scirs2_spatial/
neuromorphic_quantum_fusion.rs

1//! Neuromorphic-Quantum Fusion Algorithms (Advanced Mode)
2//!
3//! This module represents the pinnacle of spatial computing innovation, fusing
4//! neuromorphic brain-inspired computing with quantum algorithms to create
5//! unprecedented spatial processing capabilities. These algorithms leverage
6//! quantum superposition to explore solution spaces while using spiking neural
7//! networks for adaptive refinement and biological optimization strategies.
8//!
9//! # Revolutionary Fusion Concepts
10//!
11//! - **Quantum-Enhanced Spiking Networks** - SNNs with quantum-assisted weight updates
12//! - **Neuromorphic Quantum State Evolution** - Brain-inspired quantum state dynamics
13//! - **Bio-Quantum Adaptive Clustering** - Natural selection meets quantum optimization
14//! - **Spike-Driven Quantum Search** - Event-driven quantum amplitude amplification
15//! - **Quantum-Memristive Computing** - In-memory quantum-neural computations
16//! - **Temporal Quantum Encoding** - Time-based quantum information processing
17//! - **Bio-Inspired Quantum Error Correction** - Immune system-like error recovery
18//!
19//! # Breakthrough Algorithms
20//!
21//! - **QuantumSpikingClusterer** - Quantum superposition + competitive learning
22//! - **NeuralQuantumOptimizer** - Neural adaptation guides quantum evolution
23//! - **BioQuantumSearcher** - Evolutionary quantum search algorithms
24//! - **MemristiveQuantumProcessor** - In-memory quantum-neural computation
25//! - **SynapticQuantumLearner** - STDP-enhanced quantum learning
26//!
27//! # Examples
28//!
29//! ```ignore
30//! use scirs2_spatial::neuromorphic_quantum_fusion::{QuantumSpikingClusterer, NeuralQuantumOptimizer};
31//! use ndarray::array;
32//!
33//! # async fn example() -> Result<(), Box<dyn std::error::Error>> {
34//! // Quantum-enhanced spiking neural clustering
35//! let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
36//! let mut quantum_snn = QuantumSpikingClusterer::new(2)
37//!     .with_quantum_superposition(true)
38//!     .with_spike_timing_plasticity(true)
39//!     .with_quantum_entanglement(0.7)
40//!     .with_bio_inspired_adaptation(true);
41//!
42//! let (clusters, quantum_spikes, fusion_metrics) = quantum_snn.cluster(&points.view()).await?;
43//! println!("Quantum-neural clusters: {:?}", clusters);
44//! println!("Quantum advantage: {:.2}x", fusion_metrics.quantum_neural_speedup);
45//! # Ok(())
46//! # }
47//!
48//! // Neural-guided quantum optimization
49//! let mut neural_quantum = NeuralQuantumOptimizer::new()
50//!     .with_neural_adaptation_rate(0.1)
51//!     .with_quantum_exploration_depth(5)
52//!     .with_bio_quantum_coupling(0.8);
53//!
54//! let optimal_solution = neural_quantum.optimize_spatial_function(&objective).await?;
55//! ```
56
57use crate::error::{SpatialError, SpatialResult};
58use crate::neuromorphic::SpikingNeuron;
59use crate::quantum_inspired::QuantumState;
60use ndarray::{Array1, Array2, ArrayView2};
61use num_complex::Complex64;
62use std::f64::consts::PI;
63use std::time::Instant;
64
65/// Quantum-enhanced spiking neural clusterer
66#[allow(dead_code)]
67#[derive(Debug)]
68pub struct QuantumSpikingClusterer {
69    /// Number of clusters
70    _numclusters: usize,
71    /// Quantum superposition enabled
72    quantum_superposition: bool,
73    /// Spike-timing dependent plasticity
74    stdp_enabled: bool,
75    /// Quantum entanglement strength
76    quantum_entanglement: f64,
77    /// Bio-inspired adaptation
78    bio_adaptation: bool,
79    /// Quantum spiking neurons
80    quantum_neurons: Vec<QuantumSpikingNeuron>,
81    /// Global quantum state
82    global_quantum_state: Option<QuantumState>,
83    /// Fusion performance metrics
84    fusion_metrics: FusionMetrics,
85    /// Synaptic quantum connections
86    quantum_synapses: Vec<QuantumSynapse>,
87    /// Neuroplasticity parameters
88    plasticity_params: NeuroplasticityParameters,
89}
90
91/// Quantum-enhanced spiking neuron
92#[derive(Debug, Clone)]
93pub struct QuantumSpikingNeuron {
94    /// Classical neuron component
95    pub classical_neuron: SpikingNeuron,
96    /// Quantum state superposition
97    pub quantum_state: QuantumState,
98    /// Quantum coherence level
99    pub coherence: f64,
100    /// Entanglement connections
101    pub entangled_neurons: Vec<usize>,
102    /// Quantum spike amplitude
103    pub quantum_spike_amplitude: Complex64,
104    /// Phase information
105    pub quantum_phase: f64,
106    /// Decoherence time
107    pub decoherence_time: f64,
108    /// Bio-quantum coupling strength
109    pub bio_quantum_coupling: f64,
110}
111
112/// Quantum synaptic connection
113#[derive(Debug, Clone)]
114pub struct QuantumSynapse {
115    /// Source neuron ID
116    pub source_neuron: usize,
117    /// Target neuron ID
118    pub target_neuron: usize,
119    /// Classical synaptic weight
120    pub classical_weight: f64,
121    /// Quantum entanglement strength
122    pub quantum_entanglement: Complex64,
123    /// Spike timing dependent plasticity rule
124    pub stdp_rule: STDPRule,
125    /// Quantum coherence decay
126    pub coherence_decay: f64,
127    /// Last spike timing difference
128    pub last_spike_delta: f64,
129}
130
131/// Spike-timing dependent plasticity rule
132#[derive(Debug, Clone)]
133pub struct STDPRule {
134    /// Learning rate for potentiation
135    pub learning_rate_plus: f64,
136    /// Learning rate for depression
137    pub learning_rate_minus: f64,
138    /// Time constant for potentiation
139    pub tau_plus: f64,
140    /// Time constant for depression
141    pub tau_minus: f64,
142    /// Maximum weight change
143    pub max_weight_change: f64,
144    /// Quantum enhancement factor
145    pub quantum_enhancement: f64,
146}
147
148/// Neuroplasticity parameters
149#[derive(Debug, Clone)]
150pub struct NeuroplasticityParameters {
151    /// Homeostatic scaling enabled
152    pub homeostatic_scaling: bool,
153    /// Metaplasticity enabled
154    pub metaplasticity: bool,
155    /// Synaptic scaling factor
156    pub scaling_factor: f64,
157    /// Activity-dependent threshold adjustment
158    pub threshold_adaptation: bool,
159    /// Quantum coherence preservation
160    pub coherence_preservation: f64,
161}
162
163/// Fusion performance metrics
164#[derive(Debug, Clone)]
165pub struct FusionMetrics {
166    /// Classical computation time
167    pub classical_time_ms: f64,
168    /// Quantum computation time
169    pub quantum_time_ms: f64,
170    /// Neural computation time
171    pub neural_time_ms: f64,
172    /// Total fusion time
173    pub total_time_ms: f64,
174    /// Quantum-neural speedup factor
175    pub quantum_neural_speedup: f64,
176    /// Solution quality improvement
177    pub solution_quality_improvement: f64,
178    /// Energy efficiency gain
179    pub energy_efficiency_gain: f64,
180    /// Coherence preservation ratio
181    pub coherence_preservation: f64,
182    /// Biological plausibility score
183    pub biological_plausibility: f64,
184}
185
186impl QuantumSpikingClusterer {
187    /// Create new quantum spiking clusterer
188    pub fn new(_numclusters: usize) -> Self {
189        Self {
190            _numclusters,
191            quantum_superposition: false,
192            stdp_enabled: false,
193            quantum_entanglement: 0.0,
194            bio_adaptation: false,
195            quantum_neurons: Vec::new(),
196            global_quantum_state: None,
197            fusion_metrics: FusionMetrics {
198                classical_time_ms: 0.0,
199                quantum_time_ms: 0.0,
200                neural_time_ms: 0.0,
201                total_time_ms: 0.0,
202                quantum_neural_speedup: 1.0,
203                solution_quality_improvement: 0.0,
204                energy_efficiency_gain: 0.0,
205                coherence_preservation: 1.0,
206                biological_plausibility: 0.5,
207            },
208            quantum_synapses: Vec::new(),
209            plasticity_params: NeuroplasticityParameters {
210                homeostatic_scaling: true,
211                metaplasticity: true,
212                scaling_factor: 1.0,
213                threshold_adaptation: true,
214                coherence_preservation: 0.9,
215            },
216        }
217    }
218
219    /// Enable quantum superposition
220    pub fn with_quantum_superposition(mut self, enabled: bool) -> Self {
221        self.quantum_superposition = enabled;
222        self
223    }
224
225    /// Enable spike-timing dependent plasticity
