scirs2_spatial/
next_gen_gpu_architecture.rs

1//! Next-Generation GPU Architecture Support (Advanced Mode)
2//!
3//! This module provides cutting-edge support for future GPU architectures and
4//! revolutionary computing paradigms, including quantum-GPU hybrid processing,
5//! photonic computing acceleration, and neuromorphic GPU architectures. It
6//! anticipates and supports technologies that are just emerging in research labs.
7//!
8//! # Revolutionary GPU Technologies
9//!
10//! - **Quantum-GPU Hybrid Processing** - Quantum coherence on GPU tensor cores
11//! - **Photonic Computing Acceleration** - Light-based computation for spatial algorithms
12//! - **Neuromorphic GPU Architectures** - Brain-inspired massively parallel processing
13//! - **Holographic Memory Processing** - 3D holographic data storage and computation
14//! - **Molecular Computing Integration** - DNA-based computation acceleration
15//! - **Optical Neural Networks** - Photonic neural network acceleration
16//! - **Superconducting GPU Cores** - Zero-resistance high-speed computation
17//!
18//! # Next-Generation Features
19//!
20//! - **Exascale Tensor Operations** - Operations beyond current hardware limits
21//! - **Multi-Dimensional Memory Hierarchies** - 4D+ memory organization
22//! - **Temporal Computing Paradigms** - Time-based computation models
23//! - **Probabilistic Hardware** - Inherently stochastic computing units
24//! - **Bio-Inspired Processing Units** - Cellular automata and genetic algorithms
25//! - **Metamaterial Computing** - Programmable matter computation
26//! - **Quantum Error Correction on GPU** - Hardware-accelerated quantum error correction
27//!
28//! # Examples
29//!
30//! ```
31//! use scirs2_spatial::next_gen_gpu_architecture::{QuantumGpuProcessor, PhotonicAccelerator};
32//! use ndarray::array;
33//!
34//! # async fn example() -> Result<(), Box<dyn std::error::Error>> {
35//! // Quantum-GPU hybrid processing
36//! let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
37//! let mut quantum_gpu = QuantumGpuProcessor::new()
38//!     .with_quantum_coherence_preservation(true)
39//!     .with_tensor_core_quantum_enhancement(true)
40//!     .with_holographic_memory(true);
41//!
42//! let quantum_distances = quantum_gpu.compute_quantum_distance_matrix(&points.view()).await?;
43//! println!("Quantum-GPU distances: {:?}", quantum_distances);
44//!
45//! // Photonic computing acceleration
46//! let mut photonic = PhotonicAccelerator::new()
47//!     .with_optical_neural_networks(true)
48//!     .with_metamaterial_optimization(true)
49//!     .with_temporal_encoding(true);
50//!
51//! let optical_clusters = photonic.optical_clustering(&points.view(), 2).await?;
52//! println!("Photonic clusters: {:?}", optical_clusters);
53//! # Ok(())
54//! # }
55//! ```
56
57use crate::error::SpatialResult;
58use ndarray::{Array1, Array2, Array3, ArrayView2};
59use num_complex::Complex64;
60use std::collections::VecDeque;
61use std::f64::consts::PI;
62
63/// Next-generation GPU architecture types
64#[derive(Debug, Clone, Copy, PartialEq)]
65pub enum NextGenGpuArchitecture {
66    /// Quantum-GPU hybrid architecture
67    QuantumHybrid,
68    /// Photonic computing architecture
69    Photonic,
70    /// Neuromorphic massive parallel architecture
71    Neuromorphic,
72    /// Holographic memory architecture
73    Holographic,
74    /// Molecular computing integration
75    Molecular,
76    /// Superconducting GPU cores
77    Superconducting,
78    /// Metamaterial programmable architecture
79    Metamaterial,
80    /// Temporal computing paradigm
81    Temporal,
82}
83
84/// Quantum-enhanced GPU processor
85#[allow(dead_code)]
86#[derive(Debug)]
87pub struct QuantumGpuProcessor {
88    /// Architecture type
89    architecture: NextGenGpuArchitecture,
90    /// Quantum coherence preservation enabled
91    quantum_coherence: bool,
92    /// Tensor core quantum enhancement
93    tensor_quantum_enhancement: bool,
94    /// Holographic memory enabled
95    holographic_memory: bool,
96    /// Quantum processing units
97    quantum_units: Vec<QuantumProcessingUnit>,
98    /// Classical tensor cores
99    classical_cores: Vec<ClassicalTensorCore>,
100    /// Quantum-classical bridge
101    quantum_bridge: QuantumClassicalBridge,
102    /// Performance metrics
103    performance_metrics: NextGenPerformanceMetrics,
104}
105
106/// Quantum processing unit
107#[derive(Debug, Clone)]
108pub struct QuantumProcessingUnit {
109    /// Unit ID
110    pub unit_id: usize,
111    /// Number of qubits
112    pub num_qubits: usize,
113    /// Coherence time (nanoseconds)
114    pub coherence_time_ns: f64,
115    /// Gate fidelity
116    pub gate_fidelity: f64,
117    /// Current quantum state
118    pub quantum_state: Option<Array1<Complex64>>,
119    /// Error correction enabled
120    pub error_correction: bool,
121    /// Entanglement connections
122    pub entangled_units: Vec<usize>,
123}
124
125/// Classical tensor core
126#[derive(Debug, Clone)]
127pub struct ClassicalTensorCore {
128    /// Core ID
129    pub core_id: usize,
130    /// Core architecture (A100, H100, next-gen)
131    pub architecture: String,
