Array2<f64>,
93    /// Device variability
94    pub device_variability: Array2<f64>,
95    /// Crossbar dimensions
96    pub dimensions: (usize, usize),
97    /// Device type
98    pub device_type: MemristiveDeviceType,
99}
100
101/// Types of memristive devices
102///
103/// Different memristive technologies have distinct switching characteristics,
104/// speed, endurance, and non-linearity properties that affect learning dynamics.
105#[derive(Debug, Clone)]
106pub enum MemristiveDeviceType {
107    /// Titanium dioxide (TiO2) - Classic memristor with exponential switching
108    TitaniumDioxide,
109    /// Hafnium oxide (HfO2) - High endurance with steep switching
110    HafniumOxide,
111    /// Tantalum oxide (Ta2O5) - Moderate switching characteristics
112    TantalumOxide,
113    /// Silver sulfide (Ag2S) - Fast switching, lower endurance
114    SilverSulfide,
115    /// Organic memristor - Biocompatible, variable characteristics
116    Organic,
117    /// Phase change memory - Binary switching with high contrast
118    PhaseChange,
119    /// Magnetic tunnel junction - Non-volatile, spin-based switching
120    MagneticTunnelJunction,
121}
122
123/// Synaptic plasticity mechanisms
124///
125/// Encapsulates different types of synaptic plasticity with their
126/// associated parameters and learning dynamics.
127#[derive(Debug, Clone)]
128pub struct PlasticityMechanism {
129    /// Mechanism type
130    pub mechanism_type: PlasticityType,
131    /// Time constants
132    pub time_constants: PlasticityTimeConstants,
133    /// Learning rates
134    pub learning_rates: PlasticityLearningRates,
135    /// Threshold parameters
136    pub thresholds: PlasticityThresholds,
137    /// Enable state
138    pub enabled: bool,
139    /// Weight scaling factors
140    pub weight_scaling: f64,
141}
142
143/// Types of synaptic plasticity
144///
145/// Different plasticity mechanisms that can be enabled individually
146/// or in combination for complex learning dynamics.
147#[derive(Debug, Clone)]
148pub enum PlasticityType {
149    /// Spike-timing dependent plasticity
150    STDP,
151    /// Homeostatic synaptic scaling
152    HomeostaticScaling,
153    /// Intrinsic plasticity
154    IntrinsicPlasticity,
155    /// Heterosynaptic plasticity
156    HeterosynapticPlasticity,
157    /// Metaplasticity
158    Metaplasticity,
159    /// Calcium-dependent plasticity
160    CalciumDependent,
161    /// Voltage-dependent plasticity
162    VoltageDependent,
163    /// Frequency-dependent plasticity
164    FrequencyDependent,
165}
166
167/// Time constants for plasticity mechanisms
168#[derive(Debug, Clone)]
169pub struct PlasticityTimeConstants {
170    /// Fast component time constant
171    pub tau_fast: f64,
172    /// Slow component time constant
173    pub tau_slow: f64,
174    /// STDP time window
175    pub stdp_window: f64,
176    /// Homeostatic time constant
177    pub tau_homeostatic: f64,
178    /// Calcium decay time
179    pub tau_calcium: f64,
180}
181
182/// Learning rates for different plasticity components
183#[derive(Debug, Clone)]
184pub struct PlasticityLearningRates {
185    /// Potentiation learning rate
186    pub potentiation_rate: f64,
187    /// Depression learning rate
188    pub depression_rate: f64,
189    /// Homeostatic learning rate
190    pub homeostatic_rate: f64,
191    /// Metaplastic learning rate
192    pub metaplastic_rate: f64,
193    /// Intrinsic plasticity rate
194    pub intrinsic_rate: f64,
195}
196
197/// Threshold parameters for plasticity
198#[derive(Debug, Clone)]
199pub struct PlasticityThresholds {
200    /// LTP threshold
201    pub ltp_threshold: f64,
202    /// LTD threshold
203    pub ltd_threshold: f64,
204    /// Homeostatic target activity
205    pub target_activity: f64,
206    /// Metaplasticity threshold
207    pub metaplasticity_threshold: f64,
208    /// Saturation threshold
209    pub saturation_threshold: f64,
210}
211
212/// Homeostatic regulation system
213///
214/// Maintains stable neural activity levels through multiple homeostatic
215/// mechanisms including synaptic scaling and intrinsic excitability adjustment.
216#[derive(Debug, Clone)]
217pub struct HomeostaticSystem {
218    /// Target firing rates
219    pub target_firing_rates: Array1<f64>,
220    /// Current firing rates
221    pub current_firing_rates: Array1<f64>,
222    /// Homeostatic time constants
223    pub time_constants: Array1<f64>,
224    /// Regulation mechanisms
225    pub mechanisms: Vec<HomeostaticMechanism>,
226    /// Adaptation rates
227    pub adaptation_rates: Array1<f64>,
228    /// Activity history
229    pub activity_history: VecDeque<Array1<f64>>,
230    /// History window size
231    pub history_window: usize,
232}
233
234/// Types of homeostatic mechanisms
235#[derive(Debug, Clone)]
236pub enum HomeostaticMechanism {
237    /// Synaptic scaling
238    SynapticScaling,
239    /// Intrinsic excitability adjustment
240    IntrinsicExcitability,
241    /// Structural plasticity
242    StructuralPlasticity,
243    /// Inhibitory plasticity
244    InhibitoryPlasticity,
245    /// Metaplastic regulation
246    MetaplasticRegulation,
247}
248
249/// Metaplasticity rules for learning-to-learn
250///
251/// Implements meta-learning capabilities where the learning process
252/// itself adapts based on experience and performance history.
253#[derive(Debug, Clone)]
254pub struct MetaplasticityRules {
255    /// Learning rate adaptation rules
256    pub learning_rate_adaptation: LearningRateAdaptation,
257    /// Threshold adaptation rules
258    pub threshold_adaptation: ThresholdAdaptation,
259    /// Memory consolidation rules
260    pub consolidation_rules: ConsolidationRules,
261    /// Forgetting protection rules
262    pub forgetting_protection: ForgettingProtectionRules,
263}
264
265/// Learning rate adaptation mechanisms
266#[derive(Debug, Clone)]
267pub struct LearningRateAdaptation {
268    /// Base learning rate
269    pub base_rate: f64,
270    /// Adaptation factor
271    pub adaptation_factor: f64,
272    /// Performance history
273    pub performance_history: VecDeque<f64>,
274    /// Adaptation threshold
275    pub adaptation_threshold: f64,
276    /// Maximum learning rate
277    pub max_rate: f64,
278    /// Minimum learning rate
279    pub min_rate: f64,
280}
281
282/// Threshold adaptation for dynamic learning
283#[derive(Debug, Clone)]
284pub struct ThresholdAdaptation {
285    /// Adaptive thresholds
286    pub adaptive_thresholds: Array1<f64>,
287    /// Threshold update rates
288    pub update_rates: Array1<f64>,
289    /// Target activation levels
290    pub target_activations: Array1<f64>,
291    /// Threshold bounds
292    pub threshold_bounds: Vec<(f64, f64)>,
293}
294
295/// Memory consolidation rules
296#[derive(Debug, Clone)]
297pub struct ConsolidationRules {
298    /// Consolidation time windows
299    pub time_windows: Vec<f64>,
300    /// Consolidation strengths
301    pub consolidation_strengths: Array1<f64>,
302    /// Replay mechanisms
303    pub replay_enabled: bool,
304    /// Replay patterns
305    pub replay_patterns: Vec<Array1<f64>>,
306    /// Systems consolidation
307    pub systems_consolidation: bool,
308}
309
310/// Forgetting protection mechanisms
311#[derive(Debug, Clone)]
312pub struct ForgettingProtectionRules {
313    /// Elastic weight consolidation
314    pub ewc_enabled: bool,
315    /// Fisher information matrix
316    pub fisher_information: Array2<f64>,
317    /// Synaptic intelligence
318    pub synaptic_intelligence: bool,
319    /// Importance weights
320    pub importance_weights: Array1<f64>,
321    /// Protection strength
322    pub protection_strength: f64,
323}
324
325/// Neuromodulation system for context-dependent learning
326///
327/// Models the effects of neuromodulators on learning and plasticity,
328/// enabling context-dependent adaptation of learning parameters.
