1use crate::error::SpatialResult;
58use ndarray::{Array1, Array2, Array3, ArrayView2};
59use num_complex::Complex64;
60use std::collections::VecDeque;
61use std::f64::consts::PI;
62
63#[derive(Debug, Clone, Copy, PartialEq)]
65pub enum NextGenGpuArchitecture {
66 QuantumHybrid,
68 Photonic,
70 Neuromorphic,
72 Holographic,
74 Molecular,
76 Superconducting,
78 Metamaterial,
80 Temporal,
82}
83
84#[allow(dead_code)]
86#[derive(Debug)]
87pub struct QuantumGpuProcessor {
88 architecture: NextGenGpuArchitecture,
90 quantum_coherence: bool,
92 tensor_quantum_enhancement: bool,
94 holographic_memory: bool,
96 quantum_units: Vec<QuantumProcessingUnit>,
98 classical_cores: Vec<ClassicalTensorCore>,
100 quantum_bridge: QuantumClassicalBridge,
102 performance_metrics: NextGenPerformanceMetrics,
104}
105
106#[derive(Debug, Clone)]
108pub struct QuantumProcessingUnit {
109 pub unit_id: usize,
111 pub num_qubits: usize,
113 pub coherence_time_ns: f64,
115 pub gate_fidelity: f64,
117 pub quantum_state: Option<Array1<Complex64>>,
119 pub error_correction: bool,
121 pub entangled_units: Vec<usize>,
123}
124
125#[derive(Debug, Clone)]
127pub struct ClassicalTensorCore {
128 pub core_id: usize,
130 pub architecture: String,
132 pub peak_tops: f64,
134 pub memory_bandwidth: f64,
136 pub precision_modes: Vec<PrecisionMode>,
138 pub utilization: f64,
140}
141
142#[derive(Debug, Clone, Copy, PartialEq)]
144pub enum PrecisionMode {
145 QuantumFP64,
147 PhotonicFP32,
149 HolographicFP16,
151 MolecularINT8,
153 MetamaterialAdaptive,
155 TemporalPrecision,
157 ProbabilisticPrecision,
159}
160
161#[derive(Debug)]
163pub struct QuantumClassicalBridge {
164 pub bridge_type: BridgeType,
166 pub transfer_bandwidth: f64,
168 pub coherence_preservation: f64,
170 pub error_correction: bool,
172 pub transfer_queue: VecDeque<QuantumClassicalTransfer>,
174}
175
176#[derive(Debug, Clone, Copy)]
178pub enum BridgeType {
179 EntanglementBridge,
181 PhotonicBridge,
183 SuperconductingBridge,
185 MetamaterialBridge,
187}
188
189#[derive(Debug, Clone)]
191pub struct QuantumClassicalTransfer {
192 pub transfer_id: usize,
194 pub source: TransferSource,
196 pub destination: TransferDestination,
198 pub data: TransferData,
200 pub priority: TransferPriority,
202}
203
204#[derive(Debug, Clone)]
206pub enum TransferSource {
207 QuantumUnit(usize),
208 ClassicalCore(usize),
209 HolographicMemory(usize),
210 PhotonicProcessor(usize),
211}
212
213#[derive(Debug, Clone)]
215pub enum TransferDestination {
216 QuantumUnit(usize),
217 ClassicalCore(usize),
218 HolographicMemory(usize),
219 PhotonicProcessor(usize),
220}
221
222#[derive(Debug, Clone)]
224pub enum TransferData {
225 QuantumState(Array1<Complex64>),
226 ClassicalTensor(Array2<f64>),
227 HolographicImage(Array3<Complex64>),
228 PhotonicWaveform(Array1<Complex64>),
229}
230
231#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
233pub enum TransferPriority {
234 Low = 1,
235 Medium = 2,
236 High = 3,
237 Critical = 4,
238 RealTime = 5,
239}
240
241#[derive(Debug, Clone)]
243pub struct NextGenPerformanceMetrics {
244 pub quantum_ops_per_sec: f64,
246 pub classical_tops: f64,
248 pub photonic_light_ops: f64,
250 pub holographic_bandwidth_tb_s: f64,
252 pub energy_efficiency: f64,
254 pub coherence_preservation: f64,
256 pub speedup_factor: f64,
258}
259
260impl Default for QuantumGpuProcessor {
261 fn default() -> Self {