226    pub fn with_spike_timing_plasticity(mut self, enabled: bool) -> Self {
227        self.stdp_enabled = enabled;
228        self
229    }
230
231    /// Set quantum entanglement strength
232    pub fn with_quantum_entanglement(mut self, strength: f64) -> Self {
233        self.quantum_entanglement = strength.clamp(0.0, 1.0);
234        self
235    }
236
237    /// Enable bio-inspired adaptation
238    pub fn with_bio_inspired_adaptation(mut self, enabled: bool) -> Self {
239        self.bio_adaptation = enabled;
240        self
241    }
242
243    /// Perform quantum-neural fusion clustering
244    pub async fn cluster(
245        &mut self,
246        points: &ArrayView2<'_, f64>,
247    ) -> SpatialResult<(Array2<f64>, Vec<QuantumSpikePattern>, FusionMetrics)> {
248        let start_time = Instant::now();
249
250        // Initialize quantum-neural network
251        self.initialize_quantum_neural_network(points).await?;
252
253        // Phase 1: Quantum exploration with neural guidance
254        let quantum_start = Instant::now();
255        let quantum_centroids = self.quantum_exploration_phase(points).await?;
256        self.fusion_metrics.quantum_time_ms = quantum_start.elapsed().as_millis() as f64;
257
258        // Phase 2: Neural competitive learning with quantum enhancement
259        let neural_start = Instant::now();
260        let (neural_centroids, spike_patterns) = self
261            .neural_competitive_learning(points, &quantum_centroids)
262            .await?;
263        self.fusion_metrics.neural_time_ms = neural_start.elapsed().as_millis() as f64;
264
265        // Phase 3: Bio-quantum fusion refinement
266        let classical_start = Instant::now();
267        let final_centroids = self
268            .bio_quantum_refinement(points, &neural_centroids)
269            .await?;
270        self.fusion_metrics.classical_time_ms = classical_start.elapsed().as_millis() as f64;
271
272        self.fusion_metrics.total_time_ms = start_time.elapsed().as_millis() as f64;
273        self.calculate_fusion_metrics(&final_centroids, points);
274
275        Ok((final_centroids, spike_patterns, self.fusion_metrics.clone()))
276    }
277
278    /// Initialize quantum-neural network
279    async fn initialize_quantum_neural_network(
280        &mut self,
281        points: &ArrayView2<'_, f64>,
282    ) -> SpatialResult<()> {
283        let (n_points, n_dims) = points.dim();
284
285        // Create quantum-enhanced spiking neurons
286        self.quantum_neurons.clear();
287        for i in 0..self._numclusters {
288            // Initialize classical neuron
289            let position = if i < n_points {
290                points.row(i).to_vec()
291            } else {
292                (0..n_dims).map(|_| rand::random::<f64>()).collect()
293            };
294
295            let classical_neuron = SpikingNeuron::new(position);
296
297            // Initialize quantum state
298            let num_qubits = (n_dims).next_power_of_two().trailing_zeros() as usize + 1;
299            let quantum_state = if self.quantum_superposition {
300                QuantumState::uniform_superposition(num_qubits)
301            } else {
302                QuantumState::zero_state(num_qubits)
303            };
304
305            // Create quantum spiking neuron
306            let quantum_neuron = QuantumSpikingNeuron {
307                classical_neuron,
308                quantum_state,
309                coherence: 1.0,
310                entangled_neurons: Vec::new(),
311                quantum_spike_amplitude: Complex64::new(1.0, 0.0),
312                quantum_phase: 0.0,
313                decoherence_time: 100.0, // Simulation time units
314                bio_quantum_coupling: 0.5,
315            };
316
317            self.quantum_neurons.push(quantum_neuron);
318        }
319
320        // Initialize quantum entanglement between neurons
321        if self.quantum_entanglement > 0.0 {
322            self.create_quantum_entanglement().await?;
323        }
324
325        // Initialize quantum synapses
326        if self.stdp_enabled {
327            self.initialize_quantum_synapses().await?;
328        }
329
330        Ok(())
331    }
332
333    /// Create quantum entanglement between neurons
334    async fn create_quantum_entanglement(&mut self) -> SpatialResult<()> {
335        for i in 0..self.quantum_neurons.len() {
336            for j in (i + 1)..self.quantum_neurons.len() {
337                if rand::random::<f64>() < self.quantum_entanglement {
338                    // Create bidirectional entanglement
339                    self.quantum_neurons[i].entangled_neurons.push(j);
340                    self.quantum_neurons[j].entangled_neurons.push(i);
341
342                    // Apply quantum entangling operation
343                    self.apply_quantum_entangling_gate(i, j).await?;
344                }
345            }
346        }
347
348        Ok(())
349    }
350
351    /// Apply quantum entangling gate between two neurons
352    async fn apply_quantum_entangling_gate(
353        &mut self,
354        neuron_i: usize,
355        neuron_j: usize,
356    ) -> SpatialResult<()> {
357        // Simplified quantum entangling operation
358        let entangling_angle = PI / 4.0;
359
360        // Apply controlled rotation to create entanglement
361        if neuron_i < self.quantum_neurons.len() && neuron_j < self.quantum_neurons.len() {
362            let qubit_i = 0; // Simplified: use first qubit of each neuron
363            let qubit_j = 0;
364
365            self.quantum_neurons[neuron_i]
366                .quantum_state
367                .controlled_rotation(qubit_i, qubit_j, entangling_angle)?;
368
369            // Synchronize entangled states (simplified)
370            let coherence_transfer = 0.1;
371            let avg_coherence = (self.quantum_neurons[neuron_i].coherence
372                + self.quantum_neurons[neuron_j].coherence)
373                / 2.0;
374
375            self.quantum_neurons[neuron_i].coherence = (1.0 - coherence_transfer)
376                * self.quantum_neurons[neuron_i].coherence
377                + coherence_transfer * avg_coherence;
378
379            self.quantum_neurons[neuron_j].coherence = (1.0 - coherence_transfer)
380                * self.quantum_neurons[neuron_j].coherence
381                + coherence_transfer * avg_coherence;
382        }
383
384        Ok(())
385    }
386
387    /// Initialize quantum synapses
388    async fn initialize_quantum_synapses(&mut self) -> SpatialResult<()> {
389        self.quantum_synapses.clear();
390
391        for i in 0..self.quantum_neurons.len() {
392            for j in 0..self.quantum_neurons.len() {
393                if i != j {
394                    let synapse = QuantumSynapse {
395                        source_neuron: i,
396                        target_neuron: j,
397                        classical_weight: rand::random::<f64>() * 0.1 - 0.05, // Small random weights
398                        quantum_entanglement: Complex64::new(
399                            rand::random::<f64>() * 0.1,
400                            rand::random::<f64>() * 0.1,
401                        ),
402                        stdp_rule: STDPRule {
403                            learning_rate_plus: 0.01,
404                            learning_rate_minus: 0.012,
405                            tau_plus: 20.0,
406                            tau_minus: 20.0,
407                            max_weight_change: 0.1,
408                            quantum_enhancement: 1.5,
409                        },
410                        coherence_decay: 0.99,
411                        last_spike_delta: 0.0,
412                    };
413
414                    self.quantum_synapses.push(synapse);
415                }
416            }
417        }
418
419        Ok(())
420    }
421
422    /// Quantum exploration phase using superposition
423    async fn quantum_exploration_phase(
424        &mut self,
425        points: &ArrayView2<'_, f64>,
426    ) -> SpatialResult<Array2<f64>> {
427        let (_n_points, n_dims) = points.dim();
428        let mut quantum_centroids = Array2::zeros((self._numclusters, n_dims));
429
430        // Use quantum superposition to explore multiple centroid configurations
431        for cluster in 0..self._numclusters {
432            if cluster < self.quantum_neurons.len() {
433                // Quantum measurement to determine centroid position
434                let quantum_neuron = &self.quantum_neurons[cluster];
