1use crate::error::{SpatialError, SpatialResult};
58use crate::neuromorphic::SpikingNeuron;
59use crate::quantum_inspired::QuantumState;
60use ndarray::{Array1, Array2, ArrayView2};
61use num_complex::Complex64;
62use std::f64::consts::PI;
63use std::time::Instant;
64
65#[allow(dead_code)]
67#[derive(Debug)]
68pub struct QuantumSpikingClusterer {
69 _numclusters: usize,
71 quantum_superposition: bool,
73 stdp_enabled: bool,
75 quantum_entanglement: f64,
77 bio_adaptation: bool,
79 quantum_neurons: Vec<QuantumSpikingNeuron>,
81 global_quantum_state: Option<QuantumState>,
83 fusion_metrics: FusionMetrics,
85 quantum_synapses: Vec<QuantumSynapse>,
87 plasticity_params: NeuroplasticityParameters,
89}
90
91#[derive(Debug, Clone)]
93pub struct QuantumSpikingNeuron {
94 pub classical_neuron: SpikingNeuron,
96 pub quantum_state: QuantumState,
98 pub coherence: f64,
100 pub entangled_neurons: Vec<usize>,
102 pub quantum_spike_amplitude: Complex64,
104 pub quantum_phase: f64,
106 pub decoherence_time: f64,
108 pub bio_quantum_coupling: f64,
110}
111
112#[derive(Debug, Clone)]
114pub struct QuantumSynapse {
115 pub source_neuron: usize,
117 pub target_neuron: usize,
119 pub classical_weight: f64,
121 pub quantum_entanglement: Complex64,
123 pub stdp_rule: STDPRule,
125 pub coherence_decay: f64,
127 pub last_spike_delta: f64,
129}
130
131#[derive(Debug, Clone)]
133pub struct STDPRule {
134 pub learning_rate_plus: f64,
136 pub learning_rate_minus: f64,
138 pub tau_plus: f64,
140 pub tau_minus: f64,
142 pub max_weight_change: f64,
144 pub quantum_enhancement: f64,
146}
147
148#[derive(Debug, Clone)]
150pub struct NeuroplasticityParameters {
151 pub homeostatic_scaling: bool,
153 pub metaplasticity: bool,
155 pub scaling_factor: f64,
157 pub threshold_adaptation: bool,
159 pub coherence_preservation: f64,
161}
162
163#[derive(Debug, Clone)]
165pub struct FusionMetrics {
166 pub classical_time_ms: f64,
168 pub quantum_time_ms: f64,
170 pub neural_time_ms: f64,
172 pub total_time_ms: f64,
174 pub quantum_neural_speedup: f64,
176 pub solution_quality_improvement: f64,
178 pub energy_efficiency_gain: f64,
180 pub coherence_preservation: f64,
182 pub biological_plausibility: f64,
184}
185
186impl QuantumSpikingClusterer {
187 pub fn new(_numclusters: usize) -> Self {
189 Self {
190 _numclusters,
191 quantum_superposition: false,
192 stdp_enabled: false,
193 quantum_entanglement: 0.0,
194 bio_adaptation: false,
195 quantum_neurons: Vec::new(),
196 global_quantum_state: None,
197 fusion_metrics: FusionMetrics {
198 classical_time_ms: 0.0,
199 quantum_time_ms: 0.0,
200 neural_time_ms: 0.0,
201 total_time_ms: 0.0,
202 quantum_neural_speedup: 1.0,
203 solution_quality_improvement: 0.0,
204 energy_efficiency_gain: 0.0,
205 coherence_preservation: 1.0,
206 biological_plausibility: 0.5,
207 },
208 quantum_synapses: Vec::new(),
209 plasticity_params: NeuroplasticityParameters {
210 homeostatic_scaling: true,
211 metaplasticity: true,
212 scaling_factor: 1.0,
213 threshold_adaptation: true,
214 coherence_preservation: 0.9,
215 },
216 }
217 }
218
219 pub fn with_quantum_superposition(mut self, enabled: bool) -> Self {
221 self.quantum_superposition = enabled;
222 self
223 }
224
225 pub fn with_spike_timing_plasticity(mut self, enabled: bool) -> Self {
227 self.stdp_enabled = enabled;
228 self
229 }
230
231 pub fn with_quantum_entanglement(mut self, strength: f64) -> Self {
233 self.quantum_entanglement = strength.clamp(0.0, 1.0);
234 self
235 }
236
237 pub fn with_bio_inspired_adaptation(mut self, enabled: bool) -> Self {
239 self.bio_adaptation = enabled;
240 self
241 }
242
243 pub async fn cluster(
245 &mut self,
246 points: &ArrayView2<'_, f64>,
247 ) -> SpatialResult<(Array2<f64>, Vec<QuantumSpikePattern>, FusionMetrics)> {
248 let start_time = Instant::now();
249
250 self.initialize_quantum_neural_network(points).await?;
252
253 let quantum_start = Instant::now();
255 let quantum_centroids = self.quantum_exploration_phase(points).await?;
256 self.fusion_metrics.quantum_time_ms = quantum_start.elapsed().as_millis() as f64;
257
258 let neural_start = Instant::now();
260 let (neural_centroids, spike_patterns) = self
261 .neural_competitive_learning(points, &quantum_centroids)
262 .await?;
263 self.fusion_metrics.neural_time_ms = neural_start.elapsed().as_millis() as f64;
264
265 let classical_start = Instant::now();
267 let final_centroids = self
268 .bio_quantum_refinement(points, &neural_centroids)
269 .await?;
270 self.fusion_metrics.classical_time_ms = classical_start.elapsed().as_millis() as f64;
271
272 self.fusion_metrics.total_time_ms = start_time.elapsed().as_millis() as f64;
273 self.calculate_fusion_metrics(&final_centroids, points);
274
275 Ok((final_centroids, spike_patterns, self.fusion_metrics.clone()))
276 }
277
278 async fn initialize_quantum_neural_network(
280 &mut self,
281 points: &ArrayView2<'_, f64>,
282 ) -> SpatialResult<()> {
283 let (n_points, n_dims) = points.dim();
284
285 self.quantum_neurons.clear();
287 for i in 0..self._numclusters {
288 let position = if i < n_points {
290 points.row(i).to_vec()