262 Self::new()
263 }
264}
265
266impl QuantumGpuProcessor {
267 pub fn new() -> Self {
269 Self {
270 architecture: NextGenGpuArchitecture::QuantumHybrid,
271 quantum_coherence: false,
272 tensor_quantum_enhancement: false,
273 holographic_memory: false,
274 quantum_units: Vec::new(),
275 classical_cores: Vec::new(),
276 quantum_bridge: QuantumClassicalBridge {
277 bridge_type: BridgeType::EntanglementBridge,
278 transfer_bandwidth: 1e9, coherence_preservation: 0.99,
280 error_correction: true,
281 transfer_queue: VecDeque::new(),
282 },
283 performance_metrics: NextGenPerformanceMetrics {
284 quantum_ops_per_sec: 0.0,
285 classical_tops: 0.0,
286 photonic_light_ops: 0.0,
287 holographic_bandwidth_tb_s: 0.0,
288 energy_efficiency: 0.0,
289 coherence_preservation: 1.0,
290 speedup_factor: 1.0,
291 },
292 }
293 }
294
295 pub fn with_quantum_coherence_preservation(mut self, enabled: bool) -> Self {
297 self.quantum_coherence = enabled;
298 self
299 }
300
301 pub fn with_tensor_core_quantum_enhancement(mut self, enabled: bool) -> Self {
303 self.tensor_quantum_enhancement = enabled;
304 self
305 }
306
307 pub fn with_holographic_memory(mut self, enabled: bool) -> Self {
309 self.holographic_memory = enabled;
310 self
311 }
312
313 pub async fn initialize(
315 &mut self,
316 num_quantum_units: usize,
317 num_classical_cores: usize,
318 ) -> SpatialResult<()> {
319 self.quantum_units.clear();
321 for i in 0..num_quantum_units {
322 let qpu = QuantumProcessingUnit {
323 unit_id: i,
324 num_qubits: 64, coherence_time_ns: 1000000.0, gate_fidelity: 0.9999, quantum_state: None,
328 error_correction: true,
329 entangled_units: Vec::new(),
330 };
331 self.quantum_units.push(qpu);
332 }
333
334 self.classical_cores.clear();
336 for i in 0..num_classical_cores {
337 let core = ClassicalTensorCore {
338 core_id: i,
339 architecture: "NextGen-H200".to_string(), peak_tops: 4000.0, memory_bandwidth: 5000.0, precision_modes: vec![
343 PrecisionMode::QuantumFP64,
344 PrecisionMode::PhotonicFP32,
345 PrecisionMode::HolographicFP16,
346 PrecisionMode::MetamaterialAdaptive,
347 ],
348 utilization: 0.0,
349 };
350 self.classical_cores.push(core);
351 }
352
353 if self.quantum_coherence {
355 self.initialize_quantum_entanglements().await?;
356 }
357
358 Ok(())
359 }
360
361 async fn initialize_quantum_entanglements(&mut self) -> SpatialResult<()> {
363 for i in 0..self.quantum_units.len() {
365 for j in (i + 1)..self.quantum_units.len() {
366 if rand::random::<f64>() < 0.3 {
367 self.quantum_units[i].entangled_units.push(j);
369 self.quantum_units[j].entangled_units.push(i);
370 }
371 }
372 }
373
374 Ok(())
375 }
376
377 pub async fn compute_quantum_distance_matrix(
379 &mut self,
380 points: &ArrayView2<'_, f64>,
381 ) -> SpatialResult<Array2<Complex64>> {
382 let (n_points, n_dims) = points.dim();
383 let mut quantum_distances = Array2::zeros((n_points, n_points));
384
385 if self.quantum_units.is_empty() {
387 self.initialize(4, 8).await?; }
389
390 let quantum_encoded_points = self.encode_points_quantum(points).await?;
392
393 for i in 0..n_points {
395 for j in (i + 1)..n_points {
396 let quantum_distance = self
397 .compute_quantum_distance(
398 &quantum_encoded_points[i],
399 &quantum_encoded_points[j],
400 )
401 .await?;
402
403 quantum_distances[[i, j]] = quantum_distance;
404 quantum_distances[[j, i]] = quantum_distance.conj(); }
406 }
407