329#[derive(Debug, Clone)]
330pub struct NeuromodulationSystem {
331    /// Dopamine levels
332    pub dopamine_levels: Array1<f64>,
333    /// Serotonin levels
334    pub serotonin_levels: Array1<f64>,
335    /// Acetylcholine levels
336    pub acetylcholine_levels: Array1<f64>,
337    /// Noradrenaline levels
338    pub noradrenaline_levels: Array1<f64>,
339    /// Modulation effects
340    pub modulation_effects: NeuromodulationEffects,
341    /// Release patterns
342    pub release_patterns: NeuromodulatorReleasePatterns,
343}
344
345/// Effects of neuromodulation on plasticity
346#[derive(Debug, Clone)]
347pub struct NeuromodulationEffects {
348    /// Effect on learning rate
349    pub learning_rate_modulation: Array1<f64>,
350    /// Effect on thresholds
351    pub threshold_modulation: Array1<f64>,
352    /// Effect on excitability
353    pub excitability_modulation: Array1<f64>,
354    /// Effect on attention
355    pub attention_modulation: Array1<f64>,
356}
357
358/// Neuromodulator release patterns
359#[derive(Debug, Clone)]
360pub struct NeuromodulatorReleasePatterns {
361    /// Phasic dopamine release
362    pub phasic_dopamine: Vec<(f64, f64)>, // (time, amplitude)
363    /// Tonic serotonin level
364    pub tonic_serotonin: f64,
365    /// Cholinergic attention signals
366    pub cholinergic_attention: Array1<f64>,
367    /// Stress-related noradrenaline
368    pub stress_noradrenaline: f64,
369}
370
371/// Learning history tracking
372///
373/// Comprehensive tracking of learning progress, weight changes,
374/// and important events during training.
375#[derive(Debug, Clone)]
376pub struct LearningHistory {
377    /// Weight change history
378    pub weight_changes: VecDeque<Array2<f64>>,
379    /// Performance metrics
380    pub performance_metrics: VecDeque<PerformanceMetrics>,
381    /// Plasticity events
382    pub plasticity_events: VecDeque<PlasticityEvent>,
383    /// Consolidation events
384    pub consolidation_events: VecDeque<ConsolidationEvent>,
385    /// Maximum history length
386    pub max_history_length: usize,
387}
388
389/// Performance metrics for learning assessment
390#[derive(Debug, Clone)]
391pub struct PerformanceMetrics {
392    /// Accuracy
393    pub accuracy: f64,
394    /// Learning speed
395    pub learning_speed: f64,
396    /// Stability
397    pub stability: f64,
398    /// Generalization
399    pub generalization: f64,
400    /// Timestamp
401    pub timestamp: f64,
402}
403
404/// Plasticity event recording
405#[derive(Debug, Clone)]
406pub struct PlasticityEvent {
407    /// Event type
408    pub event_type: PlasticityEventType,
409    /// Synapses involved
410    pub synapses: Vec<(usize, usize)>,
411    /// Magnitude of change
412    pub magnitude: f64,
413    /// Timestamp
414    pub timestamp: f64,
415    /// Context information
416    pub context: String,
417}
418
419/// Types of plasticity events
420#[derive(Debug, Clone)]
421pub enum PlasticityEventType {
422    LongTermPotentiation,
423    LongTermDepression,
424    HomeostaticScaling,
425    StructuralPlasticity,
426    MetaplasticChange,
427}
428
429/// Memory consolidation event
430#[derive(Debug, Clone)]
431pub struct ConsolidationEvent {
432    /// Consolidation type
433    pub consolidation_type: ConsolidationType,
434    /// Memory patterns consolidated
435    pub patterns: Vec<Array1<f64>>,
436    /// Consolidation strength
437    pub strength: f64,
438    /// Timestamp
439    pub timestamp: f64,
440}
441
442/// Types of memory consolidation
443#[derive(Debug, Clone)]
444pub enum ConsolidationType {
445    SynapticConsolidation,
446    SystemsConsolidation,
447    ReconsolidationUpdate,
448    OfflineReplay,
449}
450
451/// Training result structure
452#[derive(Debug, Clone)]
453pub struct TrainingResult {
454    /// Final weight matrix
455    pub final_weights: Array2<f64>,
456    /// Training metrics over time
457    pub training_metrics: Vec<PerformanceMetrics>,
458    /// Recorded plasticity events
459    pub plasticity_events: VecDeque<PlasticityEvent>,
460    /// Recorded consolidation events
461    pub consolidation_events: VecDeque<ConsolidationEvent>,
462}
463
464impl AdvancedMemristiveLearning {
465    /// Create new advanced memristive learning system
466    ///
467    /// # Arguments
468    /// * `rows` - Number of rows in crossbar array
469    /// * `cols` - Number of columns in crossbar array
470    /// * `device_type` - Type of memristive device to simulate
471    ///
472    /// # Returns
473    /// A new `AdvancedMemristiveLearning` system with default parameters
474    pub fn new(rows: usize, cols: usize, device_type: MemristiveDeviceType) -> Self {
475        let crossbar_array = MemristiveCrossbar::new(rows, cols, device_type);
476
477        let plasticity_mechanisms = vec![
478            PlasticityMechanism::new(PlasticityType::STDP),
479            PlasticityMechanism::new(PlasticityType::HomeostaticScaling),
480            PlasticityMechanism::new(PlasticityType::IntrinsicPlasticity),
481        ];
482
483        let homeostatic_system = HomeostaticSystem::new(rows);
484        let metaplasticity = MetaplasticityRules::new();
485        let neuromodulation = NeuromodulationSystem::new(rows);
486        let learning_history = LearningHistory::new();
487
488        Self {
489            crossbar_array,
490            plasticity_mechanisms,
491            homeostatic_system,
492            metaplasticity,
493            neuromodulation,
494            learning_history,
495            online_learning: true,
496            forgetting_protection: true,
497        }
498    }
499
500    /// Enable specific plasticity mechanism
501    ///
502    /// # Arguments
503    /// * `plasticity_type` - Type of plasticity to enable
504    pub fn enable_plasticity(mut self, plasticity_type: PlasticityType) -> Self {
505        for mechanism in &mut self.plasticity_mechanisms {
506            if std::mem::discriminant(&mechanism.mechanism_type)
507                == std::mem::discriminant(&plasticity_type)
508            {
509                mechanism.enabled = true;
510            }
511        }
512        self
513    }
514
515    /// Configure homeostatic regulation
516    ///
517    /// # Arguments
518    /// * `target_rates` - Target firing rates for each neuron
519    pub fn with_homeostatic_regulation(mut self, target_rates: Array1<f64>) -> Self {
520        self.homeostatic_system.target_firing_rates = target_rates;
521        self
522    }
523
524    /// Enable catastrophic forgetting protection
525    ///
526    /// # Arguments
527    /// * `enabled` - Whether to enable forgetting protection mechanisms
528    pub fn with_forgetting_protection(mut self, enabled: bool) -> Self {
529        self.forgetting_protection = enabled;
530        self.metaplasticity.forgetting_protection.ewc_enabled = enabled;
531        self
532    }
533
534    /// Train on spatial data with advanced plasticity
535    ///
536    /// Performs training using all enabled plasticity mechanisms,
537    /// homeostatic regulation, and neuromodulation.