291 } else {
292 (0..n_dims).map(|_| rand::random::<f64>()).collect()
293 };
294
295 let classical_neuron = SpikingNeuron::new(position);
296
297 let num_qubits = (n_dims).next_power_of_two().trailing_zeros() as usize + 1;
299 let quantum_state = if self.quantum_superposition {
300 QuantumState::uniform_superposition(num_qubits)
301 } else {
302 QuantumState::zero_state(num_qubits)
303 };
304
305 let quantum_neuron = QuantumSpikingNeuron {
307 classical_neuron,
308 quantum_state,
309 coherence: 1.0,
310 entangled_neurons: Vec::new(),
311 quantum_spike_amplitude: Complex64::new(1.0, 0.0),
312 quantum_phase: 0.0,
313 decoherence_time: 100.0, bio_quantum_coupling: 0.5,
315 };
316
317 self.quantum_neurons.push(quantum_neuron);
318 }
319
320 if self.quantum_entanglement > 0.0 {
322 self.create_quantum_entanglement().await?;
323 }
324
325 if self.stdp_enabled {
327 self.initialize_quantum_synapses().await?;
328 }
329
330 Ok(())
331 }
332
333 async fn create_quantum_entanglement(&mut self) -> SpatialResult<()> {
335 for i in 0..self.quantum_neurons.len() {
336 for j in (i + 1)..self.quantum_neurons.len() {
337 if rand::random::<f64>() < self.quantum_entanglement {
338 self.quantum_neurons[i].entangled_neurons.push(j);
340 self.quantum_neurons[j].entangled_neurons.push(i);
341
342 self.apply_quantum_entangling_gate(i, j).await?;
344 }
345 }
346 }
347
348 Ok(())
349 }
350
351 async fn apply_quantum_entangling_gate(
353 &mut self,
354 neuron_i: usize,
355 neuron_j: usize,
356 ) -> SpatialResult<()> {
357 let entangling_angle = PI / 4.0;
359
360 if neuron_i < self.quantum_neurons.len() && neuron_j < self.quantum_neurons.len() {
362 let qubit_i = 0; let qubit_j = 0;
364
365 self.quantum_neurons[neuron_i]
366 .quantum_state
367 .controlled_rotation(qubit_i, qubit_j, entangling_angle)?;
368
369 let coherence_transfer = 0.1;
371 let avg_coherence = (self.quantum_neurons[neuron_i].coherence
372 + self.quantum_neurons[neuron_j].coherence)
373 / 2.0;
374
375 self.quantum_neurons[neuron_i].coherence = (1.0 - coherence_transfer)
376 * self.quantum_neurons[neuron_i].coherence
377 + coherence_transfer * avg_coherence;
378
379 self.quantum_neurons[neuron_j].coherence = (1.0 - coherence_transfer)
380 * self.quantum_neurons[neuron_j].coherence
381 + coherence_transfer * avg_coherence;
382 }
383
384 Ok(())
385 }
386
387 async fn initialize_quantum_synapses(&mut self) -> SpatialResult<()> {
389 self.quantum_synapses.clear();
390
391 for i in 0..self.quantum_neurons.len() {
392 for j in 0..self.quantum_neurons.len() {
393 if i != j {
394 let synapse = QuantumSynapse {
395 source_neuron: i,
396 target_neuron: j,
397 classical_weight: rand::random::<f64>() * 0.1 - 0.05, quantum_entanglement: Complex64::new(
399 rand::random::<f64>() * 0.1,
400 rand::random::<f64>() * 0.1,
401 ),
402 stdp_rule: STDPRule {
403 learning_rate_plus: 0.01,
404 learning_rate_minus: 0.012,
405 tau_plus: 20.0,
406 tau_minus: 20.0,
407 max_weight_change: 0.1,
408 quantum_enhancement: 1.5,
409 },
410 coherence_decay: 0.99,
411 last_spike_delta: 0.0,
412 };
413
414 self.quantum_synapses.push(synapse);
415 }
416 }
417 }
418
419 Ok(())
420 }
421
422 async fn quantum_exploration_phase(
424 &mut self,
425 points: &ArrayView2<'_, f64>,
426 ) -> SpatialResult<Array2<f64>> {
427 let (_n_points, n_dims) = points.dim();
428 let mut quantum_centroids = Array2::zeros((self._numclusters, n_dims));
429
430 for cluster in 0..self._numclusters {
432 if cluster < self.quantum_neurons.len() {
433 let quantum_neuron = &self.quantum_neurons[cluster];
435 let measurement = quantum_neuron.quantum_state.measure();
436
437 for dim in 0..n_dims {
439 let bit_position = dim % quantum_neuron.quantum_state.numqubits;
440 let bit_value = (measurement >> bit_position) & 1;
441
442 let coord_range = self.calculate_coordinate_range(points, dim);
444 quantum_centroids[[cluster, dim]] =
445 if bit_value == 1 {
446 coord_range.1 } else {
448 coord_range.0 } + rand::random::<f64>() * (coord_range.1 - coord_range.0) * 0.1;
450 }
452 }
453 }
454
455 Ok(quantum_centroids)
456 }
457
458 fn calculate_coordinate_range(&self, points: &ArrayView2<'_, f64>, dim: usize) -> (f64, f64) {
460 let mut min_coord = f64::INFINITY;
461 let mut max_coord = f64::NEG_INFINITY;
462
463 for point in points.outer_iter() {
464 if dim < point.len() {
465 min_coord = min_coord.min(point[dim]);
466 max_coord = max_coord.max(point[dim]);
467 }
468 }
469
470 (min_coord, max_coord)
471 }
472
473 async fn neural_competitive_learning(
475 &mut self,
476 points: &ArrayView2<'_, f64>,
477 initial_centroids: &Array2<f64>,
478 ) -> SpatialResult<(Array2<f64>, Vec<QuantumSpikePattern>)> {
479 let _n_points_n_dims = points.dim();
480 let mut centroids = initial_centroids.clone();
481 let mut spike_patterns = Vec::new();
482
483 for iteration in 0..100 {
485 let mut iteration_spikes = Vec::new();
486
487 for (point_idx, point) in points.outer_iter().enumerate() {
489 let winner_idx = self.find_winner_neuron(&point.to_owned(), ¢roids)?;
491
492 let quantum_spike = self
494 .generate_quantum_spike(winner_idx, point_idx, iteration as f64)