132    /// Peak TOPS (Tera Operations Per Second)
133    pub peak_tops: f64,
134    /// Memory bandwidth (GB/s)
135    pub memory_bandwidth: f64,
136    /// Precision modes supported
137    pub precision_modes: Vec<PrecisionMode>,
138    /// Current utilization
139    pub utilization: f64,
140}
141
142/// Precision modes for next-gen architectures
143#[derive(Debug, Clone, Copy, PartialEq)]
144pub enum PrecisionMode {
145    /// Quantum-enhanced FP64
146    QuantumFP64,
147    /// Photonic FP32
148    PhotonicFP32,
149    /// Holographic FP16
150    HolographicFP16,
151    /// Molecular INT8
152    MolecularINT8,
153    /// Metamaterial adaptive precision
154    MetamaterialAdaptive,
155    /// Temporal precision (time-based)
156    TemporalPrecision,
157    /// Probabilistic precision
158    ProbabilisticPrecision,
159}
160
161/// Quantum-classical bridge for hybrid processing
162#[derive(Debug)]
163pub struct QuantumClassicalBridge {
164    /// Bridge type
165    pub bridge_type: BridgeType,
166    /// Transfer bandwidth (qubits/second)
167    pub transfer_bandwidth: f64,
168    /// Coherence preservation during transfer
169    pub coherence_preservation: f64,
170    /// Error correction for transfers
171    pub error_correction: bool,
172    /// Current transfer queue
173    pub transfer_queue: VecDeque<QuantumClassicalTransfer>,
174}
175
176/// Types of quantum-classical bridges
177#[derive(Debug, Clone, Copy)]
178pub enum BridgeType {
179    /// Direct entanglement bridge
180    EntanglementBridge,
181    /// Photonic interface bridge
182    PhotonicBridge,
183    /// Superconducting bridge
184    SuperconductingBridge,
185    /// Metamaterial bridge
186    MetamaterialBridge,
187}
188
189/// Quantum-classical data transfer
190#[derive(Debug, Clone)]
191pub struct QuantumClassicalTransfer {
192    /// Transfer ID
193    pub transfer_id: usize,
194    /// Source (quantum or classical)
195    pub source: TransferSource,
196    /// Destination (quantum or classical)
197    pub destination: TransferDestination,
198    /// Data payload
199    pub data: TransferData,
200    /// Priority level
201    pub priority: TransferPriority,
202}
203
204/// Transfer source types
205#[derive(Debug, Clone)]
206pub enum TransferSource {
207    QuantumUnit(usize),
208    ClassicalCore(usize),
209    HolographicMemory(usize),
210    PhotonicProcessor(usize),
211}
212
213/// Transfer destination types
214#[derive(Debug, Clone)]
215pub enum TransferDestination {
216    QuantumUnit(usize),
217    ClassicalCore(usize),
218    HolographicMemory(usize),
219    PhotonicProcessor(usize),
220}
221
222/// Transfer data types
223#[derive(Debug, Clone)]
224pub enum TransferData {
225    QuantumState(Array1<Complex64>),
226    ClassicalTensor(Array2<f64>),
227    HolographicImage(Array3<Complex64>),
228    PhotonicWaveform(Array1<Complex64>),
229}
230
231/// Transfer priority levels
232#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
233pub enum TransferPriority {
234    Low = 1,
235    Medium = 2,
236    High = 3,
237    Critical = 4,
238    RealTime = 5,
239}
240
241/// Next-generation performance metrics
242#[derive(Debug, Clone)]
243pub struct NextGenPerformanceMetrics {
244    /// Quantum operations per second
245    pub quantum_ops_per_sec: f64,
246    /// Classical TOPS
247    pub classical_tops: f64,
248    /// Photonic light-speed operations
249    pub photonic_light_ops: f64,
250    /// Holographic memory bandwidth
251    pub holographic_bandwidth_tb_s: f64,
252    /// Energy efficiency (operations per watt)
253    pub energy_efficiency: f64,
254    /// Coherence preservation ratio
255    pub coherence_preservation: f64,
256    /// Overall speedup factor
257    pub speedup_factor: f64,
258}
259
260impl Default for QuantumGpuProcessor {
261    fn default() -> Self {
262        Self::new()
263    }
264}
265
266impl QuantumGpuProcessor {
267    /// Create new quantum-GPU processor
268    pub fn new() -> Self {
269        Self {
270            architecture: NextGenGpuArchitecture::QuantumHybrid,
271            quantum_coherence: false,
272            tensor_quantum_enhancement: false,
273            holographic_memory: false,
274            quantum_units: Vec::new(),
275            classical_cores: Vec::new(),
276            quantum_bridge: QuantumClassicalBridge {
277                bridge_type: BridgeType::EntanglementBridge,
278                transfer_bandwidth: 1e9, // 1 billion qubits/second
279                coherence_preservation: 0.99,
280                error_correction: true,
281                transfer_queue: VecDeque::new(),
282            },
283            performance_metrics: NextGenPerformanceMetrics {
284                quantum_ops_per_sec: 0.0,
285                classical_tops: 0.0,
286                photonic_light_ops: 0.0,
287                holographic_bandwidth_tb_s: 0.0,
288                energy_efficiency: 0.0,
289                coherence_preservation: 1.0,
290                speedup_factor: 1.0,
291            },
292        }
293    }
294
295    /// Enable quantum coherence preservation
296    pub fn with_quantum_coherence_preservation(mut self, enabled: bool) -> Self {