538    ///
539    /// # Arguments
540    /// * `spatial_data` - Input spatial data (n_samples × n_features)
541    /// * `target_outputs` - Target outputs for each sample
542    /// * `epochs` - Number of training epochs
543    ///
544    /// # Returns
545    /// Training results including final weights and learning history
546    pub async fn train_spatial_data(
547        &mut self,
548        spatial_data: &ArrayView2<'_, f64>,
549        target_outputs: &ArrayView1<'_, f64>,
550        epochs: usize,
551    ) -> SpatialResult<TrainingResult> {
552        let mut training_metrics = Vec::new();
553
554        for epoch in 0..epochs {
555            // Process each spatial pattern
556            let epoch_metrics = self.process_epoch(spatial_data, target_outputs).await?;
557
558            // Apply homeostatic regulation
559            self.apply_homeostatic_regulation().await?;
560
561            // Apply metaplasticity updates
562            self.apply_metaplasticity_updates(&epoch_metrics).await?;
563
564            // Update neuromodulation
565            self.update_neuromodulation(&epoch_metrics).await?;
566
567            // Record learning history
568            self.record_learning_history(&epoch_metrics, epoch as f64)
569                .await?;
570
571            training_metrics.push(epoch_metrics);
572
573            // Check for consolidation triggers
574            if self.should_trigger_consolidation(epoch) {
575                self.trigger_memory_consolidation().await?;
576            }
577        }
578
579        let final_weights = self.crossbar_array.conductances.clone();
580
581        Ok(TrainingResult {
582            final_weights,
583            training_metrics,
584            plasticity_events: self.learning_history.plasticity_events.clone(),
585            consolidation_events: self.learning_history.consolidation_events.clone(),
586        })
587    }
588
589    /// Process single training epoch
590    async fn process_epoch(
591        &mut self,
592        spatial_data: &ArrayView2<'_, f64>,
593        target_outputs: &ArrayView1<'_, f64>,
594    ) -> SpatialResult<PerformanceMetrics> {
595        let n_samples = spatial_data.dim().0;
596        let mut total_error = 0.0;
597        let mut correct_predictions = 0;
598
599        for i in 0..n_samples {
600            let input = spatial_data.row(i);
601            let target = target_outputs[i];
602
603            // Forward pass through memristive crossbar
604            let output = self.forward_pass(&input).await?;
605
606            // Compute error
607            let error = target - output;
608            total_error += error.abs();
609
610            if error.abs() < 0.1 {
611                correct_predictions += 1;
612            }
613
614            // Apply plasticity mechanisms
615            self.apply_plasticity_mechanisms(&input, output, target, error)
616                .await?;
617
618            // Update device characteristics
619            self.update_memristive_devices(&input, error).await?;
620        }
621
622        let accuracy = correct_predictions as f64 / n_samples as f64;
623        let average_error = total_error / n_samples as f64;
624
625        Ok(PerformanceMetrics {
626            accuracy,
627            learning_speed: 1.0 / (average_error + 1e-8),
628            stability: self.compute_weight_stability(),
629            generalization: self.estimate_generalization(),
630            timestamp: std::time::SystemTime::now()
631                .duration_since(std::time::UNIX_EPOCH)
632                .unwrap()
633                .as_secs_f64(),
634        })
635    }
636
637    /// Forward pass through memristive crossbar
638    async fn forward_pass(&self, input: &ArrayView1<'_, f64>) -> SpatialResult<f64> {
639        let mut output = 0.0;
640
641        for (i, &input_val) in input.iter().enumerate() {
642            if i < self.crossbar_array.dimensions.0 {
643                for j in 0..self.crossbar_array.dimensions.1 {
644                    let conductance = self.crossbar_array.conductances[[i, j]];
645                    let current = input_val * conductance;
646
647                    // Apply device non-linearity
648                    let nonlinear_current = self.apply_device_nonlinearity(current, i, j);
649
650                    output += nonlinear_current;
651                }
652            }
653        }
654
655        // Apply activation function
656        Ok(Self::sigmoid(output))
657    }
658
659    /// Apply device-specific non-linearity
660    fn apply_device_nonlinearity(&self, current: f64, row: usize, col: usize) -> f64 {
661        match self.crossbar_array.device_type {
662            MemristiveDeviceType::TitaniumDioxide => {
663                // TiO2 exponential switching
664                let threshold = self.crossbar_array.switching_thresholds[[row, col]];
665                if current.abs() > threshold {
666                    current * (1.0 + 0.1 * (current / threshold).ln())
667                } else {
668                    current
669                }
670            }
671            MemristiveDeviceType::HafniumOxide => {
672                // HfO2 with steep switching
673                let threshold = self.crossbar_array.switching_thresholds[[row, col]];
674                current * (1.0 + 0.2 * (current / threshold).tanh())
675            }
676            MemristiveDeviceType::PhaseChange => {
677                // Phase change memory with threshold switching
678                let threshold = self.crossbar_array.switching_thresholds[[row, col]];
679                if current.abs() > threshold {
680                    current * 2.0
681                } else {
682                    current * 0.1
683                }
684            }
685            _ => current, // Linear for other types
686        }
687    }
688
689    /// Apply all enabled plasticity mechanisms
690    async fn apply_plasticity_mechanisms(
691        &mut self,
692        input: &ArrayView1<'_, f64>,
693        output: f64,
694        target: f64,
695        error: f64,
696    ) -> SpatialResult<()> {
697        let mechanisms = self.plasticity_mechanisms.clone();
698        for mechanism in &mechanisms {
699            if mechanism.enabled {
700                match mechanism.mechanism_type {
701                    PlasticityType::STDP => {
702                        self.apply_stdp_plasticity(input, output, &mechanism)
703                            .await?;
704                    }
705                    PlasticityType::HomeostaticScaling => {
706                        self.apply_homeostatic_scaling(input, output, &mechanism)
707                            .await?;
708                    }
709                    PlasticityType::CalciumDependent => {
710                        self.apply_calcium_dependent_plasticity(input, output, target, &mechanism)
711                            .await?;
712                    }
713                    PlasticityType::VoltageDependent => {
714                        self.apply_voltage_dependent_plasticity(input, error, &mechanism)
715                            .await?;
716                    }
717                    _ => {
718                        // Default plasticity rule
719                        self.apply_error_based_plasticity(input, error, &mechanism)
720                            .await?;
721                    }
722                }
723            }
724        }
725
726        Ok(())
727    }
728
729    /// Apply STDP plasticity with advanced timing rules
730    async fn apply_stdp_plasticity(
731        &mut self,
732        input: &ArrayView1<'_, f64>,
733        output: f64,
734        mechanism: &PlasticityMechanism,
735    ) -> SpatialResult<()> {
736        let tau_plus = mechanism.time_constants.tau_fast;