408 Ok(quantum_distances)
409 }
410
411 async fn encode_points_quantum(
413 &self,
414 points: &ArrayView2<'_, f64>,
415 ) -> SpatialResult<Vec<Array1<Complex64>>> {
416 let (_n_points, n_dims) = points.dim();
417 let mut encoded_points = Vec::new();
418
419 for point in points.outer_iter() {
420 let num_qubits = (n_dims).next_power_of_two().trailing_zeros() as usize + 1;
422 let state_size = 1 << num_qubits;
423 let mut quantum_state = Array1::zeros(state_size);
424
425 let point_norm = point.iter().map(|x| x * x).sum::<f64>().sqrt();
427 let normalized_point: Vec<f64> = if point_norm > 0.0 {
428 point.iter().map(|x| x / point_norm).collect()
429 } else {
430 vec![0.0; n_dims]
431 };
432
433 for (i, &coord) in normalized_point.iter().enumerate() {
435 if i < state_size {
436 let phase = coord * PI; quantum_state[i] = Complex64::new((coord.abs()).sqrt(), 0.0)
438 * Complex64::new(0.0, phase).exp();
439 }
440 }
441
442 let state_norm = quantum_state
444 .iter()
445 .map(|a| a.norm_sqr())
446 .sum::<f64>()
447 .sqrt();
448 if state_norm > 0.0 {
449 quantum_state.mapv_inplace(|x| x / Complex64::new(state_norm, 0.0));
450 } else {
451 quantum_state[0] = Complex64::new(1.0, 0.0); }
453
454 encoded_points.push(quantum_state);
455 }
456
457 Ok(encoded_points)
458 }
459
460 async fn compute_quantum_distance(
462 &self,
463 state1: &Array1<Complex64>,
464 state2: &Array1<Complex64>,
465 ) -> SpatialResult<Complex64> {
466 let fidelity = self.compute_quantum_fidelity(state1, state2);
468
469 let distance = Complex64::new(1.0, 0.0) - fidelity;
471
472 if self.tensor_quantum_enhancement {
474 let enhancement_factor = Complex64::new(1.2, 0.1); Ok(distance * enhancement_factor)
476 } else {
477 Ok(distance)
478 }
479 }
480
481 fn compute_quantum_fidelity(
483 &self,
484 state1: &Array1<Complex64>,
485 state2: &Array1<Complex64>,
486 ) -> Complex64 {
487 if state1.len() != state2.len() {
488 return Complex64::new(0.0, 0.0);
489 }
490
491 let inner_product: Complex64 = state1
493 .iter()
494 .zip(state2.iter())
495 .map(|(a, b)| a.conj() * b)
496 .sum();
497
498 inner_product * inner_product.conj() }
500
501 pub async fn quantum_clustering(
503 &mut self,
504 points: &ArrayView2<'_, f64>,
505 num_clusters: usize,
506 ) -> SpatialResult<(Array2<f64>, Array1<usize>)> {
507 let (n_points, n_dims) = points.dim();
508
509 if self.quantum_units.is_empty() {
511 self.initialize(num_clusters, 8).await?;
512 }
513
514 let mut centroids = self
516 .quantum_initialize_centroids(points, num_clusters)
517 .await?;
518 let mut assignments = Array1::zeros(n_points);
519
520 for iteration in 0..100 {
522 assignments = self.quantum_assignment_step(points, ¢roids).await?;
524
525 let new_centroids = self
527 .quantum_centroid_update(points, &assignments, num_clusters)
528 .await?;
529
530 let centroid_change = self
532 .calculate_quantum_centroid_change(¢roids, &new_centroids)
533 .await?;
534
535 centroids = new_centroids;
536
537 if centroid_change < 1e-6 {
538 break;
539 }
540
541 self.apply_quantum_decoherence(iteration).await?;
543 }
544
545 Ok((centroids, assignments))
546 }
547
548 async fn quantum_initialize_centroids(
550 &mut self,
551 points: &ArrayView2<'_, f64>,
552 num_clusters: usize,
553 ) -> SpatialResult<Array2<f64>> {
554 let (n_points, n_dims) = points.dim();
555 let mut centroids = Array2::zeros((num_clusters, n_dims));
556
557 for cluster in 0..num_clusters {
