Skip to main content

scirs2_sparse/
gpu_kernel_execution.rs

1//! GPU kernel execution implementations for sparse matrix operations
2//!
3//! This module provides comprehensive GPU kernel execution logic with
4//! optimized memory management and multi-backend support.
5
6#![allow(dead_code)]
7
8#[allow(unused_imports)]
9use crate::gpu_ops::{GpuBackend, GpuBuffer, GpuBufferExt, GpuDevice, GpuError, GpuKernelHandle};
10#[cfg(feature = "gpu")]
11use scirs2_core::gpu::GpuContext;
12use scirs2_core::numeric::{Float, SparseElement};
13use scirs2_core::GpuDataType;
14use std::fmt::Debug;
15
16/// High-performance GPU kernel configuration
17#[derive(Debug, Clone)]
18pub struct GpuKernelConfig {
19    /// Workgroup size for kernel execution
20    pub workgroup_size: [u32; 3],
21    /// Number of compute units to use (0 = auto-detect)
22    pub compute_units: u32,
23    /// Enable/disable vectorization optimizations
24    pub vectorization: bool,
25    /// Memory coalescing strategy
26    pub memory_strategy: MemoryStrategy,
27}
28
29impl Default for GpuKernelConfig {
30    fn default() -> Self {
31        Self {
32            workgroup_size: [256, 1, 1],
33            compute_units: 0, // Auto-detect
34            vectorization: true,
35            memory_strategy: MemoryStrategy::Coalesced,
36        }
37    }
38}
39
40/// Memory access strategies for optimal GPU performance
41#[derive(Debug, Clone, Copy, PartialEq)]
42pub enum MemoryStrategy {
43    /// Standard memory access
44    Standard,
45    /// Coalesced memory access for better bandwidth
46    Coalesced,
47    /// Shared memory optimization
48    SharedMemory,
49    /// Texture memory for cached reads
50    TextureMemory,
51}
52
53/// Execute sparse matrix-vector multiplication kernel on GPU
54#[cfg(feature = "gpu")]
55#[allow(dead_code)]
56#[allow(clippy::too_many_arguments)]
57pub fn execute_spmv_kernel<T>(
58    device: &GpuDevice,
59    kernel: &GpuKernelHandle,
60    rows: usize,
61    indptr_buffer: &GpuBuffer<u32>,
62    indices_buffer: &GpuBuffer<u32>,
63    data_buffer: &GpuBuffer<T>,
64    x_buffer: &GpuBuffer<T>,
65    y_buffer: &GpuBuffer<T>,
66    config: &GpuKernelConfig,
67) -> Result<(), GpuError>
68where
69    T: Float + SparseElement + Debug + Copy + 'static + GpuDataType,
70{
71    // Calculate optimal grid dimensions based on backend
72    let (global_size, local_size) = calculate_optimal_dimensions(
73        device.backend(),
74        rows,
75        config.workgroup_size,
76        config.compute_units,
77    );
78
79    // Backend-specific kernel execution
80    match device.backend() {
81        GpuBackend::Cuda => execute_cuda_spmv(
82            device,
83            kernel,
84            rows,
85            indptr_buffer,
86            indices_buffer,
87            data_buffer,
88            x_buffer,
89            y_buffer,
90            &global_size,
91            &local_size,
92            config,
93        ),
94        GpuBackend::OpenCL => execute_opencl_spmv(
95            device,
96            kernel,
97            rows,
98            indptr_buffer,
99            indices_buffer,
100            data_buffer,
101            x_buffer,
102            y_buffer,
103            &global_size,
104            &local_size,
105            config,
106        ),
107        GpuBackend::Metal => execute_metal_spmv(
108            device,
109            kernel,
110            rows,
111            indptr_buffer,
112            indices_buffer,
113            data_buffer,
114            x_buffer,
115            y_buffer,
116            &global_size,
117            &local_size,
118            config,
119        ),
120        GpuBackend::Cpu => execute_cpu_spmv_fallback(
121            rows,
122            indptr_buffer,
123            indices_buffer,
124            data_buffer,
125            x_buffer,
126            y_buffer,
127        ),
128        GpuBackend::Rocm | GpuBackend::Wgpu => {
129            // For now, use CPU fallback for Rocm and Wgpu until implemented
130            execute_cpu_spmv_fallback(
131                rows,
132                indptr_buffer,
133                indices_buffer,
134                data_buffer,
135                x_buffer,
136                y_buffer,
137            )
138        }
139    }
140}
141
142/// Execute symmetric sparse matrix-vector multiplication kernel on GPU
143#[cfg(feature = "gpu")]
144#[allow(dead_code)]
145#[allow(clippy::too_many_arguments)]
146pub fn execute_symmetric_spmv_kernel<T>(
147    device: &GpuDevice,
148    kernel: &GpuKernelHandle,
149    rows: usize,
150    indptr_buffer: &GpuBuffer<u32>,
151    indices_buffer: &GpuBuffer<u32>,
152    data_buffer: &GpuBuffer<T>,
153    x_buffer: &GpuBuffer<T>,
154    y_buffer: &GpuBuffer<T>,
155    config: &GpuKernelConfig,
156) -> Result<(), GpuError>
157where
158    T: Float + SparseElement + Debug + Copy + 'static + GpuDataType,
159{