737        let tau_minus = mechanism.time_constants.tau_slow;
738        let a_plus = mechanism.learning_rates.potentiation_rate;
739        let a_minus = mechanism.learning_rates.depression_rate;
740
741        // Simplified STDP implementation
742        for (i, &input_val) in input.iter().enumerate() {
743            if i < self.crossbar_array.dimensions.0 {
744                for j in 0..self.crossbar_array.dimensions.1 {
745                    // Compute timing difference (simplified)
746                    let dt = if input_val > 0.5 && output > 0.5 {
747                        1.0 // Pre before post
748                    } else if input_val <= 0.5 && output > 0.5 {
749                        -1.0 // Post before pre
750                    } else {
751                        0.0 // No timing relationship
752                    };
753
754                    let weight_change = if dt > 0.0 {
755                        a_plus * (-dt / tau_plus).exp()
756                    } else if dt < 0.0 {
757                        -a_minus * (dt / tau_minus).exp()
758                    } else {
759                        0.0
760                    };
761
762                    self.crossbar_array.conductances[[i, j]] +=
763                        weight_change * mechanism.weight_scaling;
764                    self.crossbar_array.conductances[[i, j]] =
765                        self.crossbar_array.conductances[[i, j]].clamp(0.0, 1.0);
766                }
767            }
768        }
769
770        Ok(())
771    }
772
773    /// Apply homeostatic scaling
774    async fn apply_homeostatic_scaling(
775        &mut self,
776        _input: &ArrayView1<'_, f64>,
777        output: f64,
778        mechanism: &PlasticityMechanism,
779    ) -> SpatialResult<()> {
780        let target_activity = mechanism.thresholds.target_activity;
781        let scaling_rate = mechanism.learning_rates.homeostatic_rate;
782
783        // Global scaling based on overall activity
784        let activity_error = output - target_activity;
785        let scaling_factor = 1.0 - scaling_rate * activity_error;
786
787        // Apply scaling to all weights
788        for i in 0..self.crossbar_array.dimensions.0 {
789            for j in 0..self.crossbar_array.dimensions.1 {
790                self.crossbar_array.conductances[[i, j]] *= scaling_factor;
791                self.crossbar_array.conductances[[i, j]] =
792                    self.crossbar_array.conductances[[i, j]].clamp(0.0, 1.0);
793            }
794        }
795
796        Ok(())
797    }
798
799    /// Apply calcium-dependent plasticity
800    async fn apply_calcium_dependent_plasticity(
801        &mut self,
802        input: &ArrayView1<'_, f64>,
803        output: f64,
804        target: f64,
805        mechanism: &PlasticityMechanism,
806    ) -> SpatialResult<()> {
807        // Simulate calcium dynamics
808        let calcium_level = Self::compute_calcium_level(input, output, target);
809
810        let ltp_threshold = mechanism.thresholds.ltp_threshold;
811        let ltd_threshold = mechanism.thresholds.ltd_threshold;
812
813        for (i, &input_val) in input.iter().enumerate() {
814            if i < self.crossbar_array.dimensions.0 {
815                for j in 0..self.crossbar_array.dimensions.1 {
816                    let local_calcium = calcium_level * input_val;
817
818                    let weight_change = if local_calcium > ltp_threshold {
819                        mechanism.learning_rates.potentiation_rate * (local_calcium - ltp_threshold)
820                    } else if local_calcium < ltd_threshold {
821                        -mechanism.learning_rates.depression_rate * (ltd_threshold - local_calcium)
822                    } else {
823                        0.0
824                    };
825
826                    self.crossbar_array.conductances[[i, j]] += weight_change;
827                    self.crossbar_array.conductances[[i, j]] =
828                        self.crossbar_array.conductances[[i, j]].clamp(0.0, 1.0);
829                }
830            }
831        }
832
833        Ok(())
834    }
835
836    /// Apply voltage-dependent plasticity
837    async fn apply_voltage_dependent_plasticity(
838        &mut self,
839        input: &ArrayView1<'_, f64>,
840        error: f64,
841        mechanism: &PlasticityMechanism,
842    ) -> SpatialResult<()> {
843        let voltage_threshold = mechanism.thresholds.ltd_threshold;
844
845        for (i, &input_val) in input.iter().enumerate() {
846            if i < self.crossbar_array.dimensions.0 {
847                for j in 0..self.crossbar_array.dimensions.1 {
848                    let local_voltage = input_val * error.abs();
849
850                    if local_voltage > voltage_threshold {
851                        let weight_change = mechanism.learning_rates.potentiation_rate
852                            * (local_voltage - voltage_threshold)
853                            * error.signum();
854
855                        self.crossbar_array.conductances[[i, j]] += weight_change;
856                        self.crossbar_array.conductances[[i, j]] =
857                            self.crossbar_array.conductances[[i, j]].clamp(0.0, 1.0);
858                    }
859                }
860            }
861        }
862
863        Ok(())
864    }
865
866    /// Apply error-based plasticity (default)
867    async fn apply_error_based_plasticity(
868        &mut self,
869        input: &ArrayView1<'_, f64>,
870        error: f64,
871        mechanism: &PlasticityMechanism,
872    ) -> SpatialResult<()> {
873        let learning_rate = mechanism.learning_rates.potentiation_rate;
874
875        for (i, &input_val) in input.iter().enumerate() {
876            if i < self.crossbar_array.dimensions.0 {
877                for j in 0..self.crossbar_array.dimensions.1 {
878                    let weight_change = learning_rate * error * input_val;
879
880                    self.crossbar_array.conductances[[i, j]] += weight_change;
881                    self.crossbar_array.conductances[[i, j]] =
882                        self.crossbar_array.conductances[[i, j]].clamp(0.0, 1.0);
883                }
884            }
885        }
886
887        Ok(())
888    }
889
890    /// Compute calcium level for calcium-dependent plasticity
891    fn compute_calcium_level(input: &ArrayView1<'_, f64>, output: f64, target: f64) -> f64 {
892        let input_activity = input.iter().map(|&x| x.max(0.0)).sum::<f64>();
893        let output_activity = output.max(0.0);
894        let target_activity = target.max(0.0);
895
896        // Simplified calcium dynamics
897        (input_activity * 0.3 + output_activity * 0.4 + target_activity * 0.3).min(1.0)
898    }
899
900    /// Update memristive device characteristics
901    async fn update_memristive_devices(
902        &mut self,
903        input: &ArrayView1<'_, f64>,
904        _error: f64,
905    ) -> SpatialResult<()> {
906        for (i, &input_val) in input.iter().enumerate() {
907            if i < self.crossbar_array.dimensions.0 {
908                for j in 0..self.crossbar_array.dimensions.1 {
909                    // Update resistance based on conductance
910                    let conductance = self.crossbar_array.conductances[[i, j]];
911                    self.crossbar_array.resistances[[i, j]] = if conductance > 1e-12 {
912                        1.0 / conductance
913                    } else {
914                        1e12
915                    };
916
917                    // Update endurance cycles
918                    if input_val > 0.1 {
919                        self.crossbar_array.endurance_cycles[[i, j]] += 1;
920                    }
921
922                    // Apply device aging effects
923                    self.apply_device_aging(i, j);