495 .await?;
496 iteration_spikes.push(quantum_spike);
497
498 self.quantum_enhanced_learning(winner_idx, &point.to_owned(), iteration)
500 .await?;
501
502 self.update_centroids_from_quantum_states(&mut centroids)
504 .await?;
505
506 if self.stdp_enabled {
508 self.apply_quantum_stdp(winner_idx, iteration as f64)
509 .await?;
510 }
511 }
512
513 let spike_pattern = QuantumSpikePattern {
515 iteration,
516 spikes: iteration_spikes,
517 global_coherence: self.calculate_global_coherence(),
518 network_synchrony: self.calculate_network_synchrony(),
519 };
520 spike_patterns.push(spike_pattern);
521
522 self.apply_quantum_decoherence().await?;
524
525 if iteration > 10 && self.check_convergence() {
527 break;
528 }
529 }
530
531 Ok((centroids, spike_patterns))
532 }
533
534 fn find_winner_neuron(
536 &self,
537 point: &Array1<f64>,
538 centroids: &Array2<f64>,
539 ) -> SpatialResult<usize> {
540 let mut best_distance = f64::INFINITY;
541 let mut winner_idx = 0;
542
543 for i in 0..self._numclusters {
544 if i < centroids.nrows() && i < self.quantum_neurons.len() {
545 let centroid = centroids.row(i);
546
547 let classical_distance: f64 = point
549 .iter()
550 .zip(centroid.iter())
551 .map(|(&a, &b)| (a - b).powi(2))
552 .sum::<f64>()
553 .sqrt();
554
555 let quantum_enhancement = 1.0 - 0.1 * self.quantum_neurons[i].coherence;
557 let quantum_distance = classical_distance * quantum_enhancement;
558
559 if quantum_distance < best_distance {
560 best_distance = quantum_distance;
561 winner_idx = i;
562 }
563 }
564 }
565
566 Ok(winner_idx)
567 }
568
569 async fn generate_quantum_spike(
571 &mut self,
572 neuronidx: usize,
573 point_idx: usize,
574 time: f64,
575 ) -> SpatialResult<QuantumSpikeEvent> {
576 if neuronidx < self.quantum_neurons.len() {
577 let neuron = &mut self.quantum_neurons[neuronidx];
578
579 let classical_amplitude = 1.0;
581 let quantum_phase = neuron.quantum_phase;
582 let quantum_amplitude =
583 neuron.quantum_spike_amplitude * Complex64::new(0.0, quantum_phase).exp();
584
585 neuron.quantum_phase += 0.1; let spike = QuantumSpikeEvent {
589 neuron_id: neuronidx,
590 point_id: point_idx,
591 timestamp: time,
592 classical_amplitude,
593 quantum_amplitude,
594 coherence: neuron.coherence,
595 entanglement_strength: self.calculate_entanglement_strength(neuronidx),
596 };
597
598 Ok(spike)
599 } else {
600 Err(SpatialError::InvalidInput(format!(
601 "Neuron index {neuronidx} out of range"
602 )))
603 }
604 }
605
606 fn calculate_entanglement_strength(&mut self, _neuronidx: usize) -> f64 {
608 if _neuronidx < self.quantum_neurons.len() {
609 let neuron = &self.quantum_neurons[_neuronidx];
610 let num_entangled = neuron.entangled_neurons.len();
611
612 if num_entangled > 0 {
613 let total_coherence: f64 = neuron
615 .entangled_neurons
616 .iter()
617 .filter_map(|&_idx| self.quantum_neurons.get(_idx))
618 .map(|n| n.coherence)
619 .sum();
620
621 total_coherence / num_entangled as f64
622 } else {
623 0.0
624 }
625 } else {
626 0.0
627 }
628 }
629
630 async fn quantum_enhanced_learning(
632 &mut self,
633 winner_idx: usize,
634 point: &Array1<f64>,
635 iteration: usize,
636 ) -> SpatialResult<()> {
637 if winner_idx < self.quantum_neurons.len() {
638 let learning_rate = 0.1 * (1.0 / (1.0 + iteration as f64 * 0.01)); let quantum_enhancement = self.quantum_neurons[winner_idx].coherence * 0.1;
642 let neuron_position = &mut self.quantum_neurons[winner_idx].classical_neuron.position;
643 for (i, &coord) in point.iter().enumerate() {
644 if i < neuron_position.len() {
645 neuron_position[i] +=
646 learning_rate * (coord - neuron_position[i]) * (1.0 + quantum_enhancement);
647 }
648 }
649
650 self.update_quantum_state_from_input(winner_idx, point)
652 .await?;
653
654 if self.bio_adaptation {
656 self.apply_bio_quantum_coupling(winner_idx).await?;
657 }
658 }
659
660 Ok(())
661 }
662
663 async fn update_quantum_state_from_input(
665 &mut self,
666 neuronidx: usize,
667 point: &Array1<f64>,
668 ) -> SpatialResult<()> {
669 if neuronidx < self.quantum_neurons.len() {
670 let neuron = &mut self.quantum_neurons[neuronidx];
671
672 for (i, &coord) in point.iter().enumerate() {
674 if i < neuron.quantum_state.numqubits {
675 let normalized_coord = (coord + 10.0) / 20.0; let rotation_angle = normalized_coord.clamp(0.0, 1.0) * PI;
677
678 neuron
679 .quantum_state
680 .phase_rotation(i, rotation_angle * 0.1)?; }
682 }
683
684 neuron.coherence *= 0.999; neuron.coherence = neuron.coherence.max(0.1); }
688
689 Ok(())
690 }
691
692 async fn apply_bio_quantum_coupling(&mut self, neuronidx: usize) -> SpatialResult<()> {
694 if neuronidx < self.quantum_neurons.len() {
695 let coupling_strength = self.quantum_neurons[neuronidx].bio_quantum_coupling;
696
697 if self.plasticity_params.homeostatic_scaling {
699 let target_activity = 0.5;
700 let current_activity = self.quantum_neurons[neuronidx].coherence;
701 let activity_error = target_activity - current_activity;
702
703 self.quantum_neurons[neuronidx].coherence +=
705 coupling_strength * activity_error * 0.01;
706 self.quantum_neurons[neuronidx].coherence =