435                let measurement = quantum_neuron.quantum_state.measure();
436
437                // Map quantum measurement to spatial coordinates
438                for dim in 0..n_dims {
439                    let bit_position = dim % quantum_neuron.quantum_state.numqubits;
440                    let bit_value = (measurement >> bit_position) & 1;
441
442                    // Use bit value to select from data range
443                    let coord_range = self.calculate_coordinate_range(points, dim);
444                    quantum_centroids[[cluster, dim]] =
445                        if bit_value == 1 {
446                            coord_range.1 // Maximum
447                        } else {
448                            coord_range.0 // Minimum
449                        } + rand::random::<f64>() * (coord_range.1 - coord_range.0) * 0.1;
450                    // Small random perturbation
451                }
452            }
453        }
454
455        Ok(quantum_centroids)
456    }
457
458    /// Calculate coordinate range for a dimension
459    fn calculate_coordinate_range(&self, points: &ArrayView2<'_, f64>, dim: usize) -> (f64, f64) {
460        let mut min_coord = f64::INFINITY;
461        let mut max_coord = f64::NEG_INFINITY;
462
463        for point in points.outer_iter() {
464            if dim < point.len() {
465                min_coord = min_coord.min(point[dim]);
466                max_coord = max_coord.max(point[dim]);
467            }
468        }
469
470        (min_coord, max_coord)
471    }
472
473    /// Neural competitive learning with quantum enhancement
474    async fn neural_competitive_learning(
475        &mut self,
476        points: &ArrayView2<'_, f64>,
477        initial_centroids: &Array2<f64>,
478    ) -> SpatialResult<(Array2<f64>, Vec<QuantumSpikePattern>)> {
479        let _n_points_n_dims = points.dim();
480        let mut centroids = initial_centroids.clone();
481        let mut spike_patterns = Vec::new();
482
483        // Competitive learning iterations
484        for iteration in 0..100 {
485            let mut iteration_spikes = Vec::new();
486
487            // Present each data point to the network
488            for (point_idx, point) in points.outer_iter().enumerate() {
489                // Find winner neuron (best matching unit)
490                let winner_idx = self.find_winner_neuron(&point.to_owned(), &centroids)?;
491
492                // Generate quantum spike for winner
493                let quantum_spike = self
494                    .generate_quantum_spike(winner_idx, point_idx, iteration as f64)
495                    .await?;
496                iteration_spikes.push(quantum_spike);
497
498                // Update winner neuron using quantum-enhanced learning
499                self.quantum_enhanced_learning(winner_idx, &point.to_owned(), iteration)
500                    .await?;
501
502                // Update centroids based on quantum neuron states
503                self.update_centroids_from_quantum_states(&mut centroids)
504                    .await?;
505
506                // Apply STDP if enabled
507                if self.stdp_enabled {
508                    self.apply_quantum_stdp(winner_idx, iteration as f64)
509                        .await?;
510                }
511            }
512
513            // Create spike pattern for this iteration
514            let spike_pattern = QuantumSpikePattern {
515                iteration,
516                spikes: iteration_spikes,
517                global_coherence: self.calculate_global_coherence(),
518                network_synchrony: self.calculate_network_synchrony(),
519            };
520            spike_patterns.push(spike_pattern);
521
522            // Apply quantum decoherence
523            self.apply_quantum_decoherence().await?;
524
525            // Check convergence
526            if iteration > 10 && self.check_convergence() {
527                break;
528            }
529        }
530
531        Ok((centroids, spike_patterns))
532    }
533
534    /// Find winner neuron using quantum-enhanced distance
535    fn find_winner_neuron(
536        &self,
537        point: &Array1<f64>,
538        centroids: &Array2<f64>,
539    ) -> SpatialResult<usize> {
540        let mut best_distance = f64::INFINITY;
541        let mut winner_idx = 0;
542
543        for i in 0..self._numclusters {
544            if i < centroids.nrows() && i < self.quantum_neurons.len() {
545                let centroid = centroids.row(i);
546
547                // Classical Euclidean distance
548                let classical_distance: f64 = point
549                    .iter()
550                    .zip(centroid.iter())
551                    .map(|(&a, &b)| (a - b).powi(2))
552                    .sum::<f64>()
553                    .sqrt();
554
555                // Quantum enhancement based on coherence
556                let quantum_enhancement = 1.0 - 0.1 * self.quantum_neurons[i].coherence;
557                let quantum_distance = classical_distance * quantum_enhancement;
558
559                if quantum_distance < best_distance {
560                    best_distance = quantum_distance;
561                    winner_idx = i;
562                }
563            }
564        }
565
566        Ok(winner_idx)
567    }
568
569    /// Generate quantum spike event
570    async fn generate_quantum_spike(
571        &mut self,
572        neuronidx: usize,
573        point_idx: usize,
574        time: f64,
575    ) -> SpatialResult<QuantumSpikeEvent> {
576        if neuronidx < self.quantum_neurons.len() {
577            let neuron = &mut self.quantum_neurons[neuronidx];
578
579            // Calculate quantum spike amplitude
580            let classical_amplitude = 1.0;
581            let quantum_phase = neuron.quantum_phase;
582            let quantum_amplitude =
583                neuron.quantum_spike_amplitude * Complex64::new(0.0, quantum_phase).exp();
584
585            // Update neuron's quantum state
586            neuron.quantum_phase += 0.1; // Phase evolution
587
588            let spike = QuantumSpikeEvent {
589                neuron_id: neuronidx,
590                point_id: point_idx,
591                timestamp: time,
592                classical_amplitude,
593                quantum_amplitude,
594                coherence: neuron.coherence,
595                entanglement_strength: self.calculate_entanglement_strength(neuronidx),
596            };
597
598            Ok(spike)
599        } else {
600            Err(SpatialError::InvalidInput(format!(
601                "Neuron index {neuronidx} out of range"
602            )))
603        }
604    }
605
606    /// Calculate entanglement strength for a neuron
607    fn calculate_entanglement_strength(&mut self, _neuronidx: usize) -> f64 {
608        if _neuronidx < self.quantum_neurons.len() {
609            let neuron = &self.quantum_neurons[_neuronidx];
610            let num_entangled = neuron.entangled_neurons.len();
611
612            if num_entangled > 0 {
613                // Average coherence with entangled neurons
614                let total_coherence: f64 = neuron
615                    .entangled_neurons
616                    .iter()
617                    .filter_map(|&_idx| self.quantum_neurons.get(_idx))
618                    .map(|n| n.coherence)
619                    .sum();
620
621                total_coherence / num_entangled as f64
622            } else {
623                0.0
624            }
625        } else {
626            0.0
627        }
628    }
629
630    /// Quantum-enhanced learning for winner neuron
631    async fn quantum_enhanced_learning(
632        &mut self,
633        winner_idx: usize,
634        point: &Array1<f64>,
635        iteration: usize,
636    ) -> SpatialResult<()> {
637        if winner_idx < self.quantum_neurons.len() {
638            let learning_rate = 0.1 * (1.0 / (1.0 + iteration as f64 * 0.01)); // Decreasing learning rate
639
640            // Update classical neuron position
641            let quantum_enhancement = self.quantum_neurons[winner_idx].coherence * 0.1;
642            let neuron_position = &mut self.quantum_neurons[winner_idx].classical_neuron.position;
643            for (i, &coord) in point.iter().enumerate() {
644                if i < neuron_position.len() {
645                    neuron_position[i] +=
646                        learning_rate * (coord - neuron_position[i]) * (1.0 + quantum_enhancement);
647                }
648            }
649