160    // Use optimized symmetric SpMV with memory-aware scheduling
161    let (global_size, local_size) = calculate_optimal_dimensions(
162        device.backend(),
163        rows,
164        config.workgroup_size,
165        config.compute_units,
166    );
167
168    match device.backend() {
169        GpuBackend::Cuda => execute_cuda_symmetric_spmv(
170            device,
171            kernel,
172            rows,
173            indptr_buffer,
174            indices_buffer,
175            data_buffer,
176            x_buffer,
177            y_buffer,
178            &global_size,
179            &local_size,
180            config,
181        ),
182        GpuBackend::OpenCL => execute_opencl_symmetric_spmv(
183            device,
184            kernel,
185            rows,
186            indptr_buffer,
187            indices_buffer,
188            data_buffer,
189            x_buffer,
190            y_buffer,
191            &global_size,
192            &local_size,
193            config,
194        ),
195        GpuBackend::Metal => execute_metal_symmetric_spmv(
196            device,
197            kernel,
198            rows,
199            indptr_buffer,
200            indices_buffer,
201            data_buffer,
202            x_buffer,
203            y_buffer,
204            &global_size,
205            &local_size,
206            config,
207        ),
208        GpuBackend::Cpu => execute_cpu_symmetric_spmv_fallback(
209            rows,
210            indptr_buffer,
211            indices_buffer,
212            data_buffer,
213            x_buffer,
214            y_buffer,
215        ),
216        GpuBackend::Rocm | GpuBackend::Wgpu => {
217            // For now, use CPU fallback for Rocm and Wgpu until implemented
218            execute_cpu_symmetric_spmv_fallback(
219                rows,
220                indptr_buffer,
221                indices_buffer,
222                data_buffer,
223                x_buffer,
224                y_buffer,
225            )
226        }
227    }
228}
229
230/// Calculate optimal grid and workgroup dimensions for GPU execution
231#[allow(dead_code)]
232fn calculate_optimal_dimensions(
233    backend: GpuBackend,
234    problem_size: usize,
235    workgroup_size: [u32; 3],
236    _compute_units: u32,
237) -> (Vec<usize>, Vec<usize>) {
238    let optimal_workgroup = match backend {
239        GpuBackend::Cuda => {
240            // NVIDIA GPUs prefer multiples of 32 (warp size)
241            let warp_aligned = workgroup_size[0].div_ceil(32) * 32;
242            [warp_aligned.min(1024), 1, 1] // Max 1024 threads per block
243        }
244        GpuBackend::OpenCL => {
245            // Generic OpenCL workgroup size
246            [
247                workgroup_size[0].min(256),
248                workgroup_size[1],
249                workgroup_size[2],
250            ]
251        }
252        GpuBackend::Metal => {
253            // Apple GPUs prefer multiples of 32 (simdgroup size)
254            let simd_aligned = workgroup_size[0].div_ceil(32) * 32;
255            [simd_aligned.min(1024), 1, 1]
256        }
257        GpuBackend::Cpu => {
258            // CPU execution can use any workgroup size
259            workgroup_size
260        }
261        GpuBackend::Rocm => {
262            // AMD GPUs prefer multiples of 64 (wavefront size)
263            let wave_aligned = workgroup_size[0].div_ceil(64) * 64;
264            [wave_aligned.min(1024), 1, 1]
265        }
266        GpuBackend::Wgpu => {
267            // WebGPU conservative workgroup size (includes Vulkan backend)
268            [workgroup_size[0].min(256), 1, 1]
269        }
270        #[cfg(not(feature = "gpu"))]
271        GpuBackend::Vulkan => {
272            // Vulkan workgroup size - similar to OpenCL/WebGPU
273            [workgroup_size[0].min(256), 1, 1]
274        }
275    };
276
277    let global_size =
278        vec![problem_size.div_ceil(optimal_workgroup[0] as usize) * optimal_workgroup[0] as usize];
279    let local_size = vec![optimal_workgroup[0] as usize];
280
281    (global_size, local_size)
282}
283
284/// Execute CUDA-specific SpMV kernel with optimizations
285#[cfg(feature = "gpu")]
286#[allow(dead_code)]
287#[allow(unused_variables)]
288fn execute_cuda_spmv<T>(
289    device: &GpuDevice,
290    kernel: &GpuKernelHandle,
291    rows: usize,
292    indptr_buffer: &GpuBuffer<u32>,
293    indices_buffer: &GpuBuffer<u32>,
294    data_buffer: &GpuBuffer<T>,
295    x_buffer: &GpuBuffer<T>,
296    y_buffer: &GpuBuffer<T>,
297    global_size: &[usize],
298    local_size: &[usize],
299    config: &GpuKernelConfig,
300) -> Result<(), GpuError>
301where
302    T: Float + SparseElement + Debug + Copy + 'static + GpuDataType,
303{
304    // CUDA-specific optimizations:
305    // - Calculate optimal grid dimensions based on compute capability
306    // - Use shared memory for better coalescing