924
925                    // Apply variability
926                    self.apply_device_variability(i, j);
927                }
928            }
929        }
930
931        Ok(())
932    }
933
934    /// Apply device aging effects
935    fn apply_device_aging(&mut self, row: usize, col: usize) {
936        let cycles = self.crossbar_array.endurance_cycles[[row, col]];
937        let aging_factor = 1.0 - (cycles as f64) * 1e-8; // Small aging effect
938
939        self.crossbar_array.conductances[[row, col]] *= aging_factor.max(0.1);
940    }
941
942    /// Apply device-to-device variability
943    fn apply_device_variability(&mut self, row: usize, col: usize) {
944        let variability = self.crossbar_array.device_variability[[row, col]];
945        let mut rng = rand::rng();
946        let noise = (rng.gen_range(0.0..1.0) - 0.5) * variability;
947
948        self.crossbar_array.conductances[[row, col]] += noise;
949        self.crossbar_array.conductances[[row, col]] =
950            self.crossbar_array.conductances[[row, col]].clamp(0.0, 1.0);
951    }
952
953    /// Apply homeostatic regulation
954    async fn apply_homeostatic_regulation(&mut self) -> SpatialResult<()> {
955        // Update firing rate history
956        let current_rates = self.compute_current_firing_rates();
957        self.homeostatic_system
958            .activity_history
959            .push_back(current_rates);
960
961        // Maintain history window
962        if self.homeostatic_system.activity_history.len() > self.homeostatic_system.history_window {
963            self.homeostatic_system.activity_history.pop_front();
964        }
965
966        // Apply homeostatic mechanisms
967        self.apply_synaptic_scaling().await?;
968        self.apply_intrinsic_excitability_adjustment().await?;
969
970        Ok(())
971    }
972
973    /// Compute current firing rates
974    fn compute_current_firing_rates(&self) -> Array1<f64> {
975        // Simplified firing rate computation based on conductance sums
976        let mut rates = Array1::zeros(self.crossbar_array.dimensions.1);
977
978        for j in 0..self.crossbar_array.dimensions.1 {
979            let total_conductance: f64 = (0..self.crossbar_array.dimensions.0)
980                .map(|i| self.crossbar_array.conductances[[i, j]])
981                .sum();
982            rates[j] = Self::sigmoid(total_conductance);
983        }
984
985        rates
986    }
987
988    /// Apply synaptic scaling homeostasis
989    async fn apply_synaptic_scaling(&mut self) -> SpatialResult<()> {
990        let current_rates = self.compute_current_firing_rates();
991
992        for j in 0..self.crossbar_array.dimensions.1 {
993            let target_rate = self.homeostatic_system.target_firing_rates[j];
994            let current_rate = current_rates[j];
995            let adaptation_rate = self.homeostatic_system.adaptation_rates[j];
996
997            let scaling_factor = 1.0 + adaptation_rate * (target_rate - current_rate);
998
999            // Apply scaling to all incoming synapses
1000            for i in 0..self.crossbar_array.dimensions.0 {
1001                self.crossbar_array.conductances[[i, j]] *= scaling_factor;
1002                self.crossbar_array.conductances[[i, j]] =
1003                    self.crossbar_array.conductances[[i, j]].clamp(0.0, 1.0);
1004            }
1005        }
1006
1007        Ok(())
1008    }
1009
1010    /// Apply intrinsic excitability adjustment
1011    async fn apply_intrinsic_excitability_adjustment(&mut self) -> SpatialResult<()> {
1012        // Adjust switching thresholds based on activity
1013        let current_rates = self.compute_current_firing_rates();
1014
1015        for j in 0..self.crossbar_array.dimensions.1 {
1016            let target_rate = self.homeostatic_system.target_firing_rates[j];
1017            let current_rate = current_rates[j];
1018            let adaptation_rate = self.homeostatic_system.adaptation_rates[j];
1019
1020            let threshold_adjustment = adaptation_rate * (current_rate - target_rate);
1021
1022            for i in 0..self.crossbar_array.dimensions.0 {
1023                self.crossbar_array.switching_thresholds[[i, j]] += threshold_adjustment;
1024                self.crossbar_array.switching_thresholds[[i, j]] =
1025                    self.crossbar_array.switching_thresholds[[i, j]].clamp(0.1, 2.0);
1026            }
1027        }
1028
1029        Ok(())
1030    }
1031
1032    /// Apply metaplasticity updates
1033    async fn apply_metaplasticity_updates(
1034        &mut self,
1035        metrics: &PerformanceMetrics,
1036    ) -> SpatialResult<()> {
1037        // Update learning rate adaptation
1038        self.metaplasticity
1039            .learning_rate_adaptation
1040            .performance_history
1041            .push_back(metrics.accuracy);
1042
1043        if self
1044            .metaplasticity
1045            .learning_rate_adaptation
1046            .performance_history
1047            .len()
1048            > 100
1049        {
1050            self.metaplasticity
1051                .learning_rate_adaptation
1052                .performance_history
1053                .pop_front();
1054        }
1055
1056        // Adapt learning rates based on performance
1057        self.adapt_learning_rates(metrics).await?;
1058
1059        // Update thresholds
1060        self.adapt_thresholds(metrics).await?;
1061
1062        // Apply consolidation if needed
1063        if metrics.accuracy > 0.9 {
1064            self.trigger_memory_consolidation().await?;
1065        }
1066
1067        Ok(())
1068    }
1069
1070    /// Adapt learning rates based on performance
1071    async fn adapt_learning_rates(&mut self, _metrics: &PerformanceMetrics) -> SpatialResult<()> {
1072        let performance_trend = self.compute_performance_trend();
1073
1074        for mechanism in &mut self.plasticity_mechanisms {
1075            if performance_trend > 0.0 {
1076                // Performance improving, maintain or slightly increase learning rate
1077                mechanism.learning_rates.potentiation_rate *= 1.01;
1078                mechanism.learning_rates.depression_rate *= 1.01;
1079            } else {
1080                // Performance declining, reduce learning rate
1081                mechanism.learning_rates.potentiation_rate *= 0.99;
1082                mechanism.learning_rates.depression_rate *= 0.99;
1083            }
1084
1085            // Clamp learning rates
1086            mechanism.learning_rates.potentiation_rate =
1087                mechanism.learning_rates.potentiation_rate.clamp(1e-6, 0.1);
1088            mechanism.learning_rates.depression_rate =
1089                mechanism.learning_rates.depression_rate.clamp(1e-6, 0.1);
1090        }
1091
1092        Ok(())
1093    }
1094
1095    /// Compute performance trend
1096    fn compute_performance_trend(&self) -> f64 {
1097        let history = &self
1098            .metaplasticity
1099            .learning_rate_adaptation
1100            .performance_history;
1101
1102        if history.len() < 10 {
1103            return 0.0;
1104        }
1105
1106        let recent_performance: f64 = history.iter().rev().take(5).sum::<f64>() / 5.0;
1107        let older_performance: f64 = history.iter().rev().skip(5).take(5).sum::<f64>() / 5.0;
1108
1109        recent_performance - older_performance
1110    }
1111
1112    /// Adapt thresholds based on performance
1113    async fn adapt_thresholds(&mut self, metrics: &PerformanceMetrics) -> SpatialResult<()> {
1114        // Adjust plasticity thresholds based on learning progress
1115        for mechanism in &mut self.plasticity_mechanisms {
1116            if metrics.learning_speed > 1.0 {
1117                // Fast learning, can afford higher thresholds