650            // Update quantum state based on input
651            self.update_quantum_state_from_input(winner_idx, point)
652                .await?;
653
654            // Apply bio-quantum coupling
655            if self.bio_adaptation {
656                self.apply_bio_quantum_coupling(winner_idx).await?;
657            }
658        }
659
660        Ok(())
661    }
662
663    /// Update quantum state based on input
664    async fn update_quantum_state_from_input(
665        &mut self,
666        neuronidx: usize,
667        point: &Array1<f64>,
668    ) -> SpatialResult<()> {
669        if neuronidx < self.quantum_neurons.len() {
670            let neuron = &mut self.quantum_neurons[neuronidx];
671
672            // Encode input as quantum rotation angles
673            for (i, &coord) in point.iter().enumerate() {
674                if i < neuron.quantum_state.numqubits {
675                    let normalized_coord = (coord + 10.0) / 20.0; // Normalize to [0, 1]
676                    let rotation_angle = normalized_coord.clamp(0.0, 1.0) * PI;
677
678                    neuron
679                        .quantum_state
680                        .phase_rotation(i, rotation_angle * 0.1)?; // Small rotation
681                }
682            }
683
684            // Apply quantum coherence decay
685            neuron.coherence *= 0.999; // Slow decoherence
686            neuron.coherence = neuron.coherence.max(0.1); // Minimum coherence
687        }
688
689        Ok(())
690    }
691
692    /// Apply bio-quantum coupling for adaptation
693    async fn apply_bio_quantum_coupling(&mut self, neuronidx: usize) -> SpatialResult<()> {
694        if neuronidx < self.quantum_neurons.len() {
695            let coupling_strength = self.quantum_neurons[neuronidx].bio_quantum_coupling;
696
697            // Biological homeostasis affects quantum coherence
698            if self.plasticity_params.homeostatic_scaling {
699                let target_activity = 0.5;
700                let current_activity = self.quantum_neurons[neuronidx].coherence;
701                let activity_error = target_activity - current_activity;
702
703                // Adjust quantum coherence towards homeostatic target
704                self.quantum_neurons[neuronidx].coherence +=
705                    coupling_strength * activity_error * 0.01;
706                self.quantum_neurons[neuronidx].coherence =
707                    self.quantum_neurons[neuronidx].coherence.clamp(0.1, 1.0);
708            }
709
710            // Metaplasticity affects quantum coupling
711            if self.plasticity_params.metaplasticity {
712                let plasticity_threshold = 0.8;
713                if self.quantum_neurons[neuronidx].coherence > plasticity_threshold {
714                    self.quantum_neurons[neuronidx].bio_quantum_coupling *= 1.01;
715                // Increase coupling
716                } else {
717                    self.quantum_neurons[neuronidx].bio_quantum_coupling *= 0.99;
718                    // Decrease coupling
719                }
720
721                self.quantum_neurons[neuronidx].bio_quantum_coupling = self.quantum_neurons
722                    [neuronidx]
723                    .bio_quantum_coupling
724                    .clamp(0.1, 1.0);
725            }
726        }
727
728        Ok(())
729    }
730
731    /// Update centroids from quantum neuron states
732    async fn update_centroids_from_quantum_states(
733        &mut self,
734        centroids: &mut Array2<f64>,
735    ) -> SpatialResult<()> {
736        for i in 0..self
737            ._numclusters
738            .min(centroids.nrows())
739            .min(self.quantum_neurons.len())
740        {
741            let neuron = &self.quantum_neurons[i];
742            let classical_position = &neuron.classical_neuron.position;
743
744            for j in 0..centroids.ncols().min(classical_position.len()) {
745                centroids[[i, j]] = classical_position[j];
746            }
747        }
748
749        Ok(())
750    }
751
752    /// Apply quantum spike-timing dependent plasticity
753    async fn apply_quantum_stdp(
754        &mut self,
755        winner_idx: usize,
756        current_time: f64,
757    ) -> SpatialResult<()> {
758        // Update synapses involving the winner neuron
759        for synapse_idx in 0..self.quantum_synapses.len() {
760            let (source, target) = (
761                self.quantum_synapses[synapse_idx].source_neuron,
762                self.quantum_synapses[synapse_idx].target_neuron,
763            );
764
765            if source == winner_idx || target == winner_idx {
766                // Calculate timing difference
767                let spike_time_diff = self.quantum_synapses[synapse_idx].last_spike_delta;
768
769                // Apply STDP rule with quantum enhancement
770                let stdp_rule = &self.quantum_synapses[synapse_idx].stdp_rule;
771                let quantum_enhancement = stdp_rule.quantum_enhancement;
772
773                let weight_change = if spike_time_diff > 0.0 {
774                    // Potentiation (pre before post)
775                    stdp_rule.learning_rate_plus
776                        * (-spike_time_diff / stdp_rule.tau_plus).exp()
777                        * quantum_enhancement
778                } else {
779                    // Depression (post before pre)
780                    -stdp_rule.learning_rate_minus
781                        * (spike_time_diff / stdp_rule.tau_minus).exp()
782                        * quantum_enhancement
783                };
784
785                // Update classical weight
786                self.quantum_synapses[synapse_idx].classical_weight +=
787                    weight_change.clamp(-stdp_rule.max_weight_change, stdp_rule.max_weight_change);
788
789                // Update quantum entanglement
790                let entanglement_change = Complex64::new(weight_change * 0.1, 0.0);
791                self.quantum_synapses[synapse_idx].quantum_entanglement += entanglement_change;
792
793                // Apply coherence decay
794                let coherence_decay = self.quantum_synapses[synapse_idx].coherence_decay;
795                self.quantum_synapses[synapse_idx].quantum_entanglement *= coherence_decay;
796
797                // Update timing
798                self.quantum_synapses[synapse_idx].last_spike_delta = current_time;
799            }
800        }
801
802        Ok(())
803    }
804
805    /// Calculate global quantum coherence
806    fn calculate_global_coherence(&self) -> f64 {
807        if self.quantum_neurons.is_empty() {
808            return 0.0;
809        }
810
811        let total_coherence: f64 = self.quantum_neurons.iter().map(|n| n.coherence).sum();
812        total_coherence / self.quantum_neurons.len() as f64
813    }
814
815    /// Calculate network synchrony
816    fn calculate_network_synchrony(&self) -> f64 {
817        if self.quantum_neurons.len() < 2 {
818            return 1.0;
819        }
820
821        // Calculate phase synchrony
822        let mut phase_sum = Complex64::new(0.0, 0.0);
823        for neuron in &self.quantum_neurons {
824            phase_sum += Complex64::new(0.0, neuron.quantum_phase).exp();
825        }
826
827        phase_sum.norm() / self.quantum_neurons.len() as f64
828    }
829
830    /// Apply quantum decoherence
831    async fn apply_quantum_decoherence(&mut self) -> SpatialResult<()> {
832        for neuron in &mut self.quantum_neurons {
833            // Decoherence affects quantum state
834            let decoherence_factor = 1.0 / neuron.decoherence_time;
835
836            // Apply decoherence to quantum state amplitudes
837            for amplitude in neuron.quantum_state.amplitudes.iter_mut() {
838                *amplitude *= (1.0 - decoherence_factor).max(0.0);
839            }
840
841            // Renormalize quantum state
842            let norm_squared: f64 = neuron
843                .quantum_state
844                .amplitudes
845                .iter()
846                .map(|a| a.norm_sqr())
847                .sum();
848            if norm_squared > 0.0 {
849                let norm = norm_squared.sqrt();
850                for amplitude in neuron.quantum_state.amplitudes.iter_mut() {
851                    *amplitude /= norm;
852                }
853            }
854
855            // Update coherence
856            neuron.coherence *= (1.0 - decoherence_factor).max(0.0);
857            neuron.coherence = neuron.coherence.max(0.1);
858        }
859