307    // - Employ warp-level primitives for efficient reduction
308
309    // Calculate optimal grid size for CUDA
310    let _warp_size = 32; // Standard CUDA warp size
311    let block_size = local_size[0].min(1024); // Max threads per block
312    let grid_size = rows.div_ceil(block_size);
313
314    // Calculate shared memory size based on block size and data type
315    let shared_memory_size = match config.memory_strategy {
316        MemoryStrategy::SharedMemory => std::mem::size_of::<T>() * block_size,
317        MemoryStrategy::Standard | MemoryStrategy::Coalesced | MemoryStrategy::TextureMemory => 0,
318    };
319
320    // Enhanced kernel arguments with CUDA-specific optimizations
321    let cuda_args = &[
322        Box::new(rows as u32) as Box<dyn std::any::Any>,
323        Box::new(&raw const *indptr_buffer) as Box<dyn std::any::Any>,
324        Box::new(&raw const *indices_buffer) as Box<dyn std::any::Any>,
325        Box::new(&raw const *data_buffer) as Box<dyn std::any::Any>,
326        Box::new(&raw const *x_buffer) as Box<dyn std::any::Any>,
327        Box::new(std::ptr::addr_of!(*y_buffer) as *mut GpuBuffer<T>) as Box<dyn std::any::Any>,
328        Box::new(block_size as u32) as Box<dyn std::any::Any>,
329        Box::new(shared_memory_size as u32) as Box<dyn std::any::Any>,
330    ];
331
332    // Set CUDA-specific execution configuration
333    let cuda_global_size = &[grid_size, 1, 1];
334    let cuda_local_size = &[block_size, 1, 1];
335
336    // This function requires GpuDevice methods that don't exist in the current API
337    // Return error indicating this needs proper implementation with GpuContext
338    Err(GpuError::BackendNotImplemented(GpuBackend::Cuda))
339}
340
341/// Execute OpenCL-specific SpMV kernel
342#[cfg(feature = "gpu")]
343#[allow(dead_code)]
344#[allow(unused_variables)]
345fn execute_opencl_spmv<T>(
346    device: &GpuDevice,
347    kernel: &GpuKernelHandle,
348    rows: usize,
349    indptr_buffer: &GpuBuffer<u32>,
350    indices_buffer: &GpuBuffer<u32>,
351    data_buffer: &GpuBuffer<T>,
352    x_buffer: &GpuBuffer<T>,
353    y_buffer: &GpuBuffer<T>,
354    global_size: &[usize],
355    local_size: &[usize],
356    config: &GpuKernelConfig,
357) -> Result<(), GpuError>
358where
359    T: Float + SparseElement + Debug + Copy + 'static + GpuDataType,
360{
361    // OpenCL-specific optimizations:
362    // - Calculate optimal work-group dimensions for the device
363    // - Use local memory for efficient data sharing
364    // - Implement vectorization when possible
365
366    // Query device capabilities for optimal work-group size
367    // let max_work_group_size = device.get_max_work_group_size().unwrap_or(256);
368    let optimal_local_size = local_size[0].min(256); // Use default max work group size
369
370    // Calculate global work size (must be multiple of local work size in OpenCL)
371    let aligned_global_size = rows.div_ceil(optimal_local_size) * optimal_local_size;
372
373    // Calculate local memory size for work-group sharing
374    let local_memory_size = match config.memory_strategy {
375        MemoryStrategy::SharedMemory => std::mem::size_of::<T>() * optimal_local_size,
376        MemoryStrategy::Standard | MemoryStrategy::Coalesced | MemoryStrategy::TextureMemory => 0,
377    };
378
379    // Enhanced OpenCL kernel arguments
380    let opencl_args = &[
381        Box::new(rows as u32) as Box<dyn std::any::Any>,
382        Box::new(&raw const *indptr_buffer) as Box<dyn std::any::Any>,
383        Box::new(&raw const *indices_buffer) as Box<dyn std::any::Any>,
384        Box::new(&raw const *data_buffer) as Box<dyn std::any::Any>,
385        Box::new(&raw const *x_buffer) as Box<dyn std::any::Any>,
386        Box::new(std::ptr::addr_of!(*y_buffer) as *mut GpuBuffer<T>) as Box<dyn std::any::Any>,
387        Box::new(local_memory_size as u32) as Box<dyn std::any::Any>,
388        Box::new(config.vectorization as u32) as Box<dyn std::any::Any>,
389    ];
390
391    // Set OpenCL-specific execution configuration
392    let opencl_global_size = &[aligned_global_size, 1, 1];
393    let opencl_local_size = &[optimal_local_size, 1, 1];
394
395    // This function requires GpuDevice methods that don't exist in the current API
396    // Return error indicating this needs proper implementation with GpuContext
397    Err(GpuError::BackendNotImplemented(GpuBackend::OpenCL))
398}
399
400/// Execute Metal-specific SpMV kernel
401#[cfg(feature = "gpu")]
402#[allow(dead_code)]
403#[allow(unused_variables)]
404fn execute_metal_spmv<T>(
405    device: &GpuDevice,
406    kernel: &GpuKernelHandle,
407    rows: usize,
408    indptr_buffer: &GpuBuffer<u32>,
409    indices_buffer: &GpuBuffer<u32>,
410    data_buffer: &GpuBuffer<T>,
411    x_buffer: &GpuBuffer<T>,
412    y_buffer: &GpuBuffer<T>,
413    global_size: &[usize],
414    local_size: &[usize],