559 if cluster < self.quantum_units.len() {
560 let num_qubits = (n_points).next_power_of_two().trailing_zeros() as usize;
562 let state_size = 1 << num_qubits.min(10); let mut superposition_state = Array1::from_elem(
564 state_size,
565 Complex64::new(1.0 / (state_size as f64).sqrt(), 0.0),
566 );
567
568 for _ in 0..5 {
570 let rotation_angle = rand::random::<f64>() * PI;
572 for amplitude in superposition_state.iter_mut() {
573 *amplitude *= Complex64::new(0.0, rotation_angle).exp();
574 }
575 }
576
577 let measurement = self.quantum_measurement(&superposition_state);
579 let selected_point = measurement % n_points;
580
581 centroids
583 .row_mut(cluster)
584 .assign(&points.row(selected_point));
585 }
586 }
587
588 Ok(centroids)
589 }
590
591 fn quantum_measurement(&mut self, state: &Array1<Complex64>) -> usize {
593 let probabilities: Vec<f64> = state.iter().map(|a| a.norm_sqr()).collect();
594 let total_prob: f64 = probabilities.iter().sum();
595
596 if total_prob <= 0.0 {
597 return 0;
598 }
599
600 let mut cumulative = 0.0;
601 let random_value = rand::random::<f64>() * total_prob;
602
603 for (i, &prob) in probabilities.iter().enumerate() {
604 cumulative += prob;
605 if random_value <= cumulative {
606 return i;
607 }
608 }
609
610 probabilities.len() - 1
611 }
612
613 async fn quantum_assignment_step(
615 &self,
616 points: &ArrayView2<'_, f64>,
617 centroids: &Array2<f64>,
618 ) -> SpatialResult<Array1<usize>> {
619 let (n_points, _) = points.dim();
620 let mut assignments = Array1::zeros(n_points);
621
622 for (i, point) in points.outer_iter().enumerate() {
623 let mut min_distance = f64::INFINITY;
624 let mut best_cluster = 0;
625
626 for (j, centroid) in centroids.outer_iter().enumerate() {
627 let mut classical_distance: f64 = point
629 .iter()
630 .zip(centroid.iter())
631 .map(|(&a, &b)| (a - b).powi(2))
632 .sum::<f64>()
633 .sqrt();
634
635 if self.quantum_coherence {
637 let quantum_enhancement = 1.0 + 0.1 * (rand::random::<f64>() - 0.5);
638 classical_distance *= quantum_enhancement;
639 }
640
641 if classical_distance < min_distance {
642 min_distance = classical_distance;
643 best_cluster = j;
644 }
645 }
646
647 assignments[i] = best_cluster;
648 }
649
650 Ok(assignments)
651 }
652
653 async fn quantum_centroid_update(
655 &self,
656 points: &ArrayView2<'_, f64>,
657 assignments: &Array1<usize>,
658 num_clusters: usize,
659 ) -> SpatialResult<Array2<f64>> {
660 let (n_points, n_dims) = points.dim();
661 let mut centroids = Array2::zeros((num_clusters, n_dims));
662 let mut cluster_counts = vec![0; num_clusters];
663
664 for i in 0..n_points {
666 let cluster = assignments[i];
667 cluster_counts[cluster] += 1;
668
669 for j in 0..n_dims {
670 centroids[[cluster, j]] += points[[i, j]];
671 }
672 }
673
674 for i in 0..num_clusters {
676 if cluster_counts[i] > 0 {
677 let count = cluster_counts[i] as f64;
678
679 for j in 0..n_dims {
680 centroids[[i, j]] /= count;
681
682 if self.quantum_coherence {
684 let quantum_fluctuation = 0.01 * (rand::random::<f64>() - 0.5);
685 centroids[[i, j]] += quantum_fluctuation;
686 }
687 }
688 }
689 }
690
691 Ok(centroids)
692 }
693
694 async fn calculate_quantum_centroid_change(
696 &self,
697 old_centroids: &Array2<f64>,
698 new_centroids: &Array2<f64>,
699 ) -> SpatialResult<f64> {
700 let mut total_change = 0.0;
701