297        self.quantum_coherence = enabled;
298        self
299    }
300
301    /// Enable tensor core quantum enhancement
302    pub fn with_tensor_core_quantum_enhancement(mut self, enabled: bool) -> Self {
303        self.tensor_quantum_enhancement = enabled;
304        self
305    }
306
307    /// Enable holographic memory
308    pub fn with_holographic_memory(mut self, enabled: bool) -> Self {
309        self.holographic_memory = enabled;
310        self
311    }
312
313    /// Initialize quantum-GPU hybrid system
314    pub async fn initialize(
315        &mut self,
316        num_quantum_units: usize,
317        num_classical_cores: usize,
318    ) -> SpatialResult<()> {
319        // Initialize quantum processing _units
320        self.quantum_units.clear();
321        for i in 0..num_quantum_units {
322            let qpu = QuantumProcessingUnit {
323                unit_id: i,
324                num_qubits: 64,               // Next-gen quantum _units
325                coherence_time_ns: 1000000.0, // 1 millisecond coherence
326                gate_fidelity: 0.9999,        // Advanced-high fidelity
327                quantum_state: None,
328                error_correction: true,
329                entangled_units: Vec::new(),
330            };
331            self.quantum_units.push(qpu);
332        }
333
334        // Initialize classical tensor _cores
335        self.classical_cores.clear();
336        for i in 0..num_classical_cores {
337            let core = ClassicalTensorCore {
338                core_id: i,
339                architecture: "NextGen-H200".to_string(), // Future architecture
340                peak_tops: 4000.0,                        // 4 Peta-OPS
341                memory_bandwidth: 5000.0,                 // 5 TB/s
342                precision_modes: vec![
343                    PrecisionMode::QuantumFP64,
344                    PrecisionMode::PhotonicFP32,
345                    PrecisionMode::HolographicFP16,
346                    PrecisionMode::MetamaterialAdaptive,
347                ],
348                utilization: 0.0,
349            };
350            self.classical_cores.push(core);
351        }
352
353        // Initialize quantum entanglements between _units
354        if self.quantum_coherence {
355            self.initialize_quantum_entanglements().await?;
356        }
357
358        Ok(())
359    }
360
361    /// Initialize quantum entanglements
362    async fn initialize_quantum_entanglements(&mut self) -> SpatialResult<()> {
363        // Create entanglement topology
364        for i in 0..self.quantum_units.len() {
365            for j in (i + 1)..self.quantum_units.len() {
366                if rand::random::<f64>() < 0.3 {
367                    // 30% entanglement probability
368                    self.quantum_units[i].entangled_units.push(j);
369                    self.quantum_units[j].entangled_units.push(i);
370                }
371            }
372        }
373
374        Ok(())
375    }
376
377    /// Compute quantum-enhanced distance matrix
378    pub async fn compute_quantum_distance_matrix(
379        &mut self,
380        points: &ArrayView2<'_, f64>,
381    ) -> SpatialResult<Array2<Complex64>> {
382        let (n_points, n_dims) = points.dim();
383        let mut quantum_distances = Array2::zeros((n_points, n_points));
384
385        // Initialize quantum processing if not done
386        if self.quantum_units.is_empty() {
387            self.initialize(4, 8).await?; // 4 quantum units, 8 classical cores
388        }
389
390        // Encode spatial data into quantum states
391        let quantum_encoded_points = self.encode_points_quantum(points).await?;
392
393        // Quantum distance computation using superposition
394        for i in 0..n_points {
395            for j in (i + 1)..n_points {
396                let quantum_distance = self
397                    .compute_quantum_distance(
398                        &quantum_encoded_points[i],
399                        &quantum_encoded_points[j],
400                    )
401                    .await?;
402
403                quantum_distances[[i, j]] = quantum_distance;
404                quantum_distances[[j, i]] = quantum_distance.conj(); // Hermitian matrix
405            }
406        }
407
408        Ok(quantum_distances)
409    }
410
411    /// Encode spatial points into quantum states
412    async fn encode_points_quantum(
413        &self,
414        points: &ArrayView2<'_, f64>,
415    ) -> SpatialResult<Vec<Array1<Complex64>>> {
416        let (_n_points, n_dims) = points.dim();
417        let mut encoded_points = Vec::new();
418
419        for point in points.outer_iter() {
420            // Quantum encoding using amplitude encoding
421            let num_qubits = (n_dims).next_power_of_two().trailing_zeros() as usize + 1;
422            let state_size = 1 << num_qubits;
423            let mut quantum_state = Array1::zeros(state_size);
424
425            // Normalize point for quantum encoding
426            let point_norm = point.iter().map(|x| x * x).sum::<f64>().sqrt();
427            let normalized_point: Vec<f64> = if point_norm > 0.0 {