1118                mechanism.thresholds.ltp_threshold *= 1.001;
1119                mechanism.thresholds.ltd_threshold *= 1.001;
1120            } else {
1121                // Slow learning, lower thresholds to increase plasticity
1122                mechanism.thresholds.ltp_threshold *= 0.999;
1123                mechanism.thresholds.ltd_threshold *= 0.999;
1124            }
1125
1126            // Clamp thresholds
1127            mechanism.thresholds.ltp_threshold = mechanism.thresholds.ltp_threshold.clamp(0.1, 2.0);
1128            mechanism.thresholds.ltd_threshold = mechanism.thresholds.ltd_threshold.clamp(0.1, 2.0);
1129        }
1130
1131        Ok(())
1132    }
1133
1134    /// Update neuromodulation system
1135    async fn update_neuromodulation(&mut self, metrics: &PerformanceMetrics) -> SpatialResult<()> {
1136        // Update dopamine based on performance
1137        let performance_change = metrics.accuracy - 0.5; // Baseline accuracy
1138        self.neuromodulation
1139            .dopamine_levels
1140            .mapv_inplace(|x| x + 0.1 * performance_change);
1141
1142        // Update serotonin based on stability
1143        let stability_change = metrics.stability - 0.5;
1144        self.neuromodulation
1145            .serotonin_levels
1146            .mapv_inplace(|x| x + 0.05 * stability_change);
1147
1148        // Clamp neurotransmitter levels
1149        self.neuromodulation
1150            .dopamine_levels
1151            .mapv_inplace(|x| x.clamp(0.0, 1.0));
1152        self.neuromodulation
1153            .serotonin_levels
1154            .mapv_inplace(|x| x.clamp(0.0, 1.0));
1155
1156        Ok(())
1157    }
1158
1159    /// Record learning history
1160    async fn record_learning_history(
1161        &mut self,
1162        metrics: &PerformanceMetrics,
1163        _timestamp: f64,
1164    ) -> SpatialResult<()> {
1165        // Record performance metrics
1166        self.learning_history
1167            .performance_metrics
1168            .push_back(metrics.clone());
1169
1170        // Record weight changes
1171        self.learning_history
1172            .weight_changes
1173            .push_back(self.crossbar_array.conductances.clone());
1174
1175        // Maintain history size
1176        if self.learning_history.performance_metrics.len()
1177            > self.learning_history.max_history_length
1178        {
1179            self.learning_history.performance_metrics.pop_front();
1180            self.learning_history.weight_changes.pop_front();
1181        }
1182
1183        Ok(())
1184    }
1185
1186    /// Check if memory consolidation should be triggered
1187    fn should_trigger_consolidation(&self, epoch: usize) -> bool {
1188        // Trigger consolidation every 100 epochs or when performance is high
1189        epoch % 100 == 0
1190            || self
1191                .learning_history
1192                .performance_metrics
1193                .back()
1194                .map(|m| m.accuracy > 0.95)
1195                .unwrap_or(false)
1196    }
1197
1198    /// Trigger memory consolidation
1199    async fn trigger_memory_consolidation(&mut self) -> SpatialResult<()> {
1200        // Systems consolidation: strengthen important connections
1201        self.strengthen_important_connections().await?;
1202
1203        // Record consolidation event
1204        let consolidation_event = ConsolidationEvent {
1205            consolidation_type: ConsolidationType::SynapticConsolidation,
1206            patterns: vec![], // Would store relevant patterns
1207            strength: 1.0,
1208            timestamp: std::time::SystemTime::now()
1209                .duration_since(std::time::UNIX_EPOCH)
1210                .unwrap()
1211                .as_secs_f64(),
1212        };
1213
1214        self.learning_history
1215            .consolidation_events
1216            .push_back(consolidation_event);
1217
1218        Ok(())
1219    }
1220
1221    /// Strengthen important connections during consolidation
1222    async fn strengthen_important_connections(&mut self) -> SpatialResult<()> {
1223        // Calculate connection importance based on usage and performance contribution
1224        let mut importance_matrix = Array2::zeros(self.crossbar_array.dimensions);
1225
1226        for i in 0..self.crossbar_array.dimensions.0 {
1227            for j in 0..self.crossbar_array.dimensions.1 {
1228                let conductance = self.crossbar_array.conductances[[i, j]];
1229                let usage = self.crossbar_array.endurance_cycles[[i, j]] as f64;
1230
1231                // Importance based on conductance and usage
1232                importance_matrix[[i, j]] = conductance * (1.0 + 0.1 * usage.ln_1p());
1233            }
1234        }
1235
1236        // Strengthen top 20% most important connections
1237        let threshold = self.compute_importance_threshold(&importance_matrix, 0.8);
1238
1239        for i in 0..self.crossbar_array.dimensions.0 {
1240            for j in 0..self.crossbar_array.dimensions.1 {
1241                if importance_matrix[[i, j]] > threshold {
1242                    self.crossbar_array.conductances[[i, j]] *= 1.05; // 5% strengthening
1243                    self.crossbar_array.conductances[[i, j]] =
1244                        self.crossbar_array.conductances[[i, j]].min(1.0);
1245                }
1246            }
1247        }
1248
1249        Ok(())
1250    }
1251
1252    /// Compute importance threshold for top percentage
1253    fn compute_importance_threshold(
1254        &self,
1255        importance_matrix: &Array2<f64>,
1256        percentile: f64,
1257    ) -> f64 {
1258        let mut values: Vec<f64> = importance_matrix.iter().cloned().collect();
1259        values.sort_by(|a, b| a.partial_cmp(b).unwrap());
1260
1261        let index = (values.len() as f64 * percentile) as usize;
1262        values.get(index).cloned().unwrap_or(0.0)
1263    }
1264
1265    /// Helper functions
1266    fn sigmoid(x: f64) -> f64 {
1267        1.0 / (1.0 + (-x).exp())
1268    }
1269
1270    fn compute_weight_stability(&self) -> f64 {
1271        // Simplified stability measure
1272        let weight_variance = self.crossbar_array.conductances.var(0.0);
1273        1.0 / (1.0 + weight_variance)
1274    }
1275
1276    fn estimate_generalization(&self) -> f64 {
1277        // Simplified generalization estimate
1278        0.8 // Placeholder
1279    }
1280
1281    /// Get crossbar dimensions
1282    pub fn crossbar_dimensions(&self) -> (usize, usize) {
1283        self.crossbar_array.dimensions
1284    }
1285
1286    /// Get device type
1287    pub fn device_type(&self) -> &MemristiveDeviceType {
1288        &self.crossbar_array.device_type
1289    }
1290
1291    /// Get current conductances
1292    pub fn conductances(&self) -> &Array2<f64> {
1293        &self.crossbar_array.conductances
1294    }
1295
1296    /// Get learning history
1297    pub fn learning_history(&self) -> &LearningHistory {
1298        &self.learning_history
1299    }
1300}
1301
1302impl MemristiveCrossbar {
1303    /// Create new memristive crossbar
1304    pub fn new(rows: usize, cols: usize, device_type: MemristiveDeviceType) -> Self {
1305        let mut rng = rand::rng();
1306        let conductances = Array2::from_shape_fn((rows, cols), |_| rng.gen_range(0.0..0.1));
1307        let resistances = conductances.mapv(|g| if g > 1e-12 { 1.0 / g } else { 1e12 });
1308        let switching_thresholds = Array2::from_elem((rows, cols), 0.5);
1309        let retention_times = Array2::from_elem((rows, cols), 1e6);
1310        let endurance_cycles = Array2::zeros((rows, cols));
1311        let programming_voltages = Array2::from_elem((rows, cols), 1.0);
1312        let temperature_coefficients = Array2::from_elem((rows, cols), 0.01);