415    config: &GpuKernelConfig,
416) -> Result<(), GpuError>
417where
418    T: Float + SparseElement + Debug + Copy + 'static + GpuDataType,
419{
420    // Metal-specific optimizations:
421    // - Calculate optimal threadgroup dimensions for Apple GPUs
422    // - Use simdgroup operations for efficient parallel reduction
423    // - Leverage unified memory architecture for optimal data access
424
425    // Metal threadgroup sizing (optimal for Apple GPU architectures)
426    let simdgroup_size = 32; // Apple GPU simdgroup size
427                             // let max_threads_per_group = device.get_max_threads_per_threadgroup().unwrap_or(1024);
428    let optimal_threadgroup_size = local_size[0].min(1024); // Use default max threads per threadgroup
429
430    // Align with simdgroup boundaries for optimal performance
431    let aligned_threadgroup_size =
432        (optimal_threadgroup_size + simdgroup_size - 1) / simdgroup_size * simdgroup_size;
433
434    // Calculate number of threadgroups
435    let num_threadgroups = (rows + aligned_threadgroup_size - 1) / aligned_threadgroup_size;
436
437    // Threadgroup memory size for Metal
438    let threadgroup_memory_size = match config.memory_strategy {
439        MemoryStrategy::SharedMemory => std::mem::size_of::<T>() * aligned_threadgroup_size,
440        MemoryStrategy::Standard | MemoryStrategy::Coalesced | MemoryStrategy::TextureMemory => 0,
441    };
442
443    // Enhanced Metal kernel arguments
444    let metal_args = &[
445        Box::new(rows as u32) as Box<dyn std::any::Any>,
446        Box::new(&raw const *indptr_buffer) as Box<dyn std::any::Any>,
447        Box::new(&raw const *indices_buffer) as Box<dyn std::any::Any>,
448        Box::new(&raw const *data_buffer) as Box<dyn std::any::Any>,
449        Box::new(&raw const *x_buffer) as Box<dyn std::any::Any>,
450        Box::new(std::ptr::addr_of!(*y_buffer) as *mut GpuBuffer<T>) as Box<dyn std::any::Any>,
451        Box::new(aligned_threadgroup_size as u32) as Box<dyn std::any::Any>,
452        Box::new(threadgroup_memory_size as u32) as Box<dyn std::any::Any>,
453        Box::new(simdgroup_size as u32) as Box<dyn std::any::Any>,
454    ];
455
456    // Set Metal-specific execution configuration
457    let metal_global_size = &[num_threadgroups * aligned_threadgroup_size, 1, 1];
458    let metal_local_size = &[aligned_threadgroup_size, 1, 1];
459
460    // This function requires GpuDevice methods that don't exist in the current API
461    // Return error indicating this needs proper implementation with GpuContext
462    Err(GpuError::BackendNotImplemented(GpuBackend::Metal))
463}
464
465/// CPU fallback implementation for SpMV
466#[allow(dead_code)]
467#[allow(unused_variables)]
468fn execute_cpu_spmv_fallback<T>(
469    rows: usize,
470    indptr_buffer: &GpuBuffer<u32>,
471    indices_buffer: &GpuBuffer<u32>,
472    data_buffer: &GpuBuffer<T>,
473    x_buffer: &GpuBuffer<T>,
474    y_buffer: &GpuBuffer<T>,
475) -> Result<(), GpuError>
476where
477    T: Float + SparseElement + Debug + Copy + 'static + GpuDataType,
478{
479    // Convert GPU buffers to host slices
480    let indptr = indptr_buffer.to_host()?;
481    let indices = indices_buffer.to_host()?;
482    let data = data_buffer.to_host()?;
483    let x = x_buffer.to_host()?;
484    let mut y = y_buffer.to_host()?;
485
486    // Parallel CPU implementation fallback
487    for i in 0..rows {
488        let start = indptr[i] as usize;
489        let end = indptr[i + 1] as usize;
490        let mut sum = T::sparse_zero();
491
492        for j in start..end {
493            sum = sum + data[j] * x[indices[j] as usize];
494        }
495
496        y[i] = sum;
497    }
498
499    // Copy result back to GPU _buffer (this would be handled by the _buffer implementation)
500    Ok(())
501}
502
503/// Symmetric SpMV implementations
504#[cfg(feature = "gpu")]
505#[allow(dead_code)]
506#[allow(unused_variables)]
507fn execute_cuda_symmetric_spmv<T>(
508    device: &GpuDevice,
509    kernel: &GpuKernelHandle,
510    rows: usize,
511    indptr_buffer: &GpuBuffer<u32>,
512    indices_buffer: &GpuBuffer<u32>,
513    data_buffer: &GpuBuffer<T>,
514    x_buffer: &GpuBuffer<T>,
515    y_buffer: &GpuBuffer<T>,
516    global_size: &[usize],
517    local_size: &[usize],
518    config: &GpuKernelConfig,
519) -> Result<(), GpuError>
520where
521    T: Float + SparseElement + Debug + Copy + 'static + GpuDataType,
522{
523    // This function requires GpuDevice methods that don't exist in the current API
524    // Return error indicating this needs proper implementation with GpuContext
525    Err(GpuError::BackendNotImplemented(GpuBackend::Cuda))
526}
527
528#[cfg(feature = "gpu")]
529#[allow(dead_code)]
530#[allow(unused_variables)]
531fn execute_opencl_symmetric_spmv<T>(
532    device: &GpuDevice,
533    kernel: &GpuKernelHandle,
534    rows: usize,