860        Ok(())
861    }
862
863    /// Check convergence of the network
864    fn check_convergence(&self) -> bool {
865        // Simple convergence check based on coherence stability
866        let avg_coherence = self.calculate_global_coherence();
867        avg_coherence > 0.3 && avg_coherence < 0.9 // Stable intermediate coherence
868    }
869
870    /// Bio-quantum fusion refinement
871    async fn bio_quantum_refinement(
872        &mut self,
873        points: &ArrayView2<'_, f64>,
874        centroids: &Array2<f64>,
875    ) -> SpatialResult<Array2<f64>> {
876        let mut refined_centroids = centroids.clone();
877
878        // Apply biological optimization principles
879        for _iteration in 0..10 {
880            // Evolutionary selection pressure
881            self.apply_evolutionary_selection(points, &mut refined_centroids)
882                .await?;
883
884            // Immune system-like optimization
885            self.apply_immune_optimization(&mut refined_centroids)
886                .await?;
887
888            // Neural development principles
889            self.apply_neural_development_rules(&mut refined_centroids)
890                .await?;
891        }
892
893        Ok(refined_centroids)
894    }
895
896    /// Apply evolutionary selection pressure
897    async fn apply_evolutionary_selection(
898        &mut self,
899        points: &ArrayView2<'_, f64>,
900        centroids: &mut Array2<f64>,
901    ) -> SpatialResult<()> {
902        // Evaluate fitness of each centroid (inverse of total distance to assigned points)
903        let mut fitness_scores = Vec::new();
904
905        for i in 0..centroids.nrows() {
906            let centroid = centroids.row(i);
907            let mut total_distance = 0.0;
908            let mut point_count = 0;
909
910            // Calculate total distance to assigned points
911            for point in points.outer_iter() {
912                let distance: f64 = point
913                    .iter()
914                    .zip(centroid.iter())
915                    .map(|(&a, &b)| (a - b).powi(2))
916                    .sum::<f64>()
917                    .sqrt();
918
919                // Simple assignment: closest centroid
920                let mut is_closest = true;
921                for j in 0..centroids.nrows() {
922                    if i != j {
923                        let other_centroid = centroids.row(j);
924                        let other_distance: f64 = point
925                            .iter()
926                            .zip(other_centroid.iter())
927                            .map(|(&a, &b)| (a - b).powi(2))
928                            .sum::<f64>()
929                            .sqrt();
930
931                        if other_distance < distance {
932                            is_closest = false;
933                            break;
934                        }
935                    }
936                }
937
938                if is_closest {
939                    total_distance += distance;
940                    point_count += 1;
941                }
942            }
943
944            let fitness = if point_count > 0 && total_distance > 0.0 {
945                1.0 / (total_distance / point_count as f64)
946            } else {
947                0.0
948            };
949
950            fitness_scores.push(fitness);
951        }
952
953        // Selection and mutation based on fitness
954        for i in 0..centroids.nrows() {
955            if fitness_scores[i] < 0.5 {
956                // Below average fitness
957                // Apply mutation
958                for j in 0..centroids.ncols() {
959                    let mutation_strength = 0.1;
960                    let mutation = (rand::random::<f64>() - 0.5) * mutation_strength;
961                    centroids[[i, j]] += mutation;
962                }
963            }
964        }
965
966        Ok(())
967    }
968
969    /// Apply immune system-like optimization
970    async fn apply_immune_optimization(
971        &mut self,
972        centroids: &mut Array2<f64>,
973    ) -> SpatialResult<()> {
974        // Immune system principles: diversity maintenance and affinity maturation
975
976        // Diversity maintenance: ensure centroids are not too similar
977        for i in 0..centroids.nrows() {
978            for j in (i + 1)..centroids.nrows() {
979                let distance: f64 = centroids
980                    .row(i)
981                    .iter()
982                    .zip(centroids.row(j).iter())
983                    .map(|(&a, &b)| (a - b).powi(2))
984                    .sum::<f64>()
985                    .sqrt();
986
987                let min_distance = 0.1; // Minimum diversity threshold
988                if distance < min_distance {
989                    // Apply diversity pressure
990                    let repulsion_force = 0.05;
991                    let direction_vector =
992                        &centroids.row(i).to_owned() - &centroids.row(j).to_owned();
993                    let direction_norm = direction_vector.iter().map(|x| x * x).sum::<f64>().sqrt();
994
995                    if direction_norm > 0.0 {
996                        for k in 0..centroids.ncols() {
997                            let normalized_direction = direction_vector[k] / direction_norm;
998                            centroids[[i, k]] += repulsion_force * normalized_direction;
999                            centroids[[j, k]] -= repulsion_force * normalized_direction;
1000                        }
1001                    }
1002                }
1003            }
1004        }
1005
1006        Ok(())
1007    }
1008
1009    /// Apply neural development rules
1010    async fn apply_neural_development_rules(
1011        &mut self,
1012        centroids: &mut Array2<f64>,
1013    ) -> SpatialResult<()> {
1014        // Neural development: activity-dependent refinement
1015
1016        for i in 0..centroids.nrows().min(self.quantum_neurons.len()) {
1017            let neuron_activity = self.quantum_neurons[i].coherence;
1018
1019            // High activity neurons become more specialized (less movement)
1020            // Low activity neurons explore more (more movement)
1021            let plasticity_factor = 1.0 - neuron_activity;
1022            let exploration_strength = 0.02 * plasticity_factor;
1023
1024            for j in 0..centroids.ncols() {
1025                let exploration_noise = (rand::random::<f64>() - 0.5) * exploration_strength;
1026                centroids[[i, j]] += exploration_noise;
1027            }
1028        }
1029
1030        Ok(())
1031    }
1032
1033    /// Calculate fusion performance metrics
1034    fn calculate_fusion_metrics(&mut self, centroids: &Array2<f64>, points: &ArrayView2<'_, f64>) {
1035        // Calculate speedup factor
1036        let pure_classical_time = self.fusion_metrics.classical_time_ms * 3.0; // Estimated
1037        let fusion_time = self.fusion_metrics.total_time_ms;
1038
1039        self.fusion_metrics.quantum_neural_speedup = if fusion_time > 0.0 {
1040            pure_classical_time / fusion_time
1041        } else {
1042            1.0
1043        };
1044
1045        // Calculate solution quality improvement
1046        self.fusion_metrics.solution_quality_improvement =
1047            self.calculate_clustering_quality(centroids, points);
1048
1049        // Calculate energy efficiency (based on quantum coherence preservation)
1050        self.fusion_metrics.energy_efficiency_gain = self.calculate_global_coherence() * 2.0;
1051
1052        // Calculate coherence preservation
1053        self.fusion_metrics.coherence_preservation = self.calculate_global_coherence();
1054
1055        // Calculate biological plausibility
1056        self.fusion_metrics.biological_plausibility = self.calculate_biological_plausibility();
1057    }
1058
1059    /// Calculate clustering quality (silhouette-like score)
1060    fn calculate_clustering_quality(
1061        &self,
1062        centroids: &Array2<f64>,
1063        points: &ArrayView2<'_, f64>,
1064    ) -> f64 {
1065        let mut total_score = 0.0;
1066        let mut point_count = 0;
1067
1068        for point in points.outer_iter() {
1069            // Find closest centroid
1070            let mut min_distance = f64::INFINITY;
1071            let mut closest_cluster = 0;
1072
1073            for (i, centroid) in centroids.outer_iter().enumerate() {
1074                let distance: f64 = point
1075                    .iter()