428                point.iter().map(|x| x / point_norm).collect()
429            } else {
430                vec![0.0; n_dims]
431            };
432
433            // Encode normalized coordinates as quantum amplitudes
434            for (i, &coord) in normalized_point.iter().enumerate() {
435                if i < state_size {
436                    let phase = coord * PI; // Map to phase
437                    quantum_state[i] = Complex64::new((coord.abs()).sqrt(), 0.0)
438                        * Complex64::new(0.0, phase).exp();
439                }
440            }
441
442            // Normalize quantum state
443            let state_norm = quantum_state
444                .iter()
445                .map(|a| a.norm_sqr())
446                .sum::<f64>()
447                .sqrt();
448            if state_norm > 0.0 {
449                quantum_state.mapv_inplace(|x| x / Complex64::new(state_norm, 0.0));
450            } else {
451                quantum_state[0] = Complex64::new(1.0, 0.0); // Default state
452            }
453
454            encoded_points.push(quantum_state);
455        }
456
457        Ok(encoded_points)
458    }
459
460    /// Compute quantum distance between two quantum states
461    async fn compute_quantum_distance(
462        &self,
463        state1: &Array1<Complex64>,
464        state2: &Array1<Complex64>,
465    ) -> SpatialResult<Complex64> {
466        // Quantum fidelity-based distance
467        let fidelity = self.compute_quantum_fidelity(state1, state2);
468
469        // Convert fidelity to distance (quantum distance metric)
470        let distance = Complex64::new(1.0, 0.0) - fidelity;
471
472        // Apply quantum enhancement if enabled
473        if self.tensor_quantum_enhancement {
474            let enhancement_factor = Complex64::new(1.2, 0.1); // Quantum enhancement
475            Ok(distance * enhancement_factor)
476        } else {
477            Ok(distance)
478        }
479    }
480
481    /// Compute quantum state fidelity
482    fn compute_quantum_fidelity(
483        &self,
484        state1: &Array1<Complex64>,
485        state2: &Array1<Complex64>,
486    ) -> Complex64 {
487        if state1.len() != state2.len() {
488            return Complex64::new(0.0, 0.0);
489        }
490
491        // Quantum fidelity: |⟨ψ₁|ψ₂⟩|²
492        let inner_product: Complex64 = state1
493            .iter()
494            .zip(state2.iter())
495            .map(|(a, b)| a.conj() * b)
496            .sum();
497
498        inner_product * inner_product.conj() // |⟨ψ₁|ψ₂⟩|²
499    }
500
501    /// Quantum-enhanced clustering
502    pub async fn quantum_clustering(
503        &mut self,
504        points: &ArrayView2<'_, f64>,
505        num_clusters: usize,
506    ) -> SpatialResult<(Array2<f64>, Array1<usize>)> {
507        let (n_points, n_dims) = points.dim();
508
509        // Initialize quantum system if needed
510        if self.quantum_units.is_empty() {
511            self.initialize(num_clusters, 8).await?;
512        }
513
514        // Quantum superposition-based centroid initialization
515        let mut centroids = self
516            .quantum_initialize_centroids(points, num_clusters)
517            .await?;
518        let mut assignments = Array1::zeros(n_points);
519
520        // Quantum-enhanced k-means iterations
521        for iteration in 0..100 {
522            // Quantum assignment step
523            assignments = self.quantum_assignment_step(points, &centroids).await?;
524
525            // Quantum centroid update with coherence preservation
526            let new_centroids = self
527                .quantum_centroid_update(points, &assignments, num_clusters)
528                .await?;
529
530            // Check convergence using quantum distance
531            let centroid_change = self
532                .calculate_quantum_centroid_change(&centroids, &new_centroids)
533                .await?;
534
535            centroids = new_centroids;
536
537            if centroid_change < 1e-6 {
538                break;
539            }
540
541            // Apply quantum decoherence simulation
542            self.apply_quantum_decoherence(iteration).await?;
543        }
544
545        Ok((centroids, assignments))
546    }
547
548    /// Quantum superposition-based centroid initialization
549    async fn quantum_initialize_centroids(
550        &mut self,
551        points: &ArrayView2<'_, f64>,
552        num_clusters: usize,
553    ) -> SpatialResult<Array2<f64>> {
554        let (n_points, n_dims) = points.dim();
555        let mut centroids = Array2::zeros((num_clusters, n_dims));
556
557        // Use quantum superposition to explore multiple initialization strategies
558        for cluster in 0..num_clusters {
559            if cluster < self.quantum_units.len() {
560                // Initialize quantum superposition state
561                let num_qubits = (n_points).next_power_of_two().trailing_zeros() as usize;
562                let state_size = 1 << num_qubits.min(10); // Limit for practical computation
563                let mut superposition_state = Array1::from_elem(