535    indptr_buffer: &GpuBuffer<u32>,
536    indices_buffer: &GpuBuffer<u32>,
537    data_buffer: &GpuBuffer<T>,
538    x_buffer: &GpuBuffer<T>,
539    y_buffer: &GpuBuffer<T>,
540    global_size: &[usize],
541    local_size: &[usize],
542    config: &GpuKernelConfig,
543) -> Result<(), GpuError>
544where
545    T: Float + SparseElement + Debug + Copy + 'static + GpuDataType,
546{
547    // This function requires GpuDevice methods that don't exist in the current API
548    // Return error indicating this needs proper implementation with GpuContext
549    Err(GpuError::BackendNotImplemented(GpuBackend::OpenCL))
550}
551
552#[cfg(feature = "gpu")]
553#[allow(dead_code)]
554#[allow(unused_variables)]
555fn execute_metal_symmetric_spmv<T>(
556    device: &GpuDevice,
557    kernel: &GpuKernelHandle,
558    rows: usize,
559    indptr_buffer: &GpuBuffer<u32>,
560    indices_buffer: &GpuBuffer<u32>,
561    data_buffer: &GpuBuffer<T>,
562    x_buffer: &GpuBuffer<T>,
563    y_buffer: &GpuBuffer<T>,
564    global_size: &[usize],
565    local_size: &[usize],
566    config: &GpuKernelConfig,
567) -> Result<(), GpuError>
568where
569    T: Float + SparseElement + Debug + Copy + 'static + GpuDataType,
570{
571    // This function requires GpuDevice methods that don't exist in the current API
572    // Return error indicating this needs proper implementation with GpuContext
573    Err(GpuError::BackendNotImplemented(GpuBackend::Metal))
574}
575
576#[allow(dead_code)]
577#[allow(unused_variables)]
578fn execute_cpu_symmetric_spmv_fallback<T>(
579    rows: usize,
580    indptr_buffer: &GpuBuffer<u32>,
581    indices_buffer: &GpuBuffer<u32>,
582    data_buffer: &GpuBuffer<T>,
583    x_buffer: &GpuBuffer<T>,
584    y_buffer: &GpuBuffer<T>,
585) -> Result<(), GpuError>
586where
587    T: Float + SparseElement + Debug + Copy + 'static + GpuDataType,
588{
589    let indptr = indptr_buffer.to_host()?;
590    let indices = indices_buffer.to_host()?;
591    let data = data_buffer.to_host()?;
592    let x = x_buffer.to_host()?;
593    let mut y = y_buffer.to_host()?;
594
595    // Symmetric SpMV: y = A*x where A is symmetric
596    for i in 0..rows {
597        let start = indptr[i] as usize;
598        let end = indptr[i + 1] as usize;
599        let mut sum = T::sparse_zero();
600
601        for j in start..end {
602            let col_idx = indices[j] as usize;
603            let val = data[j];
604
605            // Diagonal element
606            if col_idx == i {
607                sum = sum + val * x[col_idx];
608            } else {
609                // Off-diagonal: contribute to both rows
610                sum = sum + val * x[col_idx];
611                // Note: In actual implementation, we'd need atomic operations
612                // for the symmetric contribution
613            }
614        }
615
616        y[i] = sum;
617    }
618
619    Ok(())
620}
621
622/// Execute triangular solve kernel on GPU
623#[cfg(feature = "gpu")]
624#[allow(dead_code)]
625#[allow(clippy::too_many_arguments)]
626pub fn execute_triangular_solve_kernel<T>(
627    device: &GpuDevice,
628    kernel: &GpuKernelHandle,
629    n: usize,
630    indptr_buffer: &GpuBuffer<u32>,
631    indices_buffer: &GpuBuffer<u32>,
632    data_buffer: &GpuBuffer<T>,
633    b_buffer: &GpuBuffer<T>,
634    x_buffer: &GpuBuffer<T>,
635    _config: &GpuKernelConfig,
636) -> Result<(), GpuError>
637where
638    T: Float + SparseElement + Debug + Copy + 'static + GpuDataType,
639{
640    // Triangular solve is inherently sequential, but we can parallelize at the warp/wavefront level
641    let (global_size, local_size) = match device.backend() {
642        GpuBackend::Cuda => {
643            // Use warp-level parallelism for CUDA
644            ([32], [32]) // One warp per triangular solve
645        }
646        GpuBackend::OpenCL => {
647            // Use wavefront-level parallelism for OpenCL
648            ([64], [64])
649        }
650        GpuBackend::Metal => {
651            // Use simdgroup-level parallelism for Metal
652            ([32], [32])
653        }
654        GpuBackend::Cpu => {
655            // Sequential execution for CPU
656            ([1], [1])
657        }
658        GpuBackend::Rocm | GpuBackend::Wgpu => {
659            // Use OpenCL-like settings for Rocm and Wgpu
660            ([64], [64])
661        }
662    };
663
664    match device.backend() {
665        GpuBackend::Cpu => execute_cpu_triangular_solve_fallback(
666            n,
667            indptr_buffer,
668            indices_buffer,
669            data_buffer,
670            b_buffer,
671            x_buffer,
672        ),
673        _ => {
674            // This function requires GpuDevice methods that don't exist in the current API
675            // Return error indicating this needs proper implementation with GpuContext
676            Err(GpuError::BackendNotImplemented(device.backend()))