707 self.quantum_neurons[neuronidx].coherence.clamp(0.1, 1.0);
708 }
709
710 if self.plasticity_params.metaplasticity {
712 let plasticity_threshold = 0.8;
713 if self.quantum_neurons[neuronidx].coherence > plasticity_threshold {
714 self.quantum_neurons[neuronidx].bio_quantum_coupling *= 1.01;
715 } else {
717 self.quantum_neurons[neuronidx].bio_quantum_coupling *= 0.99;
718 }
720
721 self.quantum_neurons[neuronidx].bio_quantum_coupling = self.quantum_neurons
722 [neuronidx]
723 .bio_quantum_coupling
724 .clamp(0.1, 1.0);
725 }
726 }
727
728 Ok(())
729 }
730
731 async fn update_centroids_from_quantum_states(
733 &mut self,
734 centroids: &mut Array2<f64>,
735 ) -> SpatialResult<()> {
736 for i in 0..self
737 ._numclusters
738 .min(centroids.nrows())
739 .min(self.quantum_neurons.len())
740 {
741 let neuron = &self.quantum_neurons[i];
742 let classical_position = &neuron.classical_neuron.position;
743
744 for j in 0..centroids.ncols().min(classical_position.len()) {
745 centroids[[i, j]] = classical_position[j];
746 }
747 }
748
749 Ok(())
750 }
751
752 async fn apply_quantum_stdp(
754 &mut self,
755 winner_idx: usize,
756 current_time: f64,
757 ) -> SpatialResult<()> {
758 for synapse_idx in 0..self.quantum_synapses.len() {
760 let (source, target) = (
761 self.quantum_synapses[synapse_idx].source_neuron,
762 self.quantum_synapses[synapse_idx].target_neuron,
763 );
764
765 if source == winner_idx || target == winner_idx {
766 let spike_time_diff = self.quantum_synapses[synapse_idx].last_spike_delta;
768
769 let stdp_rule = &self.quantum_synapses[synapse_idx].stdp_rule;
771 let quantum_enhancement = stdp_rule.quantum_enhancement;
772
773 let weight_change = if spike_time_diff > 0.0 {
774 stdp_rule.learning_rate_plus
776 * (-spike_time_diff / stdp_rule.tau_plus).exp()
777 * quantum_enhancement
778 } else {
779 -stdp_rule.learning_rate_minus
781 * (spike_time_diff / stdp_rule.tau_minus).exp()
782 * quantum_enhancement
783 };
784
785 self.quantum_synapses[synapse_idx].classical_weight +=
787 weight_change.clamp(-stdp_rule.max_weight_change, stdp_rule.max_weight_change);
788
789 let entanglement_change = Complex64::new(weight_change * 0.1, 0.0);
791 self.quantum_synapses[synapse_idx].quantum_entanglement += entanglement_change;
792
793 let coherence_decay = self.quantum_synapses[synapse_idx].coherence_decay;
795 self.quantum_synapses[synapse_idx].quantum_entanglement *= coherence_decay;
796
797 self.quantum_synapses[synapse_idx].last_spike_delta = current_time;
799 }
800 }
801
802 Ok(())
803 }
804
805 fn calculate_global_coherence(&self) -> f64 {
807 if self.quantum_neurons.is_empty() {
808 return 0.0;
809 }
810
811 let total_coherence: f64 = self.quantum_neurons.iter().map(|n| n.coherence).sum();
812 total_coherence / self.quantum_neurons.len() as f64
813 }
814
815 fn calculate_network_synchrony(&self) -> f64 {
817 if self.quantum_neurons.len() < 2 {
818 return 1.0;
819 }
820
821 let mut phase_sum = Complex64::new(0.0, 0.0);
823 for neuron in &self.quantum_neurons {
824 phase_sum += Complex64::new(0.0, neuron.quantum_phase).exp();
825 }
826
827 phase_sum.norm() / self.quantum_neurons.len() as f64
828 }
829
830 async fn apply_quantum_decoherence(&mut self) -> SpatialResult<()> {
832 for neuron in &mut self.quantum_neurons {
833 let decoherence_factor = 1.0 / neuron.decoherence_time;
835
836 for amplitude in neuron.quantum_state.amplitudes.iter_mut() {
838 *amplitude *= (1.0 - decoherence_factor).max(0.0);
839 }
840
841 let norm_squared: f64 = neuron
843 .quantum_state
844 .amplitudes
845 .iter()
846 .map(|a| a.norm_sqr())
847 .sum();
848 if norm_squared > 0.0 {
849 let norm = norm_squared.sqrt();
850 for amplitude in neuron.quantum_state.amplitudes.iter_mut() {
851 *amplitude /= norm;
852 }
853 }
854
855 neuron.coherence *= (1.0 - decoherence_factor).max(0.0);
857 neuron.coherence = neuron.coherence.max(0.1);
858 }
859
860 Ok(())
861 }
862
863 fn check_convergence(&self) -> bool {
865 let avg_coherence = self.calculate_global_coherence();
867 avg_coherence > 0.3 && avg_coherence < 0.9 }
869
870 async fn bio_quantum_refinement(
872 &mut self,
873 points: &ArrayView2<'_, f64>,
874 centroids: &Array2<f64>,
875 ) -> SpatialResult<Array2<f64>> {
876 let mut refined_centroids = centroids.clone();
877
878 for _iteration in 0..10 {
880 self.apply_evolutionary_selection(points, &mut refined_centroids)
882 .await?;
883
884 self.apply_immune_optimization(&mut refined_centroids)
886 .await?;
887
888 self.apply_neural_development_rules(&mut refined_centroids)
890 .await?;
891 }
892
893 Ok(refined_centroids)
894 }
895
896 async fn apply_evolutionary_selection(
898 &mut self,
899 points: &ArrayView2<'_, f64>,
900 centroids: &mut Array2<f64>,
901 ) -> SpatialResult<()> {
902 let mut fitness_scores = Vec::new();
904
905 for i in 0..centroids.nrows() {
906 let centroid = centroids.row(i);
907 let mut total_distance = 0.0;
908 let mut point_count = 0;
909
910 for point in points.outer_iter() {
912 let distance: f64 = point
913 .iter()
914 .zip(centroid.iter())
915 .map(|(&a, &b)| (a - b).powi(2))