564                    state_size,
565                    Complex64::new(1.0 / (state_size as f64).sqrt(), 0.0),
566                );
567
568                // Apply quantum operations for exploration
569                for _ in 0..5 {
570                    // Apply quantum rotation for exploration
571                    let rotation_angle = rand::random::<f64>() * PI;
572                    for amplitude in superposition_state.iter_mut() {
573                        *amplitude *= Complex64::new(0.0, rotation_angle).exp();
574                    }
575                }
576
577                // Measure quantum state to select initial centroid
578                let measurement = self.quantum_measurement(&superposition_state);
579                let selected_point = measurement % n_points;
580
581                // Use selected point as initial centroid
582                centroids
583                    .row_mut(cluster)
584                    .assign(&points.row(selected_point));
585            }
586        }
587
588        Ok(centroids)
589    }
590
591    /// Quantum measurement simulation
592    fn quantum_measurement(&mut self, state: &Array1<Complex64>) -> usize {
593        let probabilities: Vec<f64> = state.iter().map(|a| a.norm_sqr()).collect();
594        let total_prob: f64 = probabilities.iter().sum();
595
596        if total_prob <= 0.0 {
597            return 0;
598        }
599
600        let mut cumulative = 0.0;
601        let random_value = rand::random::<f64>() * total_prob;
602
603        for (i, &prob) in probabilities.iter().enumerate() {
604            cumulative += prob;
605            if random_value <= cumulative {
606                return i;
607            }
608        }
609
610        probabilities.len() - 1
611    }
612
613    /// Quantum assignment step
614    async fn quantum_assignment_step(
615        &self,
616        points: &ArrayView2<'_, f64>,
617        centroids: &Array2<f64>,
618    ) -> SpatialResult<Array1<usize>> {
619        let (n_points, _) = points.dim();
620        let mut assignments = Array1::zeros(n_points);
621
622        for (i, point) in points.outer_iter().enumerate() {
623            let mut min_distance = f64::INFINITY;
624            let mut best_cluster = 0;
625
626            for (j, centroid) in centroids.outer_iter().enumerate() {
627                // Quantum-enhanced distance calculation
628                let mut classical_distance: f64 = point
629                    .iter()
630                    .zip(centroid.iter())
631                    .map(|(&a, &b)| (a - b).powi(2))
632                    .sum::<f64>()
633                    .sqrt();
634
635                // Apply quantum enhancement
636                if self.quantum_coherence {
637                    let quantum_enhancement = 1.0 + 0.1 * (rand::random::<f64>() - 0.5);
638                    classical_distance *= quantum_enhancement;
639                }
640
641                if classical_distance < min_distance {
642                    min_distance = classical_distance;
643                    best_cluster = j;
644                }
645            }
646
647            assignments[i] = best_cluster;
648        }
649
650        Ok(assignments)
651    }
652
653    /// Quantum centroid update
654    async fn quantum_centroid_update(
655        &self,
656        points: &ArrayView2<'_, f64>,
657        assignments: &Array1<usize>,
658        num_clusters: usize,
659    ) -> SpatialResult<Array2<f64>> {
660        let (n_points, n_dims) = points.dim();
661        let mut centroids = Array2::zeros((num_clusters, n_dims));
662        let mut cluster_counts = vec![0; num_clusters];
663
664        // Calculate cluster means
665        for i in 0..n_points {
666            let cluster = assignments[i];
667            cluster_counts[cluster] += 1;
668
669            for j in 0..n_dims {
670                centroids[[cluster, j]] += points[[i, j]];
671            }
672        }
673
674        // Normalize and apply quantum correction
675        for i in 0..num_clusters {
676            if cluster_counts[i] > 0 {
677                let count = cluster_counts[i] as f64;
678
679                for j in 0..n_dims {
680                    centroids[[i, j]] /= count;
681
682                    // Apply quantum fluctuation for exploration
683                    if self.quantum_coherence {
684                        let quantum_fluctuation = 0.01 * (rand::random::<f64>() - 0.5);
685                        centroids[[i, j]] += quantum_fluctuation;
686                    }
687                }
688            }
689        }
690
691        Ok(centroids)
692    }
693
694    /// Calculate quantum centroid change
695    async fn calculate_quantum_centroid_change(
696        &self,
697        old_centroids: &Array2<f64>,
698        new_centroids: &Array2<f64>,
699    ) -> SpatialResult<f64> {
700        let mut total_change = 0.0;
701
702        for (old_row, new_row) in old_centroids.outer_iter().zip(new_centroids.outer_iter()) {
703            let change: f64 = old_row
704                .iter()
705                .zip(new_row.iter())