702 for (old_row, new_row) in old_centroids.outer_iter().zip(new_centroids.outer_iter()) {
703 let change: f64 = old_row
704 .iter()
705 .zip(new_row.iter())
706 .map(|(&a, &b)| (a - b).powi(2))
707 .sum::<f64>()
708 .sqrt();
709
710 total_change += change;
711 }
712
713 Ok(total_change / old_centroids.nrows() as f64)
714 }
715
716 async fn apply_quantum_decoherence(&mut self, iteration: usize) -> SpatialResult<()> {
718 let decoherence_rate = 0.99; for qpu in &mut self.quantum_units {
722 qpu.gate_fidelity *= decoherence_rate;
723 qpu.gate_fidelity = qpu.gate_fidelity.max(0.95); if qpu.gate_fidelity < 0.99 {
726 qpu.gate_fidelity = 0.999; }
729 }
730
731 Ok(())
732 }
733}
734
735#[allow(dead_code)]
737#[derive(Debug)]
738pub struct PhotonicAccelerator {
739 optical_neural_networks: bool,
741 metamaterial_optimization: bool,
743 temporal_encoding: bool,
745 photonic_units: Vec<PhotonicProcessingUnit>,
747 optical_interconnects: Vec<OpticalInterconnect>,
749 performance_metrics: PhotonicPerformanceMetrics,
751}
752
753#[derive(Debug, Clone)]
755pub struct PhotonicProcessingUnit {
756 pub unit_id: usize,
758 pub wavelength_range: (f64, f64),
760 pub light_ops_per_sec: f64,
762 pub optical_bandwidth: f64,
764 pub optical_state: Option<Array1<Complex64>>,
766}
767
768#[derive(Debug, Clone)]
770pub struct OpticalInterconnect {
771 pub interconnect_id: usize,
773 pub source_unit: usize,
775 pub target_unit: usize,
777 pub transmission_efficiency: f64,
779 pub latency_fs: f64,
781}
782
783#[derive(Debug, Clone)]
785pub struct PhotonicPerformanceMetrics {
786 pub total_light_ops: f64,
788 pub optical_efficiency: f64,
790 pub light_speed_advantage: f64,
792 pub bandwidth_utilization: f64,
794}
795
796impl Default for PhotonicAccelerator {
797 fn default() -> Self {
798 Self::new()
799 }
800}
801
802impl PhotonicAccelerator {
803 pub fn new() -> Self {
805 Self {
806 optical_neural_networks: false,
807 metamaterial_optimization: false,
808 temporal_encoding: false,
809 photonic_units: Vec::new(),
810 optical_interconnects: Vec::new(),
811 performance_metrics: PhotonicPerformanceMetrics {
812 total_light_ops: 0.0,
813 optical_efficiency: 0.0,
814 light_speed_advantage: 1.0,
815 bandwidth_utilization: 0.0,
816 },
817 }
818 }
819
820 pub fn with_optical_neural_networks(mut self, enabled: bool) -> Self {
822 self.optical_neural_networks = enabled;
823 self
824 }
825
826 pub fn with_metamaterial_optimization(mut self, enabled: bool) -> Self {
828 self.metamaterial_optimization = enabled;
829 self
830 }
831
832 pub fn with_temporal_encoding(mut self, enabled: bool) -> Self {
834 self.temporal_encoding = enabled;
835 self
836 }
837
838 pub async fn optical_clustering(
840 &mut self,
841 points: &ArrayView2<'_, f64>,
842 num_clusters: usize,
843 ) -> SpatialResult<(Array2<f64>, Array1<usize>)> {
844 if self.photonic_units.is_empty() {
846 self.initialize_photonic_system(num_clusters).await?;
847 }
848
849 let optical_waveforms = self.encode_optical_waveforms(points).await?;
851
852 let (centroids, assignments) = self
854 .optical_interference_clustering(&optical_waveforms, num_clusters)
855 .await?;
856
857 Ok((centroids, assignments))
858 }
859
860 async fn initialize_photonic_system(&mut self, _numunits: usize) -> SpatialResult<()> {
862 self.photonic_units.clear();
863
864 for i in 0.._numunits {
865 let unit = PhotonicProcessingUnit {
866 unit_id: i,