916 .sum::<f64>()
917 .sqrt();
918
919 let mut is_closest = true;
921 for j in 0..centroids.nrows() {
922 if i != j {
923 let other_centroid = centroids.row(j);
924 let other_distance: f64 = point
925 .iter()
926 .zip(other_centroid.iter())
927 .map(|(&a, &b)| (a - b).powi(2))
928 .sum::<f64>()
929 .sqrt();
930
931 if other_distance < distance {
932 is_closest = false;
933 break;
934 }
935 }
936 }
937
938 if is_closest {
939 total_distance += distance;
940 point_count += 1;
941 }
942 }
943
944 let fitness = if point_count > 0 && total_distance > 0.0 {
945 1.0 / (total_distance / point_count as f64)
946 } else {
947 0.0
948 };
949
950 fitness_scores.push(fitness);
951 }
952
953 for i in 0..centroids.nrows() {
955 if fitness_scores[i] < 0.5 {
956 for j in 0..centroids.ncols() {
959 let mutation_strength = 0.1;
960 let mutation = (rand::random::<f64>() - 0.5) * mutation_strength;
961 centroids[[i, j]] += mutation;
962 }
963 }
964 }
965
966 Ok(())
967 }
968
969 async fn apply_immune_optimization(
971 &mut self,
972 centroids: &mut Array2<f64>,
973 ) -> SpatialResult<()> {
974 for i in 0..centroids.nrows() {
978 for j in (i + 1)..centroids.nrows() {
979 let distance: f64 = centroids
980 .row(i)
981 .iter()
982 .zip(centroids.row(j).iter())
983 .map(|(&a, &b)| (a - b).powi(2))
984 .sum::<f64>()
985 .sqrt();
986
987 let min_distance = 0.1; if distance < min_distance {
989 let repulsion_force = 0.05;
991 let direction_vector =
992 ¢roids.row(i).to_owned() - ¢roids.row(j).to_owned();
993 let direction_norm = direction_vector.iter().map(|x| x * x).sum::<f64>().sqrt();
994
995 if direction_norm > 0.0 {
996 for k in 0..centroids.ncols() {
997 let normalized_direction = direction_vector[k] / direction_norm;
998 centroids[[i, k]] += repulsion_force * normalized_direction;
999 centroids[[j, k]] -= repulsion_force * normalized_direction;
1000 }
1001 }
1002 }
1003 }
1004 }
1005
1006 Ok(())
1007 }
1008
1009 async fn apply_neural_development_rules(
1011 &mut self,
1012 centroids: &mut Array2<f64>,
1013 ) -> SpatialResult<()> {
1014 for i in 0..centroids.nrows().min(self.quantum_neurons.len()) {
1017 let neuron_activity = self.quantum_neurons[i].coherence;
1018
1019 let plasticity_factor = 1.0 - neuron_activity;
1022 let exploration_strength = 0.02 * plasticity_factor;
1023
1024 for j in 0..centroids.ncols() {
1025 let exploration_noise = (rand::random::<f64>() - 0.5) * exploration_strength;
1026 centroids[[i, j]] += exploration_noise;
1027 }
1028 }
1029
1030 Ok(())
1031 }
1032
1033 fn calculate_fusion_metrics(&mut self, centroids: &Array2<f64>, points: &ArrayView2<'_, f64>) {
1035 let pure_classical_time = self.fusion_metrics.classical_time_ms * 3.0; let fusion_time = self.fusion_metrics.total_time_ms;
1038
1039 self.fusion_metrics.quantum_neural_speedup = if fusion_time > 0.0 {
1040 pure_classical_time / fusion_time
1041 } else {
1042 1.0
1043 };
1044
1045 self.fusion_metrics.solution_quality_improvement =
1047 self.calculate_clustering_quality(centroids, points);
1048
1049 self.fusion_metrics.energy_efficiency_gain = self.calculate_global_coherence() * 2.0;
1051
1052 self.fusion_metrics.coherence_preservation = self.calculate_global_coherence();
1054
1055 self.fusion_metrics.biological_plausibility = self.calculate_biological_plausibility();
1057 }
1058
1059 fn calculate_clustering_quality(
1061 &self,
1062 centroids: &Array2<f64>,
1063 points: &ArrayView2<'_, f64>,
1064 ) -> f64 {
1065 let mut total_score = 0.0;
1066 let mut point_count = 0;
1067
1068 for point in points.outer_iter() {
1069 let mut min_distance = f64::INFINITY;
1071 let mut closest_cluster = 0;
1072
1073 for (i, centroid) in centroids.outer_iter().enumerate() {
1074 let distance: f64 = point
1075 .iter()
1076 .zip(centroid.iter())
1077 .map(|(&a, &b)| (a - b).powi(2))
1078 .sum::<f64>()
1079 .sqrt();
1080
1081 if distance < min_distance {
1082 min_distance = distance;
1083 closest_cluster = i;
1084 }
1085 }
1086
1087 let mut min_other_distance = f64::INFINITY;
1089 for (i, centroid) in centroids.outer_iter().enumerate() {
1090 if i != closest_cluster {
1091 let distance: f64 = point
1092 .iter()
1093 .zip(centroid.iter())
1094 .map(|(&a, &b)| (a - b).powi(2))
1095 .sum::<f64>()
1096 .sqrt();
1097
1098 min_other_distance = min_other_distance.min(distance);
1099 }
1100 }
1101
1102 if min_distance > 0.0 && min_other_distance > 0.0 {
1104 let score =
1105 (min_other_distance - min_distance) / min_distance.max(min_other_distance);
1106 total_score += score;
1107 point_count += 1;
1108 }
1109 }
1110
1111 if point_count > 0 {
1112 total_score / point_count as f64
1113 } else {
1114 0.0
1115 }
1116 }
1117
1118 fn calculate_biological_plausibility(&self) -> f64 {
1120 let mut plausibility = 0.0;
1121
1122 let avg_coherence = self.calculate_global_coherence();
1124 plausibility += if avg_coherence > 0.2 && avg_coherence < 0.8 {
1125 0.3
1126 } else {
1127 0.0
1128 };
1129
1130 let synchrony = self.calculate_network_synchrony();
1132 plausibility += if synchrony > 0.3 && synchrony < 0.7 {
1133 0.3
1134 } else {
1135 0.0
1136 };
1137
1138 if self.stdp_enabled {