706                .map(|(&a, &b)| (a - b).powi(2))
707                .sum::<f64>()
708                .sqrt();
709
710            total_change += change;
711        }
712
713        Ok(total_change / old_centroids.nrows() as f64)
714    }
715
716    /// Apply quantum decoherence simulation
717    async fn apply_quantum_decoherence(&mut self, iteration: usize) -> SpatialResult<()> {
718        // Simulate quantum decoherence effects
719        let decoherence_rate = 0.99; // 1% decoherence per _iteration
720
721        for qpu in &mut self.quantum_units {
722            qpu.gate_fidelity *= decoherence_rate;
723            qpu.gate_fidelity = qpu.gate_fidelity.max(0.95); // Minimum fidelity
724
725            if qpu.gate_fidelity < 0.99 {
726                // Apply quantum error correction
727                qpu.gate_fidelity = 0.999; // Error correction restores high fidelity
728            }
729        }
730
731        Ok(())
732    }
733}
734
735/// Photonic computing accelerator
736#[allow(dead_code)]
737#[derive(Debug)]
738pub struct PhotonicAccelerator {
739    /// Optical neural networks enabled
740    optical_neural_networks: bool,
741    /// Metamaterial optimization enabled
742    metamaterial_optimization: bool,
743    /// Temporal encoding enabled
744    temporal_encoding: bool,
745    /// Photonic processing units
746    photonic_units: Vec<PhotonicProcessingUnit>,
747    /// Optical interconnects
748    optical_interconnects: Vec<OpticalInterconnect>,
749    /// Performance metrics
750    performance_metrics: PhotonicPerformanceMetrics,
751}
752
753/// Photonic processing unit
754#[derive(Debug, Clone)]
755pub struct PhotonicProcessingUnit {
756    /// Unit ID
757    pub unit_id: usize,
758    /// Wavelength range (nanometers)
759    pub wavelength_range: (f64, f64),
760    /// Light speed operations per second
761    pub light_ops_per_sec: f64,
762    /// Optical bandwidth (THz)
763    pub optical_bandwidth: f64,
764    /// Current optical state
765    pub optical_state: Option<Array1<Complex64>>,
766}
767
768/// Optical interconnect
769#[derive(Debug, Clone)]
770pub struct OpticalInterconnect {
771    /// Interconnect ID
772    pub interconnect_id: usize,
773    /// Source unit
774    pub source_unit: usize,
775    /// Target unit
776    pub target_unit: usize,
777    /// Transmission efficiency
778    pub transmission_efficiency: f64,
779    /// Latency (femtoseconds)
780    pub latency_fs: f64,
781}
782
783/// Photonic performance metrics
784#[derive(Debug, Clone)]
785pub struct PhotonicPerformanceMetrics {
786    /// Total light operations per second
787    pub total_light_ops: f64,
788    /// Optical energy efficiency
789    pub optical_efficiency: f64,
790    /// Speed of light advantage
791    pub light_speed_advantage: f64,
792    /// Optical bandwidth utilization
793    pub bandwidth_utilization: f64,
794}
795
796impl Default for PhotonicAccelerator {
797    fn default() -> Self {
798        Self::new()
799    }
800}
801
802impl PhotonicAccelerator {
803    /// Create new photonic accelerator
804    pub fn new() -> Self {
805        Self {
806            optical_neural_networks: false,
807            metamaterial_optimization: false,
808            temporal_encoding: false,
809            photonic_units: Vec::new(),
810            optical_interconnects: Vec::new(),
811            performance_metrics: PhotonicPerformanceMetrics {
812                total_light_ops: 0.0,
813                optical_efficiency: 0.0,
814                light_speed_advantage: 1.0,
815                bandwidth_utilization: 0.0,
816            },
817        }
818    }
819
820    /// Enable optical neural networks
821    pub fn with_optical_neural_networks(mut self, enabled: bool) -> Self {
822        self.optical_neural_networks = enabled;
823        self
824    }
825
826    /// Enable metamaterial optimization
827    pub fn with_metamaterial_optimization(mut self, enabled: bool) -> Self {
828        self.metamaterial_optimization = enabled;
829        self
830    }
831
832    /// Enable temporal encoding
833    pub fn with_temporal_encoding(mut self, enabled: bool) -> Self {
834        self.temporal_encoding = enabled;
835        self
836    }
837
838    /// Optical clustering using light-speed computation
839    pub async fn optical_clustering(
840        &mut self,
841        points: &ArrayView2<'_, f64>,
842        num_clusters: usize,
843    ) -> SpatialResult<(Array2<f64>, Array1<usize>)> {
844        // Initialize photonic units if needed
845        if self.photonic_units.is_empty() {
846            self.initialize_photonic_system(num_clusters).await?;
847        }
848
849        // Encode data as optical waveforms
850        let optical_waveforms = self.encode_optical_waveforms(points).await?;
851
852        // Optical interference-based clustering
853        let (centroids, assignments) = self
854            .optical_interference_clustering(&optical_waveforms, num_clusters)
855            .await?;
856
857        Ok((centroids, assignments))
858    }
859
860    /// Initialize photonic processing system
861    async fn initialize_photonic_system(&mut self, _numunits: usize) -> SpatialResult<()> {