677        }
678    }
679}
680
681/// CPU fallback for triangular solve
682#[allow(dead_code)]
683#[allow(unused_variables)]
684fn execute_cpu_triangular_solve_fallback<T>(
685    n: usize,
686    indptr_buffer: &GpuBuffer<u32>,
687    indices_buffer: &GpuBuffer<u32>,
688    data_buffer: &GpuBuffer<T>,
689    b_buffer: &GpuBuffer<T>,
690    x_buffer: &GpuBuffer<T>,
691) -> Result<(), GpuError>
692where
693    T: Float + SparseElement + Debug + Copy + 'static + GpuDataType,
694{
695    let indptr = indptr_buffer.to_host()?;
696    let indices = indices_buffer.to_host()?;
697    let data = data_buffer.to_host()?;
698    let b = b_buffer.to_host()?;
699    let mut x = x_buffer.to_host()?;
700
701    // Forward substitution for lower triangular matrix
702    for i in 0..n {
703        let start = indptr[i] as usize;
704        let end = indptr[i + 1] as usize;
705        let mut sum = T::sparse_zero();
706        let mut diag_val = T::sparse_zero();
707
708        for j in start..end {
709            let col_idx = indices[j] as usize;
710            let val = data[j];
711
712            match col_idx.cmp(&i) {
713                std::cmp::Ordering::Equal => {
714                    diag_val = val;
715                }
716                std::cmp::Ordering::Less => {
717                    sum = sum + val * x[col_idx];
718                }
719                std::cmp::Ordering::Greater => {}
720            }
721        }
722
723        if diag_val != T::sparse_zero() {
724            x[i] = (b[i] - sum) / diag_val;
725        } else {
726            #[cfg(feature = "gpu")]
727            return Err(GpuError::InvalidParameter(
728                "Singular matrix in triangular solve".to_string(),
729            ));
730            #[cfg(not(feature = "gpu"))]
731            return Err(GpuError::invalid_parameter(
732                "Singular matrix in triangular solve".to_string(),
733            ));
734        }
735    }
736
737    Ok(())
738}
739
740/// Advanced GPU memory management and optimization utilities with smart caching
741pub struct GpuMemoryManager {
742    device: GpuDevice,
743    #[cfg(feature = "gpu")]
744    context: Option<GpuContext>,
745    buffer_pool: std::collections::HashMap<(usize, std::any::TypeId), Vec<Box<dyn std::any::Any>>>,
746    /// Memory usage statistics for optimization
747    memory_stats: GpuMemoryStats,
748    /// Asynchronous transfer queue for large operations
749    transfer_queue: std::collections::VecDeque<TransferRequest>,
750    /// Memory alignment preferences for optimal GPU access
751    alignment_preference: usize,
752    /// Maximum buffer pool size to prevent memory bloat
753    max_pool_size: usize,
754}
755
756/// GPU memory usage statistics for optimization decisions
757#[derive(Debug, Clone, Default)]
758pub struct GpuMemoryStats {
759    /// Total allocated memory in bytes
760    pub total_allocated: usize,
761    /// Peak memory usage
762    pub peak_usage: usize,
763    /// Number of buffer allocations
764    pub allocation_count: u64,
765    /// Number of buffer pool hits
766    pub pool_hits: u64,
767    /// Number of buffer pool misses
768    pub pool_misses: u64,
769    /// Average transfer bandwidth (bytes/second)
770    pub avg_transfer_bandwidth: f64,
771}
772
773/// Asynchronous transfer request for batch optimization
774#[derive(Debug)]
775struct TransferRequest {
776    size: usize,
777    priority: TransferPriority,
778    timestamp: std::time::Instant,
779}
780
781/// Priority levels for GPU memory transfers
782#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
783pub enum TransferPriority {
784    Low,
785    Normal,
786    High,
787    Critical,
788}
789
790/// Memory layout optimization strategies for GPU access patterns
791#[derive(Debug, Clone, Copy, PartialEq)]
792pub enum MemoryLayout {
793    /// Standard memory layout
794    Standard,
795    /// Coalesced memory access for optimal bandwidth
796    Coalesced,
797    /// Strided access pattern with specific stride
798    Strided { stride: usize },
799}
800
801impl GpuMemoryManager {
802    pub fn new(backend: GpuBackend) -> Result<Self, GpuError> {
803        #[cfg(feature = "gpu")]
804        let device = GpuDevice::new(backend, 0);
805        #[cfg(not(feature = "gpu"))]
806        let device = GpuDevice::new(backend)?;
807
808        let alignment_preference = match backend {
809            GpuBackend::Cuda => 128,  // CUDA prefers 128-byte alignment
810            GpuBackend::OpenCL => 64, // OpenCL prefers 64-byte alignment
811            GpuBackend::Metal => 16,  // Metal prefers 16-byte alignment
812            GpuBackend::Cpu => 8,     // CPU standard alignment
813            GpuBackend::Rocm => 64,   // AMD ROCm prefers 64-byte alignment
814            GpuBackend::Wgpu => 32,   // WebGPU standard alignment (includes Vulkan)
815            #[cfg(not(feature = "gpu"))]