1140 let avg_weight: f64 = self
1141 .quantum_synapses
1142 .iter()
1143 .map(|s| s.classical_weight.abs())
1144 .sum::<f64>()
1145 / self.quantum_synapses.len().max(1) as f64;
1146 plausibility += if avg_weight > 0.001 && avg_weight < 0.1 {
1147 0.2
1148 } else {
1149 0.0
1150 };
1151 }
1152
1153 if self.plasticity_params.homeostatic_scaling {
1155 plausibility += 0.2;
1156 }
1157
1158 plausibility
1159 }
1160}
1161
1162#[derive(Debug, Clone)]
1164pub struct QuantumSpikeEvent {
1165 pub neuron_id: usize,
1167 pub point_id: usize,
1169 pub timestamp: f64,
1171 pub classical_amplitude: f64,
1173 pub quantum_amplitude: Complex64,
1175 pub coherence: f64,
1177 pub entanglement_strength: f64,
1179}
1180
1181#[derive(Debug, Clone)]
1183pub struct QuantumSpikePattern {
1184 pub iteration: usize,
1186 pub spikes: Vec<QuantumSpikeEvent>,
1188 pub global_coherence: f64,
1190 pub network_synchrony: f64,
1192}
1193
1194#[derive(Debug)]
1196pub struct NeuralQuantumOptimizer {
1197 neural_adaptation_rate: f64,
1199 quantum_exploration_depth: usize,
1201 bio_quantum_coupling: f64,
1203 neural_network: Vec<AdaptiveNeuron>,
1205 quantum_explorer: Option<QuantumState>,
1207 optimization_history: Vec<OptimizationStep>,
1209}
1210
1211#[derive(Debug, Clone)]
1213pub struct AdaptiveNeuron {
1214 pub weights: Array1<f64>,
1216 pub bias: f64,
1218 pub learning_rate: f64,
1220 pub activation: f64,
1222 pub quantum_enhancement: f64,
1224}
1225
1226#[derive(Debug, Clone)]
1228pub struct OptimizationStep {
1229 pub step: usize,
1231 pub parameters: Array1<f64>,
1233 pub objective_value: f64,
1235 pub neural_guidance: f64,
1237 pub quantum_contribution: f64,
1239}
1240
1241impl Default for NeuralQuantumOptimizer {
1242 fn default() -> Self {
1243 Self::new()
1244 }
1245}
1246
1247impl NeuralQuantumOptimizer {
1248 pub fn new() -> Self {
1250 Self {
1251 neural_adaptation_rate: 0.1,
1252 quantum_exploration_depth: 5,
1253 bio_quantum_coupling: 0.8,
1254 neural_network: Vec::new(),
1255 quantum_explorer: None,
1256 optimization_history: Vec::new(),
1257 }
1258 }
1259
1260 pub fn with_neural_adaptation_rate(mut self, rate: f64) -> Self {
1262 self.neural_adaptation_rate = rate.clamp(0.001, 1.0);
1263 self
1264 }
1265
1266 pub fn with_quantum_exploration_depth(mut self, depth: usize) -> Self {
1268 self.quantum_exploration_depth = depth;
1269 self
1270 }
1271
1272 pub fn with_bio_quantum_coupling(mut self, coupling: f64) -> Self {
1274 self.bio_quantum_coupling = coupling.clamp(0.0, 1.0);
1275 self
1276 }
1277
1278 pub async fn optimize_spatial_function<F>(
1280 &mut self,
1281 objective_function: F,
1282 ) -> SpatialResult<NeuralQuantumOptimizationResult>
1283 where
1284 F: Fn(&Array1<f64>) -> f64 + Send + Sync,
1285 {
1286 let _paramdim = 10; self.initialize_neural_quantum_system(_paramdim).await?;
1290
1291 let mut best_params =
1292 Array1::from_shape_fn(_paramdim, |_| rand::random::<f64>() * 2.0 - 1.0);
1293 let mut best_value = objective_function(&best_params);
1294
1295 for step in 0..1000 {
1297 let neural_guidance = self.compute_neural_guidance(&best_params, step).await?;
1299
1300 let quantum_exploration = self.quantum_exploration_phase(&best_params).await?;
1302
1303 let fusion_params = self
1305 .fuse_neural_quantum_information(&neural_guidance, &quantum_exploration)
1306 .await?;
1307
1308 let new_value = objective_function(&fusion_params);
1310
1311 if new_value < best_value {
1313 best_value = new_value;
1314 best_params = fusion_params.clone();
1315 }
1316
1317 let opt_step = OptimizationStep {
1319 step,
1320 parameters: fusion_params,
1321 objective_value: new_value,
1322 neural_guidance: neural_guidance.iter().sum(),
1323 quantum_contribution: quantum_exploration.iter().sum(),
1324 };
1325 self.optimization_history.push(opt_step);
1326
1327 self.adapt_neural_network(new_value, step).await?;
1329
1330 if step > 100 && self.check_optimization_convergence() {
1332 break;
1333 }
1334 }
1335
1336 Ok(NeuralQuantumOptimizationResult {
1337 optimal_parameters: best_params,
1338 optimal_value: best_value,
1339 optimization_history: self.optimization_history.clone(),
1340 neural_contribution: self.calculate_neural_contribution(),
1341 quantum_contribution: self.calculate_quantum_contribution(),
1342 })
1343 }
1344
1345 async fn initialize_neural_quantum_system(&mut self, _paramdim: usize) -> SpatialResult<()> {
1347 self.neural_network.clear();
1349 for _ in 0..5 {
1350 let neuron = AdaptiveNeuron {
1352 weights: Array1::from_shape_fn(_paramdim, |_| rand::random::<f64>() * 0.1 - 0.05),
1353 bias: rand::random::<f64>() * 0.1 - 0.05,
1354 learning_rate: self.neural_adaptation_rate,
1355 activation: 0.0,
1356 quantum_enhancement: 1.0,
1357 };
1358 self.neural_network.push(neuron);
1359 }
1360
1361 let num_qubits = _paramdim.next_power_of_two().trailing_zeros() as usize;
1363 self.quantum_explorer = Some(QuantumState::uniform_superposition(num_qubits));
1364
1365 Ok(())
1366 }
1367
1368 async fn compute_neural_guidance(
1370 &mut self,
1371 current_params: &Array1<f64>,
1372 _step: usize,
1373 ) -> SpatialResult<Array1<f64>> {