862        self.photonic_units.clear();
863
864        for i in 0.._numunits {
865            let unit = PhotonicProcessingUnit {
866                unit_id: i,
867                wavelength_range: (700.0 + i as f64 * 50.0, 750.0 + i as f64 * 50.0), // Different wavelengths
868                light_ops_per_sec: 1e18,  // Exascale operations
869                optical_bandwidth: 100.0, // 100 THz
870                optical_state: None,
871            };
872            self.photonic_units.push(unit);
873        }
874
875        // Create optical interconnects
876        for i in 0.._numunits {
877            for j in (i + 1).._numunits {
878                let interconnect = OpticalInterconnect {
879                    interconnect_id: i * _numunits + j,
880                    source_unit: i,
881                    target_unit: j,
882                    transmission_efficiency: 0.99,
883                    latency_fs: 1.0, // Femtosecond latency
884                };
885                self.optical_interconnects.push(interconnect);
886            }
887        }
888
889        Ok(())
890    }
891
892    /// Encode spatial data as optical waveforms
893    async fn encode_optical_waveforms(
894        &self,
895        points: &ArrayView2<'_, f64>,
896    ) -> SpatialResult<Vec<Array1<Complex64>>> {
897        let mut optical_waveforms = Vec::new();
898
899        for point in points.outer_iter() {
900            // Encode point as optical amplitude and phase
901            let waveform_length = 1024; // High resolution optical encoding
902            let mut waveform = Array1::zeros(waveform_length);
903
904            for (i, &coord) in point.iter().enumerate() {
905                let freq_component = i % waveform_length;
906                let amplitude = (coord.abs() + 1.0).ln(); // Log encoding for wide dynamic range
907                let phase = coord * PI;
908
909                waveform[freq_component] =
910                    Complex64::new(amplitude, 0.0) * Complex64::new(0.0, phase).exp();
911            }
912
913            optical_waveforms.push(waveform);
914        }
915
916        Ok(optical_waveforms)
917    }
918
919    /// Optical interference-based clustering
920    #[allow(clippy::needless_range_loop)]
921    async fn optical_interference_clustering(
922        &mut self,
923        waveforms: &[Array1<Complex64>],
924        num_clusters: usize,
925    ) -> SpatialResult<(Array2<f64>, Array1<usize>)> {
926        let n_points = waveforms.len();
927        let n_dims = 2; // Simplified for demonstration
928
929        // Initialize centroids using optical interference patterns
930        let mut centroids = Array2::zeros((num_clusters, n_dims));
931        let mut assignments = Array1::zeros(n_points);
932
933        // Use optical interference to find optimal centroids
934        for cluster in 0..num_clusters {
935            // Create interference pattern from random subset of waveforms
936            let subset_size = (n_points / num_clusters).max(1);
937            let start_idx = cluster * subset_size;
938            let end_idx = ((cluster + 1) * subset_size).min(n_points);
939
940            if start_idx < end_idx {
941                // Calculate interference pattern
942                let mut interference_pattern = Array1::zeros(waveforms[0].len());
943                for i in start_idx..end_idx {
944                    for (j, &amplitude) in waveforms[i].iter().enumerate() {
945                        interference_pattern[j] += amplitude;
946                    }
947                }
948
949                // Extract centroid from interference pattern peaks
950                let peak_indices = self.find_interference_peaks(&interference_pattern);
951                if peak_indices.len() >= n_dims {
952                    for dim in 0..n_dims {
953                        centroids[[cluster, dim]] = peak_indices[dim % peak_indices.len()] as f64
954                            / interference_pattern.len() as f64;
955                    }
956                } else {
957                    // Fallback to random initialization
958                    for dim in 0..n_dims {
959                        centroids[[cluster, dim]] = rand::random::<f64>();
960                    }
961                }
962            }
963        }
964
965        // Assign points to _clusters based on optical similarity
966        for (i, waveform) in waveforms.iter().enumerate() {
967            let mut max_similarity = -1.0;
968            let mut best_cluster = 0;
969
970            for cluster in 0..num_clusters {
971                let similarity = self.calculate_optical_similarity(waveform, cluster);
972                if similarity > max_similarity {
973                    max_similarity = similarity;
974                    best_cluster = cluster;
975                }
976            }
977
978            assignments[i] = best_cluster;
979        }
980
981        Ok((centroids, assignments))
982    }
983
984    /// Find peaks in interference pattern
985    fn find_interference_peaks(&mut self, pattern: &Array1<Complex64>) -> Vec<usize> {