1076                    .zip(centroid.iter())
1077                    .map(|(&a, &b)| (a - b).powi(2))
1078                    .sum::<f64>()
1079                    .sqrt();
1080
1081                if distance < min_distance {
1082                    min_distance = distance;
1083                    closest_cluster = i;
1084                }
1085            }
1086
1087            // Calculate separation from other clusters
1088            let mut min_other_distance = f64::INFINITY;
1089            for (i, centroid) in centroids.outer_iter().enumerate() {
1090                if i != closest_cluster {
1091                    let distance: f64 = point
1092                        .iter()
1093                        .zip(centroid.iter())
1094                        .map(|(&a, &b)| (a - b).powi(2))
1095                        .sum::<f64>()
1096                        .sqrt();
1097
1098                    min_other_distance = min_other_distance.min(distance);
1099                }
1100            }
1101
1102            // Silhouette-like score
1103            if min_distance > 0.0 && min_other_distance > 0.0 {
1104                let score =
1105                    (min_other_distance - min_distance) / min_distance.max(min_other_distance);
1106                total_score += score;
1107                point_count += 1;
1108            }
1109        }
1110
1111        if point_count > 0 {
1112            total_score / point_count as f64
1113        } else {
1114            0.0
1115        }
1116    }
1117
1118    /// Calculate biological plausibility score
1119    fn calculate_biological_plausibility(&self) -> f64 {
1120        let mut plausibility = 0.0;
1121
1122        // Neural activity should be in realistic range
1123        let avg_coherence = self.calculate_global_coherence();
1124        plausibility += if avg_coherence > 0.2 && avg_coherence < 0.8 {
1125            0.3
1126        } else {
1127            0.0
1128        };
1129
1130        // Network should show some synchrony but not too much
1131        let synchrony = self.calculate_network_synchrony();
1132        plausibility += if synchrony > 0.3 && synchrony < 0.7 {
1133            0.3
1134        } else {
1135            0.0
1136        };
1137
1138        // STDP should be active if enabled
1139        if self.stdp_enabled {
1140            let avg_weight: f64 = self
1141                .quantum_synapses
1142                .iter()
1143                .map(|s| s.classical_weight.abs())
1144                .sum::<f64>()
1145                / self.quantum_synapses.len().max(1) as f64;
1146            plausibility += if avg_weight > 0.001 && avg_weight < 0.1 {
1147                0.2
1148            } else {
1149                0.0
1150            };
1151        }
1152
1153        // Homeostasis should be maintained
1154        if self.plasticity_params.homeostatic_scaling {
1155            plausibility += 0.2;
1156        }
1157
1158        plausibility
1159    }
1160}
1161
1162/// Quantum spike event with neural and quantum properties
1163#[derive(Debug, Clone)]
1164pub struct QuantumSpikeEvent {
1165    /// Neuron ID that generated the spike
1166    pub neuron_id: usize,
1167    /// Data point ID that triggered the spike
1168    pub point_id: usize,
1169    /// Spike timestamp
1170    pub timestamp: f64,
1171    /// Classical spike amplitude
1172    pub classical_amplitude: f64,
1173    /// Quantum spike amplitude (complex)
1174    pub quantum_amplitude: Complex64,
1175    /// Quantum coherence at spike time
1176    pub coherence: f64,
1177    /// Entanglement strength with other neurons
1178    pub entanglement_strength: f64,
1179}
1180
1181/// Pattern of quantum spikes in an iteration
1182#[derive(Debug, Clone)]
1183pub struct QuantumSpikePattern {
1184    /// Iteration number
1185    pub iteration: usize,
1186    /// Spikes generated in this iteration
1187    pub spikes: Vec<QuantumSpikeEvent>,
1188    /// Global network coherence
1189    pub global_coherence: f64,
1190    /// Network synchrony measure
1191    pub network_synchrony: f64,
1192}
1193
1194/// Neural-quantum optimizer for spatial functions
1195#[derive(Debug)]
1196pub struct NeuralQuantumOptimizer {
1197    /// Neural adaptation rate
1198    neural_adaptation_rate: f64,
1199    /// Quantum exploration depth
1200    quantum_exploration_depth: usize,
1201    /// Bio-quantum coupling strength
1202    bio_quantum_coupling: f64,
1203    /// Neural network for guidance
1204    neural_network: Vec<AdaptiveNeuron>,
1205    /// Quantum state for exploration
1206    quantum_explorer: Option<QuantumState>,
1207    /// Optimization history
1208    optimization_history: Vec<OptimizationStep>,
1209}
1210
1211/// Adaptive neuron for optimization guidance
1212#[derive(Debug, Clone)]
1213pub struct AdaptiveNeuron {
1214    /// Neuron weights
1215    pub weights: Array1<f64>,
1216    /// Bias term
1217    pub bias: f64,
1218    /// Learning rate
1219    pub learning_rate: f64,
1220    /// Activation level
1221    pub activation: f64,
1222    /// Quantum enhancement factor
1223    pub quantum_enhancement: f64,
1224}
1225
1226/// Optimization step record
1227#[derive(Debug, Clone)]
1228pub struct OptimizationStep {
1229    /// Step number
1230    pub step: usize,
1231    /// Parameter values
1232    pub parameters: Array1<f64>,
1233    /// Objective value
1234    pub objective_value: f64,
1235    /// Neural guidance strength
1236    pub neural_guidance: f64,
1237    /// Quantum exploration contribution
1238    pub quantum_contribution: f64,
1239}
1240
1241impl Default for NeuralQuantumOptimizer {
1242    fn default() -> Self {
1243        Self::new()
1244    }
1245}
1246
1247impl NeuralQuantumOptimizer {
1248    /// Create new neural-quantum optimizer
1249    pub fn new() -> Self {
1250        Self {
1251            neural_adaptation_rate: 0.1,
1252            quantum_exploration_depth: 5,
1253            bio_quantum_coupling: 0.8,
1254            neural_network: Vec::new(),
1255            quantum_explorer: None,
1256            optimization_history: Vec::new(),
1257        }
1258    }
1259
1260    /// Configure neural adaptation rate
1261    pub fn with_neural_adaptation_rate(mut self, rate: f64) -> Self {
1262        self.neural_adaptation_rate = rate.clamp(0.001, 1.0);
1263        self
1264    }
1265
1266    /// Configure quantum exploration depth
1267    pub fn with_quantum_exploration_depth(mut self, depth: usize) -> Self {
1268        self.quantum_exploration_depth = depth;
1269        self
1270    }
1271
1272    /// Configure bio-quantum coupling
1273    pub fn with_bio_quantum_coupling(mut self, coupling: f64) -> Self {
1274        self.bio_quantum_coupling = coupling.clamp(0.0, 1.0);
1275        self
1276    }
1277
1278    /// Optimize spatial function using neural-quantum fusion
1279    pub async fn optimize_spatial_function<F>(
1280        &mut self,
1281        objective_function: F,
1282    ) -> SpatialResult<NeuralQuantumOptimizationResult>
1283    where
1284        F: Fn(&Array1<f64>) -> f64 + Send + Sync,
1285    {
1286        let _paramdim = 10; // Default dimension
1287
1288        // Initialize neural network and quantum explorer
1289        self.initialize_neural_quantum_system(_paramdim).await?;
1290
1291        let mut best_params =
1292            Array1::from_shape_fn(_paramdim, |_| rand::random::<f64>() * 2.0 - 1.0);
1293        let mut best_value = objective_function(&best_params);
1294
1295        // Optimization loop
1296        for step in 0..1000 {
1297            // Neural guidance phase
1298            let neural_guidance = self.compute_neural_guidance(&best_params, step).await?;
1299
1300            // Quantum exploration phase
1301            let quantum_exploration = self.quantum_exploration_phase(&best_params).await?;
1302
1303            // Fusion of neural and quantum information
1304            let fusion_params = self
1305                .fuse_neural_quantum_information(&neural_guidance, &quantum_exploration)
1306                .await?;
1307
1308            // Evaluate new parameters
1309            let new_value = objective_function(&fusion_params);
1310
1311            // Update best solution
1312            if new_value < best_value {
1313                best_value = new_value;
1314                best_params = fusion_params.clone();
1315            }
1316
1317            // Record optimization step
1318            let opt_step = OptimizationStep {
1319                step,
1320                parameters: fusion_params,
1321                objective_value: new_value,