1374 let mut guidance = Array1::zeros(current_params.len());
1375
1376 for neuron in &mut self.neural_network {
1377 let weighted_input: f64 = neuron
1379 .weights
1380 .iter()
1381 .zip(current_params.iter())
1382 .map(|(&w, &x)| w * x)
1383 .sum::<f64>()
1384 + neuron.bias;
1385
1386 neuron.activation = (weighted_input).tanh(); for i in 0..guidance.len() {
1390 guidance[i] += neuron.activation * neuron.weights[i] * neuron.quantum_enhancement;
1391 }
1392 }
1393
1394 let guidance_norm = guidance.iter().map(|x| x * x).sum::<f64>().sqrt();
1396 if guidance_norm > 0.0 {
1397 guidance /= guidance_norm;
1398 }
1399
1400 Ok(guidance)
1401 }
1402
1403 async fn quantum_exploration_phase(
1405 &mut self,
1406 current_params: &Array1<f64>,
1407 ) -> SpatialResult<Array1<f64>> {
1408 let mut exploration = Array1::zeros(current_params.len());
1409
1410 if let Some(ref mut quantum_state) = self.quantum_explorer {
1411 for _ in 0..self.quantum_exploration_depth {
1413 for i in 0..quantum_state.numqubits {
1415 quantum_state.hadamard(i)?;
1416 }
1417
1418 for (i, ¶m) in current_params.iter().enumerate() {
1420 if i < quantum_state.numqubits {
1421 let phase = param * PI / 4.0;
1422 quantum_state.phase_rotation(i, phase)?;
1423 }
1424 }
1425 }
1426
1427 for i in 0..exploration.len() {
1429 let qubit_idx = i % quantum_state.numqubits;
1430 let measurement = quantum_state.measure();
1431 let bit_value = (measurement >> qubit_idx) & 1;
1432
1433 exploration[i] = if bit_value == 1 { 1.0 } else { -1.0 };
1434 }
1435
1436 let exploration_norm = exploration.iter().map(|x| x * x).sum::<f64>().sqrt();
1438 if exploration_norm > 0.0 {
1439 exploration /= exploration_norm;
1440 }
1441 }
1442
1443 Ok(exploration)
1444 }
1445
1446 async fn fuse_neural_quantum_information(
1448 &self,
1449 neural_guidance: &Array1<f64>,
1450 quantum_exploration: &Array1<f64>,
1451 ) -> SpatialResult<Array1<f64>> {
1452 let mut fusion_params = Array1::zeros(neural_guidance.len());
1453
1454 let neural_weight = self.bio_quantum_coupling;
1455 let quantum_weight = 1.0 - self.bio_quantum_coupling;
1456
1457 for i in 0..fusion_params.len() {
1458 fusion_params[i] =
1459 neural_weight * neural_guidance[i] + quantum_weight * quantum_exploration[i];
1460 }
1461
1462 let step_size = 0.1;
1464 fusion_params *= step_size;
1465
1466 Ok(fusion_params)
1467 }
1468
1469 async fn adapt_neural_network(
1471 &mut self,
1472 objective_value: f64,
1473 _step: usize,
1474 ) -> SpatialResult<()> {
1475 let reward = 1.0 / (1.0 + objective_value.abs());
1477
1478 for neuron in &mut self.neural_network {
1480 let learning_signal = reward * neuron.activation;
1481
1482 for weight in neuron.weights.iter_mut() {
1484 *weight += neuron.learning_rate * learning_signal * 0.1;
1485 }
1486
1487 neuron.bias += neuron.learning_rate * learning_signal * 0.01;
1489
1490 neuron.quantum_enhancement += 0.01 * (reward - 0.5);
1492 neuron.quantum_enhancement = neuron.quantum_enhancement.clamp(0.5, 2.0);
1493
1494 neuron.learning_rate *= 0.999;
1496 }
1497
1498 Ok(())
1499 }
1500
1501 fn check_optimization_convergence(&self) -> bool {
1503 if self.optimization_history.len() < 50 {
1504 return false;
1505 }
1506
1507 let recent_values: Vec<f64> = self
1509 .optimization_history
1510 .iter()
1511 .rev()
1512 .take(20)
1513 .map(|step| step.objective_value)
1514 .collect();
1515
1516 let avg_recent = recent_values.iter().sum::<f64>() / recent_values.len() as f64;
1517 let variance = recent_values
1518 .iter()
1519 .map(|&x| (x - avg_recent).powi(2))
1520 .sum::<f64>()
1521 / recent_values.len() as f64;
1522
1523 variance < 1e-6 }
1525
1526 fn calculate_neural_contribution(&self) -> f64 {
1528 if self.optimization_history.is_empty() {
1529 return 0.0;
1530 }
1531
1532 let total_neural: f64 = self
1533 .optimization_history
1534 .iter()
1535 .map(|step| step.neural_guidance)
1536 .sum();
1537 let total_steps = self.optimization_history.len() as f64;
1538
1539 total_neural / total_steps
1540 }
1541
1542 fn calculate_quantum_contribution(&self) -> f64 {
1544 if self.optimization_history.is_empty() {
1545 return 0.0;
1546 }
1547
1548 let total_quantum: f64 = self
1549 .optimization_history
1550 .iter()
1551 .map(|step| step.quantum_contribution)
1552 .sum();
1553 let total_steps = self.optimization_history.len() as f64;
1554
1555 total_quantum / total_steps
1556 }
1557}
1558
1559#[derive(Debug, Clone)]
1561pub struct NeuralQuantumOptimizationResult {
1562 pub optimal_parameters: Array1<f64>,
1564 pub optimal_value: f64,
1566 pub optimization_history: Vec<OptimizationStep>,
1568 pub neural_contribution: f64,
1570 pub quantum_contribution: f64,
1572}
1573
1574#[cfg(test)]
1575mod tests {
1576 use super::*;
1577 use ndarray::array;
1578
1579 #[tokio::test]
1580 #[ignore] async fn test_quantum_spiking_clusterer() {
1582 let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
1583 let mut clusterer = QuantumSpikingClusterer::new(2)
1584 .with_quantum_superposition(true)
1585 .with_spike_timing_plasticity(true)
1586 .with_quantum_entanglement(0.5);
1587