1313        let device_variability = Array2::from_shape_fn((rows, cols), |_| rng.gen_range(0.0..0.01));
1314
1315        Self {
1316            conductances,
1317            resistances,
1318            switching_thresholds,
1319            retention_times,
1320            endurance_cycles,
1321            programming_voltages,
1322            temperature_coefficients,
1323            device_variability,
1324            dimensions: (rows, cols),
1325            device_type,
1326        }
1327    }
1328}
1329
1330impl PlasticityMechanism {
1331    /// Create new plasticity mechanism
1332    pub fn new(mechanism_type: PlasticityType) -> Self {
1333        let (time_constants, learning_rates, thresholds) = match mechanism_type {
1334            PlasticityType::STDP => (
1335                PlasticityTimeConstants {
1336                    tau_fast: 20.0,
1337                    tau_slow: 40.0,
1338                    stdp_window: 100.0,
1339                    tau_homeostatic: 1000.0,
1340                    tau_calcium: 50.0,
1341                },
1342                PlasticityLearningRates {
1343                    potentiation_rate: 0.01,
1344                    depression_rate: 0.005,
1345                    homeostatic_rate: 0.001,
1346                    metaplastic_rate: 0.0001,
1347                    intrinsic_rate: 0.001,
1348                },
1349                PlasticityThresholds {
1350                    ltp_threshold: 0.6,
1351                    ltd_threshold: 0.4,
1352                    target_activity: 0.5,
1353                    metaplasticity_threshold: 0.8,
1354                    saturation_threshold: 0.95,
1355                },
1356            ),
1357            _ => (
1358                PlasticityTimeConstants {
1359                    tau_fast: 10.0,
1360                    tau_slow: 20.0,
1361                    stdp_window: 50.0,
1362                    tau_homeostatic: 500.0,
1363                    tau_calcium: 25.0,
1364                },
1365                PlasticityLearningRates {
1366                    potentiation_rate: 0.005,
1367                    depression_rate: 0.0025,
1368                    homeostatic_rate: 0.0005,
1369                    metaplastic_rate: 0.00005,
1370                    intrinsic_rate: 0.0005,
1371                },
1372                PlasticityThresholds {
1373                    ltp_threshold: 0.5,
1374                    ltd_threshold: 0.3,
1375                    target_activity: 0.4,
1376                    metaplasticity_threshold: 0.7,
1377                    saturation_threshold: 0.9,
1378                },
1379            ),
1380        };
1381
1382        Self {
1383            mechanism_type,
1384            time_constants,
1385            learning_rates,
1386            thresholds,
1387            enabled: true,
1388            weight_scaling: 1.0,
1389        }
1390    }
1391}
1392
1393impl HomeostaticSystem {
1394    /// Create new homeostatic system
1395    pub fn new(num_neurons: usize) -> Self {
1396        Self {
1397            target_firing_rates: Array1::from_elem(num_neurons, 0.5),
1398            current_firing_rates: Array1::zeros(num_neurons),
1399            time_constants: Array1::from_elem(num_neurons, 1000.0),
1400            mechanisms: vec![
1401                HomeostaticMechanism::SynapticScaling,
1402                HomeostaticMechanism::IntrinsicExcitability,
1403            ],
1404            adaptation_rates: Array1::from_elem(num_neurons, 0.001),
1405            activity_history: VecDeque::new(),
1406            history_window: 100,
1407        }
1408    }
1409}
1410
1411impl Default for MetaplasticityRules {
1412    fn default() -> Self {
1413        Self::new()
1414    }
1415}
1416
1417impl MetaplasticityRules {
1418    /// Create new metaplasticity rules
1419    pub fn new() -> Self {
1420        Self {
1421            learning_rate_adaptation: LearningRateAdaptation {
1422                base_rate: 0.01,
1423                adaptation_factor: 0.1,
1424                performance_history: VecDeque::new(),
1425                adaptation_threshold: 0.1,
1426                max_rate: 0.1,
1427                min_rate: 1e-6,
1428            },
1429            threshold_adaptation: ThresholdAdaptation {
1430                adaptive_thresholds: Array1::from_elem(10, 0.5),
1431                update_rates: Array1::from_elem(10, 0.001),
1432                target_activations: Array1::from_elem(10, 0.5),
1433                threshold_bounds: vec![(0.1, 2.0); 10],
1434            },
1435            consolidation_rules: ConsolidationRules {
1436                time_windows: vec![100.0, 1000.0, 10000.0],
1437                consolidation_strengths: Array1::from_elem(3, 1.0),
1438                replay_enabled: true,
1439                replay_patterns: Vec::new(),
1440                systems_consolidation: true,
1441            },
1442            forgetting_protection: ForgettingProtectionRules {
1443                ewc_enabled: false,
1444                fisher_information: Array2::zeros((10, 10)),
1445                synaptic_intelligence: false,
1446                importance_weights: Array1::zeros(10),
1447                protection_strength: 1.0,
1448            },
1449        }
1450    }
1451}
1452
1453impl NeuromodulationSystem {
1454    /// Create new neuromodulation system
1455    pub fn new(num_neurons: usize) -> Self {
1456        Self {
1457            dopamine_levels: Array1::from_elem(num_neurons, 0.5),
1458            serotonin_levels: Array1::from_elem(num_neurons, 0.5),
1459            acetylcholine_levels: Array1::from_elem(num_neurons, 0.5),
1460            noradrenaline_levels: Array1::from_elem(num_neurons, 0.5),
1461            modulation_effects: NeuromodulationEffects {
1462                learning_rate_modulation: Array1::from_elem(num_neurons, 1.0),
1463                threshold_modulation: Array1::from_elem(num_neurons, 1.0),
1464                excitability_modulation: Array1::from_elem(num_neurons, 1.0),
1465                attention_modulation: Array1::from_elem(num_neurons, 1.0),
1466            },
1467            release_patterns: NeuromodulatorReleasePatterns {
1468                phasic_dopamine: Vec::new(),
1469                tonic_serotonin: 0.5,
1470                cholinergic_attention: Array1::from_elem(num_neurons, 0.5),
1471                stress_noradrenaline: 0.3,
1472            },
1473        }
1474    }
1475}
1476
1477impl Default for LearningHistory {
1478    fn default() -> Self {
1479        Self::new()
1480    }
1481}
1482
1483impl LearningHistory {
1484    /// Create new learning history tracker
1485    pub fn new() -> Self {
1486        Self {
1487            weight_changes: VecDeque::new(),
1488            performance_metrics: VecDeque::new(),
1489            plasticity_events: VecDeque::new(),
1490            consolidation_events: VecDeque::new(),
1491            max_history_length: 1000,
1492        }
1493    }
1494}
1495
1496#[cfg(test)]
1497mod tests {
1498    use super::*;
1499    use scirs2_core::ndarray::array;
1500
1501    #[test]
1502    fn test_advanced_memristive_learning_creation() {
1503        let learning_system =
1504            AdvancedMemristiveLearning::new(8, 4, MemristiveDeviceType::TitaniumDioxide);
1505        assert_eq!(learning_system.crossbar_dimensions(), (8, 4));
1506        assert_eq!(learning_system.plasticity_mechanisms.len(), 3);
1507        assert!(learning_system.forgetting_protection);
1508    }
1509
1510    #[test]
1511    fn test_memristive_device_types() {
1512        let tio2_system =
1513            AdvancedMemristiveLearning::new(4, 4, MemristiveDeviceType::TitaniumDioxide);
1514        let hfo2_system = AdvancedMemristiveLearning::new(4, 4, MemristiveDeviceType::HafniumOxide);
1515        let pcm_system = AdvancedMemristiveLearning::new(4, 4, MemristiveDeviceType::PhaseChange);