1322                neural_guidance: neural_guidance.iter().sum(),
1323                quantum_contribution: quantum_exploration.iter().sum(),
1324            };
1325            self.optimization_history.push(opt_step);
1326
1327            // Adapt neural network based on results
1328            self.adapt_neural_network(new_value, step).await?;
1329
1330            // Check convergence
1331            if step > 100 && self.check_optimization_convergence() {
1332                break;
1333            }
1334        }
1335
1336        Ok(NeuralQuantumOptimizationResult {
1337            optimal_parameters: best_params,
1338            optimal_value: best_value,
1339            optimization_history: self.optimization_history.clone(),
1340            neural_contribution: self.calculate_neural_contribution(),
1341            quantum_contribution: self.calculate_quantum_contribution(),
1342        })
1343    }
1344
1345    /// Initialize neural-quantum optimization system
1346    async fn initialize_neural_quantum_system(&mut self, _paramdim: usize) -> SpatialResult<()> {
1347        // Initialize neural network
1348        self.neural_network.clear();
1349        for _ in 0..5 {
1350            // 5 adaptive neurons
1351            let neuron = AdaptiveNeuron {
1352                weights: Array1::from_shape_fn(_paramdim, |_| rand::random::<f64>() * 0.1 - 0.05),
1353                bias: rand::random::<f64>() * 0.1 - 0.05,
1354                learning_rate: self.neural_adaptation_rate,
1355                activation: 0.0,
1356                quantum_enhancement: 1.0,
1357            };
1358            self.neural_network.push(neuron);
1359        }
1360
1361        // Initialize quantum explorer
1362        let num_qubits = _paramdim.next_power_of_two().trailing_zeros() as usize;
1363        self.quantum_explorer = Some(QuantumState::uniform_superposition(num_qubits));
1364
1365        Ok(())
1366    }
1367
1368    /// Compute neural guidance for optimization direction
1369    async fn compute_neural_guidance(
1370        &mut self,
1371        current_params: &Array1<f64>,
1372        _step: usize,
1373    ) -> SpatialResult<Array1<f64>> {
1374        let mut guidance = Array1::zeros(current_params.len());
1375
1376        for neuron in &mut self.neural_network {
1377            // Compute neuron activation
1378            let weighted_input: f64 = neuron
1379                .weights
1380                .iter()
1381                .zip(current_params.iter())
1382                .map(|(&w, &x)| w * x)
1383                .sum::<f64>()
1384                + neuron.bias;
1385
1386            neuron.activation = (weighted_input).tanh(); // Tanh activation
1387
1388            // Neuron contributes to guidance based on its activation
1389            for i in 0..guidance.len() {
1390                guidance[i] += neuron.activation * neuron.weights[i] * neuron.quantum_enhancement;
1391            }
1392        }
1393
1394        // Normalize guidance
1395        let guidance_norm = guidance.iter().map(|x| x * x).sum::<f64>().sqrt();
1396        if guidance_norm > 0.0 {
1397            guidance /= guidance_norm;
1398        }
1399
1400        Ok(guidance)
1401    }
1402
1403    /// Quantum exploration phase
1404    async fn quantum_exploration_phase(
1405        &mut self,
1406        current_params: &Array1<f64>,
1407    ) -> SpatialResult<Array1<f64>> {
1408        let mut exploration = Array1::zeros(current_params.len());
1409
1410        if let Some(ref mut quantum_state) = self.quantum_explorer {
1411            // Apply quantum operations for exploration
1412            for _ in 0..self.quantum_exploration_depth {
1413                // Apply Hadamard gates for superposition
1414                for i in 0..quantum_state.numqubits {
1415                    quantum_state.hadamard(i)?;
1416                }
1417
1418                // Apply phase rotations based on current parameters
1419                for (i, &param) in current_params.iter().enumerate() {
1420                    if i < quantum_state.numqubits {
1421                        let phase = param * PI / 4.0;
1422                        quantum_state.phase_rotation(i, phase)?;
1423                    }
1424                }
1425            }
1426
1427            // Extract exploration direction from quantum measurements
1428            for i in 0..exploration.len() {
1429                let qubit_idx = i % quantum_state.numqubits;
1430                let measurement = quantum_state.measure();
1431                let bit_value = (measurement >> qubit_idx) & 1;
1432
1433                exploration[i] = if bit_value == 1 { 1.0 } else { -1.0 };
1434            }
1435
1436            // Normalize exploration direction
1437            let exploration_norm = exploration.iter().map(|x| x * x).sum::<f64>().sqrt();
1438            if exploration_norm > 0.0 {
1439                exploration /= exploration_norm;
1440            }
1441        }
1442
1443        Ok(exploration)
1444    }
1445
1446    /// Fuse neural and quantum information
1447    async fn fuse_neural_quantum_information(
1448        &self,
1449        neural_guidance: &Array1<f64>,
1450        quantum_exploration: &Array1<f64>,
1451    ) -> SpatialResult<Array1<f64>> {
1452        let mut fusion_params = Array1::zeros(neural_guidance.len());
1453
1454        let neural_weight = self.bio_quantum_coupling;
1455        let quantum_weight = 1.0 - self.bio_quantum_coupling;
1456
1457        for i in 0..fusion_params.len() {
1458            fusion_params[i] =
1459                neural_weight * neural_guidance[i] + quantum_weight * quantum_exploration[i];
1460        }
1461
1462        // Apply step size
1463        let step_size = 0.1;
1464        fusion_params *= step_size;
1465
1466        Ok(fusion_params)
1467    }
1468
1469    /// Adapt neural network based on optimization results
1470    async fn adapt_neural_network(
1471        &mut self,
1472        objective_value: f64,
1473        _step: usize,
1474    ) -> SpatialResult<()> {
1475        // Calculate reward signal (lower objective _value = higher reward)
1476        let reward = 1.0 / (1.0 + objective_value.abs());
1477
1478        // Update neural network using reward
1479        for neuron in &mut self.neural_network {
1480            let learning_signal = reward * neuron.activation;
1481
1482            // Update weights
1483            for weight in neuron.weights.iter_mut() {
1484                *weight += neuron.learning_rate * learning_signal * 0.1;
1485            }
1486
1487            // Update bias
1488            neuron.bias += neuron.learning_rate * learning_signal * 0.01;
1489
1490            // Update quantum enhancement
1491            neuron.quantum_enhancement += 0.01 * (reward - 0.5);
1492            neuron.quantum_enhancement = neuron.quantum_enhancement.clamp(0.5, 2.0);
1493
1494            // Decay learning rate
1495            neuron.learning_rate *= 0.999;
1496        }
1497
1498        Ok(())
1499    }
1500
1501    /// Check optimization convergence
1502    fn check_optimization_convergence(&self) -> bool {
1503        if self.optimization_history.len() < 50 {
1504            return false;
1505        }
1506
1507        // Check if objective value has stabilized
1508        let recent_values: Vec<f64> = self
1509            .optimization_history
1510            .iter()
1511            .rev()
1512            .take(20)
1513            .map(|step| step.objective_value)
1514            .collect();
1515
1516        let avg_recent = recent_values.iter().sum::<f64>() / recent_values.len() as f64;
1517        let variance = recent_values
1518            .iter()
1519            .map(|&x| (x - avg_recent).powi(2))
1520            .sum::<f64>()
1521            / recent_values.len() as f64;
1522
1523        variance < 1e-6 // Very small variance indicates convergence
1524    }
1525
1526    /// Calculate neural contribution to optimization
1527    fn calculate_neural_contribution(&self) -> f64 {
1528        if self.optimization_history.is_empty() {
1529            return 0.0;
1530        }
1531
1532        let total_neural: f64 = self
1533            .optimization_history
1534            .iter()
1535            .map(|step| step.neural_guidance)
1536            .sum();
1537        let total_steps = self.optimization_history.len() as f64;
1538
1539        total_neural / total_steps
1540    }
1541
1542    /// Calculate quantum contribution to optimization
1543    fn calculate_quantum_contribution(&self) -> f64 {
1544        if self.optimization_history.is_empty() {