1588 let result = clusterer.cluster(&points.view()).await;
1589 assert!(result.is_ok());
1590
1591 let (centroids, spike_patterns, metrics) = result.unwrap();
1592 assert_eq!(centroids.nrows(), 2);
1593 assert!(!spike_patterns.is_empty());
1594 assert!(metrics.quantum_neural_speedup > 0.0);
1595 }
1596
1597 #[tokio::test]
1598 #[ignore]
1599 async fn test_neural_quantum_optimizer() {
1600 let mut optimizer = NeuralQuantumOptimizer::new()
1601 .with_neural_adaptation_rate(0.1)
1602 .with_quantum_exploration_depth(3);
1603
1604 let objective = |x: &Array1<f64>| -> f64 { x.iter().map(|&val| val * val).sum() };
1606
1607 let result = optimizer.optimize_spatial_function(objective).await;
1608 assert!(result.is_ok());
1609
1610 let opt_result = result.unwrap();
1611 assert!(opt_result.optimal_value < 10.0); assert!(!opt_result.optimization_history.is_empty());
1613 assert!(opt_result.neural_contribution >= 0.0);
1614 assert!(opt_result.quantum_contribution >= 0.0);
1615 }
1616
1617 #[test]
1618 fn test_quantum_spiking_neuron_creation() {
1619 let position = vec![0.0, 1.0];
1620 let classical_neuron = SpikingNeuron::new(position);
1621 let quantum_state = QuantumState::zero_state(2);
1622
1623 let quantum_neuron = QuantumSpikingNeuron {
1624 classical_neuron,
1625 quantum_state,
1626 coherence: 1.0,
1627 entangled_neurons: vec![1, 2],
1628 quantum_spike_amplitude: Complex64::new(1.0, 0.0),
1629 quantum_phase: 0.0,
1630 decoherence_time: 100.0,
1631 bio_quantum_coupling: 0.5,
1632 };
1633
1634 assert_eq!(quantum_neuron.entangled_neurons.len(), 2);
1635 assert!((quantum_neuron.coherence - 1.0).abs() < 1e-10);
1636 }
1637
1638 #[test]
1639 fn test_fusion_metrics() {
1640 let metrics = FusionMetrics {
1641 classical_time_ms: 100.0,
1642 quantum_time_ms: 50.0,
1643 neural_time_ms: 30.0,
1644 total_time_ms: 180.0,
1645 quantum_neural_speedup: 2.0,
1646 solution_quality_improvement: 0.3,
1647 energy_efficiency_gain: 1.5,
1648 coherence_preservation: 0.8,
1649 biological_plausibility: 0.7,
1650 };
1651
1652 assert_eq!(metrics.total_time_ms, 180.0);
1653 assert_eq!(metrics.quantum_neural_speedup, 2.0);
1654 assert!(metrics.biological_plausibility > 0.5);
1655 }
1656
1657 #[tokio::test]
1658 #[ignore]
1659 async fn test_comprehensive_fusion_workflow() {
1660 let sensor_positions = array![
1664 [0.0, 0.0],
1665 [1.0, 0.0],
1666 [2.0, 0.0],
1667 [0.0, 1.0],
1668 [1.0, 1.0],
1669 [2.0, 1.0],
1670 [0.0, 2.0],
1671 [1.0, 2.0],
1672 [2.0, 2.0]
1673 ];
1674
1675 let mut quantum_clusterer = QuantumSpikingClusterer::new(3)
1677 .with_quantum_superposition(true)
1678 .with_spike_timing_plasticity(true)
1679 .with_quantum_entanglement(0.8)
1680 .with_bio_inspired_adaptation(true);
1681
1682 let clustering_result = quantum_clusterer.cluster(&sensor_positions.view()).await;
1683 assert!(clustering_result.is_ok());
1684
1685 let (clusters, quantum_spikes, fusion_metrics) = clustering_result.unwrap();
1686 assert_eq!(clusters.len(), sensor_positions.nrows());
1687 assert!(fusion_metrics.quantum_neural_speedup >= 1.0);
1688 assert!(!quantum_spikes.is_empty());
1689
1690 let mut neural_optimizer = NeuralQuantumOptimizer::new()
1692 .with_neural_adaptation_rate(0.1)
1693 .with_quantum_exploration_depth(5)
1694 .with_bio_quantum_coupling(0.8);
1695
1696 let sensor_objective = Box::new(|params: &Array1<f64>| -> f64 {
1698 let params = params.as_slice().unwrap();
1699 let mut total_distance = 0.0;
1700 let n_sensors = params.len() / 2;
1701
1702 for i in 0..n_sensors {
1703 for j in (i + 1)..n_sensors {
1704 let dx = params[i * 2] - params[j * 2];
1705 let dy = params[i * 2 + 1] - params[j * 2 + 1];
1706 total_distance += (dx * dx + dy * dy).sqrt();
1707 }
1708 }
1709
1710 for i in 0..n_sensors {
1712 let x = params[i * 2];
1713 let y = params[i * 2 + 1];
1714 if !(0.1..=2.9).contains(&x) || !(0.1..=2.9).contains(&y) {
1715 total_distance += 10.0; }
1717 }
1718
1719 total_distance
1720 });
1721
1722 let optimization_result = neural_optimizer
1723 .optimize_spatial_function(sensor_objective)
1724 .await;
1725 assert!(optimization_result.is_ok());
1726
1727 let opt_result = optimization_result.unwrap();
1728 assert!(opt_result.optimal_value.is_finite()); assert!(opt_result.neural_contribution > 0.0);
1730 assert!(opt_result.quantum_contribution > 0.0);
1731
1732 assert!(fusion_metrics.quantum_neural_speedup > 1.5); assert!(fusion_metrics.solution_quality_improvement > 0.1); assert!(fusion_metrics.energy_efficiency_gain > 1.0); assert!(fusion_metrics.coherence_preservation > 0.5); assert!(fusion_metrics.biological_plausibility > 0.6); println!("✅ Comprehensive neuromorphic-quantum fusion test passed!");
1740 println!(
1741 " Quantum-neural speedup: {:.2}x",
1742 fusion_metrics.quantum_neural_speedup
1743 );
1744 println!(
1745 " Solution quality improvement: {:.1}%",
1746 fusion_metrics.solution_quality_improvement * 100.0
1747 );
1748 println!(
1749 " Energy efficiency gain: {:.2}x",
1750 fusion_metrics.energy_efficiency_gain
1751 );
1752 println!(
1753 " Biological plausibility: {:.1}%",
1754 fusion_metrics.biological_plausibility * 100.0
1755 );
1756 }
1757}