1516
1517        assert!(matches!(
1518            tio2_system.device_type(),
1519            MemristiveDeviceType::TitaniumDioxide
1520        ));
1521        assert!(matches!(
1522            hfo2_system.device_type(),
1523            MemristiveDeviceType::HafniumOxide
1524        ));
1525        assert!(matches!(
1526            pcm_system.device_type(),
1527            MemristiveDeviceType::PhaseChange
1528        ));
1529    }
1530
1531    #[test]
1532    fn test_plasticity_mechanism_creation() {
1533        let stdp_mechanism = PlasticityMechanism::new(PlasticityType::STDP);
1534        assert!(stdp_mechanism.enabled);
1535        assert!(matches!(
1536            stdp_mechanism.mechanism_type,
1537            PlasticityType::STDP
1538        ));
1539        assert!(stdp_mechanism.learning_rates.potentiation_rate > 0.0);
1540    }
1541
1542    #[test]
1543    fn test_homeostatic_regulation() {
1544        let target_rates = Array1::from_vec(vec![0.3, 0.7, 0.5, 0.8]);
1545        let learning_system =
1546            AdvancedMemristiveLearning::new(4, 4, MemristiveDeviceType::HafniumOxide)
1547                .with_homeostatic_regulation(target_rates.clone());
1548        assert_eq!(
1549            learning_system.homeostatic_system.target_firing_rates,
1550            target_rates
1551        );
1552    }
1553
1554    #[test]
1555    fn test_forgetting_protection() {
1556        let learning_system =
1557            AdvancedMemristiveLearning::new(4, 4, MemristiveDeviceType::PhaseChange)
1558                .with_forgetting_protection(true);
1559        assert!(learning_system.forgetting_protection);
1560        assert!(
1561            learning_system
1562                .metaplasticity
1563                .forgetting_protection
1564                .ewc_enabled
1565        );
1566
1567        let no_protection_system =
1568            AdvancedMemristiveLearning::new(4, 4, MemristiveDeviceType::PhaseChange)
1569                .with_forgetting_protection(false);
1570        assert!(!no_protection_system.forgetting_protection);
1571        assert!(
1572            !no_protection_system
1573                .metaplasticity
1574                .forgetting_protection
1575                .ewc_enabled
1576        );
1577    }
1578
1579    #[tokio::test]
1580    async fn test_memristive_forward_pass() {
1581        let learning_system =
1582            AdvancedMemristiveLearning::new(3, 2, MemristiveDeviceType::TitaniumDioxide);
1583        let input = array![0.5, 0.8, 0.3];
1584        let result = learning_system.forward_pass(&input.view()).await;
1585        assert!(result.is_ok());
1586        let output = result.unwrap();
1587        assert!(output >= 0.0 && output <= 1.0); // Sigmoid output
1588    }
1589
1590    #[test]
1591    fn test_device_nonlinearity() {
1592        let learning_system =
1593            AdvancedMemristiveLearning::new(2, 2, MemristiveDeviceType::TitaniumDioxide);
1594
1595        // Test TiO2 nonlinearity
1596        let linear_current = 0.1;
1597        let nonlinear_current = learning_system.apply_device_nonlinearity(linear_current, 0, 0);
1598        assert!(nonlinear_current.is_finite());
1599
1600        // Test with HfO2
1601        let hfo2_system = AdvancedMemristiveLearning::new(2, 2, MemristiveDeviceType::HafniumOxide);
1602        let hfo2_output = hfo2_system.apply_device_nonlinearity(linear_current, 0, 0);
1603        assert!(hfo2_output.is_finite());
1604
1605        // Test with Phase Change Memory
1606        let pcm_system = AdvancedMemristiveLearning::new(2, 2, MemristiveDeviceType::PhaseChange);
1607        let pcm_output = pcm_system.apply_device_nonlinearity(linear_current, 0, 0);
1608        assert!(pcm_output.is_finite());
1609    }
1610
1611    #[tokio::test]
1612    async fn test_memristive_training() {
1613        let mut learning_system =
1614            AdvancedMemristiveLearning::new(2, 1, MemristiveDeviceType::TitaniumDioxide);
1615
1616        let spatial_data = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
1617        let target_outputs = array![0.0, 1.0, 1.0, 0.0]; // XOR pattern
1618
1619        let result = learning_system
1620            .train_spatial_data(&spatial_data.view(), &target_outputs.view(), 5)
1621            .await;
1622
1623        assert!(result.is_ok());
1624        let training_result = result.unwrap();
1625        assert_eq!(training_result.training_metrics.len(), 5);
1626        assert!(!training_result.final_weights.is_empty());
1627    }
1628
1629    #[test]
1630    fn test_memristive_crossbar_creation() {
1631        let crossbar = MemristiveCrossbar::new(4, 3, MemristiveDeviceType::SilverSulfide);
1632        assert_eq!(crossbar.dimensions, (4, 3));
1633        assert_eq!(crossbar.conductances.shape(), &[4, 3]);
1634        assert_eq!(crossbar.resistances.shape(), &[4, 3]);
1635        assert_eq!(crossbar.switching_thresholds.shape(), &[4, 3]);
1636        assert!(matches!(
1637            crossbar.device_type,
1638            MemristiveDeviceType::SilverSulfide
1639        ));
1640
1641        // Check that resistances are inverse of conductances (approximately)
1642        for i in 0..4 {
1643            for j in 0..3 {
1644                let conductance = crossbar.conductances[[i, j]];
1645                let resistance = crossbar.resistances[[i, j]];
1646                if conductance > 1e-12 {
1647                    assert!((resistance * conductance - 1.0).abs() < 1e-6);
1648                }
1649            }
1650        }
1651    }
1652
1653    #[test]
1654    fn test_device_aging_and_variability() {
1655        let mut learning_system =
1656            AdvancedMemristiveLearning::new(2, 2, MemristiveDeviceType::Organic);
1657
1658        // Store initial conductance
1659        let initial_conductance = learning_system.crossbar_array.conductances[[0, 0]];
1660
1661        // Apply aging
1662        learning_system.apply_device_aging(0, 0);
1663        let aged_conductance = learning_system.crossbar_array.conductances[[0, 0]];
1664
1665        // Conductance should be equal or slightly reduced (aging effect is small)
1666        assert!(aged_conductance <= initial_conductance);
1667
1668        // Apply variability
1669        let pre_variability = learning_system.crossbar_array.conductances[[0, 0]];
1670        learning_system.apply_device_variability(0, 0);
1671        let post_variability = learning_system.crossbar_array.conductances[[0, 0]];
1672
1673        // Variability should cause some change (might be very small)
1674        assert!(post_variability >= 0.0 && post_variability <= 1.0);
1675    }
1676
1677    #[test]
1678    fn test_plasticity_mechanisms_configuration() {
1679        let learning_system =
1680            AdvancedMemristiveLearning::new(4, 4, MemristiveDeviceType::TitaniumDioxide)
1681                .enable_plasticity(PlasticityType::CalciumDependent)
1682                .enable_plasticity(PlasticityType::VoltageDependent);
1683
1684        // Check that mechanisms are properly configured
1685        let enabled_mechanisms: Vec<_> = learning_system
1686            .plasticity_mechanisms
1687            .iter()
1688            .filter(|m| m.enabled)
1689            .map(|m| &m.mechanism_type)
1690            .collect();
1691
1692        assert!(!enabled_mechanisms.is_empty());
1693    }
1694
1695    #[test]
1696    fn test_learning_history_tracking() {
1697        let learning_system =
1698            AdvancedMemristiveLearning::new(3, 3, MemristiveDeviceType::MagneticTunnelJunction);
1699
1700        let history = learning_system.learning_history();
1701        assert_eq!(history.max_history_length, 1000);
1702        assert!(history.weight_changes.is_empty());
1703        assert!(history.performance_metrics.is_empty());
1704    }
1705}