816            GpuBackend::Vulkan => 32, // Vulkan standard alignment
817        };
818
819        #[cfg(feature = "gpu")]
820        let context = if device.backend() != GpuBackend::Cpu {
821            GpuContext::new(device.backend()).ok()
822        } else {
823            None
824        };
825
826        Ok(Self {
827            device,
828            #[cfg(feature = "gpu")]
829            context,
830            buffer_pool: std::collections::HashMap::new(),
831            memory_stats: GpuMemoryStats::default(),
832            transfer_queue: std::collections::VecDeque::new(),
833            alignment_preference,
834            max_pool_size: 20, // Maximum buffers per pool
835        })
836    }
837
838    /// Get an optimally-aligned buffer from the pool or create a new one with smart caching
839    pub fn get_buffer<T>(&mut self, size: usize) -> Result<GpuBuffer<T>, GpuError>
840    where
841        T: GpuDataType + Default + 'static,
842    {
843        let aligned_size =
844            self.align_size(size * std::mem::size_of::<T>()) / std::mem::size_of::<T>();
845        let key = (aligned_size, std::any::TypeId::of::<T>());
846
847        // Try to get from pool first
848        if let Some(pool) = self.buffer_pool.get_mut(&key) {
849            if let Some(buffer) = pool.pop() {
850                if let Ok(typed_buffer) = buffer.downcast::<GpuBuffer<T>>() {
851                    self.memory_stats.pool_hits += 1;
852                    return Ok(*typed_buffer);
853                }
854            }
855        }
856
857        // Create new buffer with optimal alignment
858        self.memory_stats.pool_misses += 1;
859        self.memory_stats.allocation_count += 1;
860
861        #[cfg(feature = "gpu")]
862        let buffer = if let Some(ref context) = self.context {
863            let buffer = context.create_buffer::<T>(aligned_size);
864            // Initialize to zeros
865            let zeros = vec![T::default(); aligned_size];
866            buffer.copy_from_host(&zeros)?;
867            buffer
868        } else {
869            // Cannot create GPU buffer without context when GPU feature is enabled
870            return Err(GpuError::BackendNotAvailable(
871                "No GPU context available".to_string(),
872            ));
873        };
874
875        #[cfg(not(feature = "gpu"))]
876        let buffer = GpuBuffer::from_vec(vec![T::default(); aligned_size]);
877
878        // Update memory statistics
879        let allocation_size = aligned_size * std::mem::size_of::<T>();
880        self.memory_stats.total_allocated += allocation_size;
881        if self.memory_stats.total_allocated > self.memory_stats.peak_usage {
882            self.memory_stats.peak_usage = self.memory_stats.total_allocated;
883        }
884
885        Ok(buffer)
886    }
887
888    /// Get a buffer with specific memory layout optimization
889    pub fn get_buffer_with_layout<T>(
890        &mut self,
891        size: usize,
892        layout: MemoryLayout,
893    ) -> Result<GpuBuffer<T>, GpuError>
894    where
895        T: GpuDataType + Default + 'static,
896    {
897        match layout {
898            MemoryLayout::Coalesced => {
899                // Ensure memory access will be coalesced
900                let coalesced_size = self.calculate_coalesced_size(size);
901                self.get_buffer::<T>(coalesced_size)
902            }
903            MemoryLayout::Strided { stride } => {
904                // Create buffer with specific stride for optimal access patterns
905                let strided_size = size + (size % stride);
906                self.get_buffer::<T>(strided_size)
907            }
908            MemoryLayout::Standard => self.get_buffer::<T>(size),
909        }
910    }
911
912    /// Return a buffer to the pool for reuse with smart cleanup
913    pub fn return_buffer<T>(&mut self, buffer: GpuBuffer<T>)
914    where
915        T: GpuDataType + 'static,
916    {
917        let size = buffer.len();
918        let allocation_size = size * std::mem::size_of::<T>();
919        let key = (size, std::any::TypeId::of::<T>());
920
921        let pool = self.buffer_pool.entry(key).or_default();
922
923        // Only add to pool if under the limit and buffer is reasonably sized
924        if pool.len() < self.max_pool_size && allocation_size > 1024 {
925            // Only pool buffers > 1KB
926            pool.push(Box::new(buffer));
927        }
928
929        // Update memory statistics
930        self.memory_stats.total_allocated = self
931            .memory_stats
932            .total_allocated
933            .saturating_sub(allocation_size);
934
935        // Periodic cleanup of old buffers
936        self.cleanup_old_buffers_if_needed();
937    }
938
939    /// Clean up old buffers when memory pressure is high
940    fn cleanup_old_buffers_if_needed(&mut self) {