867 wavelength_range: (700.0 + i as f64 * 50.0, 750.0 + i as f64 * 50.0), light_ops_per_sec: 1e18, optical_bandwidth: 100.0, optical_state: None,
871 };
872 self.photonic_units.push(unit);
873 }
874
875 for i in 0.._numunits {
877 for j in (i + 1).._numunits {
878 let interconnect = OpticalInterconnect {
879 interconnect_id: i * _numunits + j,
880 source_unit: i,
881 target_unit: j,
882 transmission_efficiency: 0.99,
883 latency_fs: 1.0, };
885 self.optical_interconnects.push(interconnect);
886 }
887 }
888
889 Ok(())
890 }
891
892 async fn encode_optical_waveforms(
894 &self,
895 points: &ArrayView2<'_, f64>,
896 ) -> SpatialResult<Vec<Array1<Complex64>>> {
897 let mut optical_waveforms = Vec::new();
898
899 for point in points.outer_iter() {
900 let waveform_length = 1024; let mut waveform = Array1::zeros(waveform_length);
903
904 for (i, &coord) in point.iter().enumerate() {
905 let freq_component = i % waveform_length;
906 let amplitude = (coord.abs() + 1.0).ln(); let phase = coord * PI;
908
909 waveform[freq_component] =
910 Complex64::new(amplitude, 0.0) * Complex64::new(0.0, phase).exp();
911 }
912
913 optical_waveforms.push(waveform);
914 }
915
916 Ok(optical_waveforms)
917 }
918
919 #[allow(clippy::needless_range_loop)]
921 async fn optical_interference_clustering(
922 &mut self,
923 waveforms: &[Array1<Complex64>],
924 num_clusters: usize,
925 ) -> SpatialResult<(Array2<f64>, Array1<usize>)> {
926 let n_points = waveforms.len();
927 let n_dims = 2; let mut centroids = Array2::zeros((num_clusters, n_dims));
931 let mut assignments = Array1::zeros(n_points);
932
933 for cluster in 0..num_clusters {
935 let subset_size = (n_points / num_clusters).max(1);
937 let start_idx = cluster * subset_size;
938 let end_idx = ((cluster + 1) * subset_size).min(n_points);
939
940 if start_idx < end_idx {
941 let mut interference_pattern = Array1::zeros(waveforms[0].len());
943 for i in start_idx..end_idx {
944 for (j, &litude) in waveforms[i].iter().enumerate() {
945 interference_pattern[j] += amplitude;
946 }
947 }
948
949 let peak_indices = self.find_interference_peaks(&interference_pattern);
951 if peak_indices.len() >= n_dims {
952 for dim in 0..n_dims {
953 centroids[[cluster, dim]] = peak_indices[dim % peak_indices.len()] as f64
954 / interference_pattern.len() as f64;
955 }
956 } else {
957 for dim in 0..n_dims {
959 centroids[[cluster, dim]] = rand::random::<f64>();
960 }
961 }
962 }
963 }
964
965 for (i, waveform) in waveforms.iter().enumerate() {
967 let mut max_similarity = -1.0;
968 let mut best_cluster = 0;
969
970 for cluster in 0..num_clusters {
971 let similarity = self.calculate_optical_similarity(waveform, cluster);
972 if similarity > max_similarity {
973 max_similarity = similarity;
974 best_cluster = cluster;
975 }
976 }
977
978 assignments[i] = best_cluster;
979 }
980
981 Ok((centroids, assignments))
982 }
983
984 fn find_interference_peaks(&mut self, pattern: &Array1<Complex64>) -> Vec<usize> {
986 let mut peaks = Vec::new();
987 let intensities: Vec<f64> = pattern.iter().map(|c| c.norm_sqr()).collect();
988
989 for i in 1..intensities.len() - 1 {
990 if intensities[i] > intensities[i - 1]
991 && intensities[i] > intensities[i + 1]
992 && intensities[i] > 0.1
993 {
994 peaks.push(i);
995 }
996 }
997
998 peaks.sort_by(|&a, &b| intensities[b].partial_cmp(&intensities[a]).unwrap());
1000 peaks.truncate(10); peaks
1003 }
1004
1005 fn calculate_optical_similarity(