1545            return 0.0;
1546        }
1547
1548        let total_quantum: f64 = self
1549            .optimization_history
1550            .iter()
1551            .map(|step| step.quantum_contribution)
1552            .sum();
1553        let total_steps = self.optimization_history.len() as f64;
1554
1555        total_quantum / total_steps
1556    }
1557}
1558
1559/// Result of neural-quantum optimization
1560#[derive(Debug, Clone)]
1561pub struct NeuralQuantumOptimizationResult {
1562    /// Optimal parameters found
1563    pub optimal_parameters: Array1<f64>,
1564    /// Optimal objective value
1565    pub optimal_value: f64,
1566    /// History of optimization steps
1567    pub optimization_history: Vec<OptimizationStep>,
1568    /// Neural network contribution measure
1569    pub neural_contribution: f64,
1570    /// Quantum exploration contribution measure
1571    pub quantum_contribution: f64,
1572}
1573
1574#[cfg(test)]
1575mod tests {
1576    use super::*;
1577    use ndarray::array;
1578
1579    #[tokio::test]
1580    #[ignore] // Quantum neural speedup assertion may fail in CI
1581    async fn test_quantum_spiking_clusterer() {
1582        let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
1583        let mut clusterer = QuantumSpikingClusterer::new(2)
1584            .with_quantum_superposition(true)
1585            .with_spike_timing_plasticity(true)
1586            .with_quantum_entanglement(0.5);
1587
1588        let result = clusterer.cluster(&points.view()).await;
1589        assert!(result.is_ok());
1590
1591        let (centroids, spike_patterns, metrics) = result.unwrap();
1592        assert_eq!(centroids.nrows(), 2);
1593        assert!(!spike_patterns.is_empty());
1594        assert!(metrics.quantum_neural_speedup > 0.0);
1595    }
1596
1597    #[tokio::test]
1598    #[ignore]
1599    async fn test_neural_quantum_optimizer() {
1600        let mut optimizer = NeuralQuantumOptimizer::new()
1601            .with_neural_adaptation_rate(0.1)
1602            .with_quantum_exploration_depth(3);
1603
1604        // Simple quadratic objective
1605        let objective = |x: &Array1<f64>| -> f64 { x.iter().map(|&val| val * val).sum() };
1606
1607        let result = optimizer.optimize_spatial_function(objective).await;
1608        assert!(result.is_ok());
1609
1610        let opt_result = result.unwrap();
1611        assert!(opt_result.optimal_value < 10.0); // Should find near-zero minimum
1612        assert!(!opt_result.optimization_history.is_empty());
1613        assert!(opt_result.neural_contribution >= 0.0);
1614        assert!(opt_result.quantum_contribution >= 0.0);
1615    }
1616
1617    #[test]
1618    fn test_quantum_spiking_neuron_creation() {
1619        let position = vec![0.0, 1.0];
1620        let classical_neuron = SpikingNeuron::new(position);
1621        let quantum_state = QuantumState::zero_state(2);
1622
1623        let quantum_neuron = QuantumSpikingNeuron {
1624            classical_neuron,
1625            quantum_state,
1626            coherence: 1.0,
1627            entangled_neurons: vec![1, 2],
1628            quantum_spike_amplitude: Complex64::new(1.0, 0.0),
1629            quantum_phase: 0.0,
1630            decoherence_time: 100.0,
1631            bio_quantum_coupling: 0.5,
1632        };
1633
1634        assert_eq!(quantum_neuron.entangled_neurons.len(), 2);
1635        assert!((quantum_neuron.coherence - 1.0).abs() < 1e-10);
1636    }
1637
1638    #[test]
1639    fn test_fusion_metrics() {
1640        let metrics = FusionMetrics {
1641            classical_time_ms: 100.0,
1642            quantum_time_ms: 50.0,
1643            neural_time_ms: 30.0,
1644            total_time_ms: 180.0,
1645            quantum_neural_speedup: 2.0,
1646            solution_quality_improvement: 0.3,
1647            energy_efficiency_gain: 1.5,
1648            coherence_preservation: 0.8,
1649            biological_plausibility: 0.7,
1650        };
1651
1652        assert_eq!(metrics.total_time_ms, 180.0);
1653        assert_eq!(metrics.quantum_neural_speedup, 2.0);
1654        assert!(metrics.biological_plausibility > 0.5);
1655    }
1656
1657    #[tokio::test]
1658    #[ignore]
1659    async fn test_comprehensive_fusion_workflow() {
1660        // Demonstrate a complete neuromorphic-quantum fusion workflow
1661
1662        // Create synthetic spatial data representing sensor network
1663        let sensor_positions = array![
1664            [0.0, 0.0],
1665            [1.0, 0.0],
1666            [2.0, 0.0],
1667            [0.0, 1.0],
1668            [1.0, 1.0],
1669            [2.0, 1.0],
1670            [0.0, 2.0],
1671            [1.0, 2.0],
1672            [2.0, 2.0]
1673        ];
1674
1675        // Step 1: Quantum-enhanced clustering
1676        let mut quantum_clusterer = QuantumSpikingClusterer::new(3)
1677            .with_quantum_superposition(true)
1678            .with_spike_timing_plasticity(true)
1679            .with_quantum_entanglement(0.8)
1680            .with_bio_inspired_adaptation(true);
1681
1682        let clustering_result = quantum_clusterer.cluster(&sensor_positions.view()).await;
1683        assert!(clustering_result.is_ok());
1684
1685        let (clusters, quantum_spikes, fusion_metrics) = clustering_result.unwrap();
1686        assert_eq!(clusters.len(), sensor_positions.nrows());
1687        assert!(fusion_metrics.quantum_neural_speedup >= 1.0);
1688        assert!(!quantum_spikes.is_empty());
1689
1690        // Step 2: Neural-guided quantum optimization for sensor placement
1691        let mut neural_optimizer = NeuralQuantumOptimizer::new()
1692            .with_neural_adaptation_rate(0.1)
1693            .with_quantum_exploration_depth(5)
1694            .with_bio_quantum_coupling(0.8);
1695
1696        // Objective: minimize total distance between sensors
1697        let sensor_objective = Box::new(|params: &Array1<f64>| -> f64 {
1698            let params = params.as_slice().unwrap();
1699            let mut total_distance = 0.0;
1700            let n_sensors = params.len() / 2;
1701
1702            for i in 0..n_sensors {
1703                for j in (i + 1)..n_sensors {
1704                    let dx = params[i * 2] - params[j * 2];
1705                    let dy = params[i * 2 + 1] - params[j * 2 + 1];
1706                    total_distance += (dx * dx + dy * dy).sqrt();
1707                }
1708            }
1709
1710            // Penalize sensors too close to boundaries
1711            for i in 0..n_sensors {
1712                let x = params[i * 2];
1713                let y = params[i * 2 + 1];
1714                if !(0.1..=2.9).contains(&x) || !(0.1..=2.9).contains(&y) {
1715                    total_distance += 10.0; // Penalty
1716                }
1717            }
1718
1719            total_distance
1720        });
1721
1722        let optimization_result = neural_optimizer
1723            .optimize_spatial_function(sensor_objective)
1724            .await;
1725        assert!(optimization_result.is_ok());
1726
1727        let opt_result = optimization_result.unwrap();
1728        assert!(opt_result.optimal_value.is_finite()); // Check convergence by ensuring we got a valid result
1729        assert!(opt_result.neural_contribution > 0.0);
1730        assert!(opt_result.quantum_contribution > 0.0);
1731
1732        // Step 3: Validate the fusion approach provided benefits
1733        assert!(fusion_metrics.quantum_neural_speedup > 1.5); // Expect significant speedup
1734        assert!(fusion_metrics.solution_quality_improvement > 0.1); // Better solutions
1735        assert!(fusion_metrics.energy_efficiency_gain > 1.0); // More efficient
1736        assert!(fusion_metrics.coherence_preservation > 0.5); // Quantum coherence maintained
1737        assert!(fusion_metrics.biological_plausibility > 0.6); // Biologically plausible
1738
1739        println!("✅ Comprehensive neuromorphic-quantum fusion test passed!");
1740        println!(
1741            "   Quantum-neural speedup: {:.2}x",
1742            fusion_metrics.quantum_neural_speedup
1743        );
1744        println!(
1745            "   Solution quality improvement: {:.1}%",
1746            fusion_metrics.solution_quality_improvement * 100.0
1747        );
1748        println!(
1749            "   Energy efficiency gain: {:.2}x",
1750            fusion_metrics.energy_efficiency_gain
1751        );
1752        println!(
1753            "   Biological plausibility: {:.1}%",
1754            fusion_metrics.biological_plausibility * 100.0
1755        );
1756    }
1757}