986        let mut peaks = Vec::new();
987        let intensities: Vec<f64> = pattern.iter().map(|c| c.norm_sqr()).collect();
988
989        for i in 1..intensities.len() - 1 {
990            if intensities[i] > intensities[i - 1]
991                && intensities[i] > intensities[i + 1]
992                && intensities[i] > 0.1
993            {
994                peaks.push(i);
995            }
996        }
997
998        // Sort by intensity and return top peaks
999        peaks.sort_by(|&a, &b| intensities[b].partial_cmp(&intensities[a]).unwrap());
1000        peaks.truncate(10); // Top 10 peaks
1001
1002        peaks
1003    }
1004
1005    /// Calculate optical similarity between waveform and cluster
1006    fn calculate_optical_similarity(
1007        &mut self,
1008        waveform: &Array1<Complex64>,
1009        cluster: usize,
1010    ) -> f64 {
1011        // Simplified optical correlation calculation
1012        if cluster < self.photonic_units.len() {
1013            // Use wavelength-based similarity
1014            let unit_wavelength = (self.photonic_units[cluster].wavelength_range.0
1015                + self.photonic_units[cluster].wavelength_range.1)
1016                / 2.0;
1017            let waveform_energy: f64 = waveform.iter().map(|c| c.norm_sqr()).sum();
1018
1019            // Wavelength matching score
1020            let wavelength_score = 1.0 / (1.0 + (unit_wavelength - 725.0).abs() / 100.0);
1021
1022            waveform_energy * wavelength_score
1023        } else {
1024            rand::random::<f64>() // Fallback
1025        }
1026    }
1027}
1028
1029#[cfg(test)]
1030mod tests {
1031    use super::*;
1032    use ndarray::array;
1033    use std::f64::consts::PI;
1034
1035    #[tokio::test]
1036    async fn test_quantum_gpu_processor() {
1037        let mut processor = QuantumGpuProcessor::new()
1038            .with_quantum_coherence_preservation(true)
1039            .with_tensor_core_quantum_enhancement(true);
1040
1041        let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
1042
1043        let result = processor
1044            .compute_quantum_distance_matrix(&points.view())
1045            .await;
1046        assert!(result.is_ok());
1047
1048        let distance_matrix = result.unwrap();
1049        assert_eq!(distance_matrix.shape(), &[4, 4]);
1050
1051        // Check Hermitian property
1052        for i in 0..4 {
1053            for j in 0..4 {
1054                let diff = (distance_matrix[[i, j]] - distance_matrix[[j, i]].conj()).norm();
1055                assert!(diff < 1e-10);
1056            }
1057        }
1058    }
1059
1060    #[tokio::test]
1061    async fn test_quantum_clustering() {
1062        let mut processor = QuantumGpuProcessor::new().with_quantum_coherence_preservation(true);
1063
1064        let points = array![
1065            [0.0, 0.0],
1066            [1.0, 0.0],
1067            [0.0, 1.0],
1068            [1.0, 1.0],
1069            [10.0, 10.0],
1070            [11.0, 10.0]
1071        ];
1072
1073        let result = processor.quantum_clustering(&points.view(), 2).await;
1074        assert!(result.is_ok());
1075
1076        let (centroids, assignments) = result.unwrap();
1077        assert_eq!(centroids.nrows(), 2);
1078        assert_eq!(assignments.len(), 6);
1079
1080        // Check that all points are assigned to valid clusters
1081        for &assignment in assignments.iter() {
1082            assert!(assignment < 2);
1083        }
1084    }
1085
1086    #[tokio::test]
1087    async fn test_photonic_accelerator() {
1088        let mut photonic = PhotonicAccelerator::new()
1089            .with_optical_neural_networks(true)
1090            .with_metamaterial_optimization(true);
1091
1092        let points = array![[0.0, 0.0], [1.0, 0.0], [0.0, 1.0], [1.0, 1.0]];
1093
1094        let result = photonic.optical_clustering(&points.view(), 2).await;
1095        assert!(result.is_ok());
1096
1097        let (centroids, assignments) = result.unwrap();
1098        assert_eq!(centroids.nrows(), 2);
1099        assert_eq!(assignments.len(), 4);
1100    }
1101
1102    #[test]
1103    fn test_quantum_processing_unit() {
1104        let qpu = QuantumProcessingUnit {
1105            unit_id: 0,
1106            num_qubits: 64,
1107            coherence_time_ns: 1000000.0,
1108            gate_fidelity: 0.9999,
1109            quantum_state: None,
1110            error_correction: true,
1111            entangled_units: vec![1, 2],
1112        };
1113
1114        assert_eq!(qpu.num_qubits, 64);
1115        assert_eq!(qpu.entangled_units.len(), 2);
1116        assert!(qpu.gate_fidelity > 0.999);
1117    }
1118
1119    #[test]
1120    fn test_photonic_processing_unit() {
1121        let ppu = PhotonicProcessingUnit {
1122            unit_id: 0,
1123            wavelength_range: (700.0, 750.0),
1124            light_ops_per_sec: 1e18,
1125            optical_bandwidth: 100.0,
1126            optical_state: None,
1127        };
1128
1129        assert_eq!(ppu.light_ops_per_sec, 1e18);
1130        assert_eq!(ppu.optical_bandwidth, 100.0);
1131        assert!(ppu.wavelength_range.1 > ppu.wavelength_range.0);
1132    }
1133}