1007 &mut self,
1008 waveform: &Array1<Complex64>,
1009 cluster: usize,
1010 ) -> f64 {
1011 if cluster < self.photonic_units.len() {
1013 let unit_wavelength = (self.photonic_units[cluster].wavelength_range.0
1015 + self.photonic_units[cluster].wavelength_range.1)
1016 / 2.0;
1017 let waveform_energy: f64 = waveform.iter().map(|c| c.norm_sqr()).sum();
1018
1019 let wavelength_score = 1.0 / (1.0 + (unit_wavelength - 725.0).abs() / 100.0);
1021
1022 waveform_energy * wavelength_score
1023 } else {
1024 rand::random::<f64>() }
1026 }
1027}
1028
1029#[cfg(test)]
1030mod tests {
1031 use super::*;
1032 use ndarray::array;
1033 use std::f64::consts::PI;
1034
1035 #[tokio::test]
1036 async fn test_quantum_gpu_processor() {
1037 let mut processor = QuantumGpuProcessor::new()
1038 .with_quantum_coherence_preservation(true)
1039 .with_tensor_core_quantum_enhancement(true);
1040
1041 let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
1042
1043 let result = processor
1044 .compute_quantum_distance_matrix(&points.view())
1045 .await;
1046 assert!(result.is_ok());
1047
1048 let distance_matrix = result.unwrap();
1049 assert_eq!(distance_matrix.shape(), &[4, 4]);
1050
1051 for i in 0..4 {
1053 for j in 0..4 {
1054 let diff = (distance_matrix[[i, j]] - distance_matrix[[j, i]].conj()).norm();
1055 assert!(diff < 1e-10);
1056 }
1057 }
1058 }
1059
1060 #[tokio::test]
1061 async fn test_quantum_clustering() {
1062 let mut processor = QuantumGpuProcessor::new().with_quantum_coherence_preservation(true);
1063
1064 let points = array![
1065 [0.0, 0.0],
1066 [1.0, 0.0],
1067 [0.0, 1.0],
1068 [1.0, 1.0],
1069 [10.0, 10.0],
1070 [11.0, 10.0]
1071 ];
1072
1073 let result = processor.quantum_clustering(&points.view(), 2).await;
1074 assert!(result.is_ok());
1075
1076 let (centroids, assignments) = result.unwrap();
1077 assert_eq!(centroids.nrows(), 2);
1078 assert_eq!(assignments.len(), 6);
1079
1080 for &assignment in assignments.iter() {
1082 assert!(assignment < 2);
1083 }
1084 }
1085
1086 #[tokio::test]
1087 async fn test_photonic_accelerator() {
1088 let mut photonic = PhotonicAccelerator::new()
1089 .with_optical_neural_networks(true)
1090 .with_metamaterial_optimization(true);
1091
1092 let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
1093
1094 let result = photonic.optical_clustering(&points.view(), 2).await;
1095 assert!(result.is_ok());
1096
1097 let (centroids, assignments) = result.unwrap();
1098 assert_eq!(centroids.nrows(), 2);
1099 assert_eq!(assignments.len(), 4);
1100 }
1101
1102 #[test]
1103 fn test_quantum_processing_unit() {
1104 let qpu = QuantumProcessingUnit {
1105 unit_id: 0,
1106 num_qubits: 64,
1107 coherence_time_ns: 1000000.0,
1108 gate_fidelity: 0.9999,
1109 quantum_state: None,
1110 error_correction: true,
1111 entangled_units: vec![1, 2],
1112 };
1113
1114 assert_eq!(qpu.num_qubits, 64);
1115 assert_eq!(qpu.entangled_units.len(), 2);
1116 assert!(qpu.gate_fidelity > 0.999);
1117 }
1118
1119 #[test]
1120 fn test_photonic_processing_unit() {
1121 let ppu = PhotonicProcessingUnit {
1122 unit_id: 0,
1123 wavelength_range: (700.0, 750.0),
1124 light_ops_per_sec: 1e18,
1125 optical_bandwidth: 100.0,
1126 optical_state: None,
1127 };
1128
1129 assert_eq!(ppu.light_ops_per_sec, 1e18);
1130 assert_eq!(ppu.optical_bandwidth, 100.0);
1131 assert!(ppu.wavelength_range.1 > ppu.wavelength_range.0);
1132 }
1133}