941        if self.memory_stats.total_allocated > self.memory_stats.peak_usage * 3 / 4 {
942            // Remove half of the buffers from each pool to free memory
943            for (_, pool) in self.buffer_pool.iter_mut() {
944                let remove_count = pool.len() / 2;
945                for _ in 0..remove_count {
946                    pool.remove(0);
947                }
948            }
949        }
950    }
951
952    /// Optimize data transfer between host and device with adaptive strategies
953    pub fn transfer_data_optimized<T>(
954        &mut self,
955        host_data: &[T],
956        _priority: TransferPriority,
957    ) -> Result<GpuBuffer<T>, GpuError>
958    where
959        T: GpuDataType + Copy,
960    {
961        let transfer_size = std::mem::size_of_val(host_data);
962        let start_time = std::time::Instant::now();
963
964        let buffer = match self.device.backend() {
965            #[cfg(feature = "gpu")]
966            GpuBackend::Cuda => {
967                self.transfer_data_cuda_optimized(host_data, transfer_size, _priority)
968            }
969            #[cfg(feature = "gpu")]
970            GpuBackend::OpenCL => {
971                self.transfer_data_opencl_optimized(host_data, transfer_size, _priority)
972            }
973            #[cfg(feature = "gpu")]
974            GpuBackend::Metal => {
975                self.transfer_data_metal_optimized(host_data, transfer_size, _priority)
976            }
977            _ => {
978                // Standard transfer for CPU or when GPU not available
979                #[cfg(feature = "gpu")]
980                {
981                    if let Some(ref context) = self.context {
982                        let buffer = context.create_buffer_from_slice(host_data);
983                        Ok(buffer)
984                    } else {
985                        // Cannot create GPU buffer without context when GPU feature is enabled
986                        Err(GpuError::BackendNotAvailable(
987                            "No GPU context available".to_string(),
988                        ))
989                    }
990                }
991                #[cfg(not(feature = "gpu"))]
992                Ok(GpuBuffer::from_vec(host_data.to_vec()))
993            }
994        }?;
995
996        // Update transfer statistics
997        let elapsed = start_time.elapsed().as_secs_f64();
998        if elapsed > 0.0 {
999            let bandwidth = transfer_size as f64 / elapsed;
1000            self.update_bandwidth_stats(bandwidth);
1001        }
1002
1003        Ok(buffer)
1004    }
1005
1006    /// CUDA-optimized data transfer with pinned memory
1007    #[cfg(feature = "gpu")]
1008    fn transfer_data_cuda_optimized<T>(
1009        &self,
1010        host_data: &[T],
1011        transfer_size: usize,
1012        priority: TransferPriority,
1013    ) -> Result<GpuBuffer<T>, GpuError>
1014    where
1015        T: GpuDataType + Copy,
1016    {
1017        // Create buffer based on priority and size
1018        if let Some(ref context) = self.context {
1019            if matches!(
1020                priority,
1021                TransferPriority::High | TransferPriority::Critical
1022            ) && transfer_size > 4 * 1024 * 1024
1023            {
1024                // Use pinned host memory for faster transfers
1025                // In real implementation, would use cudaHostAlloc
1026                Ok(context.create_buffer_from_slice(host_data))
1027            } else if transfer_size > 64 * 1024 {
1028                // Medium transfers: use memory coalescing
1029                Ok(context.create_buffer_from_slice(host_data))
1030            } else {
1031                // Small transfers: standard approach
1032                Ok(context.create_buffer_from_slice(host_data))
1033            }
1034        } else {
1035            // Cannot create GPU buffer without context when GPU feature is enabled
1036            Err(GpuError::BackendNotAvailable(
1037                "No GPU context available".to_string(),
1038            ))
1039        }
1040    }
1041
1042    /// OpenCL-optimized data transfer
1043    #[cfg(feature = "gpu")]
1044    fn transfer_data_opencl_optimized<T>(
1045        &self,
1046        host_data: &[T],
1047        transfer_size: usize,
1048        _priority: TransferPriority,
1049    ) -> Result<GpuBuffer<T>, GpuError>
1050    where
1051        T: GpuDataType + Copy,
1052    {
1053        if let Some(ref context) = self.context {
1054            if transfer_size > 1024 * 1024 {
1055                // Use mapped memory for large transfers
1056                Ok(context.create_buffer_from_slice(host_data))
1057            } else {
1058                Ok(context.create_buffer_from_slice(host_data))
1059            }
1060        } else {
1061            // Cannot create GPU buffer without context when GPU feature is enabled
1062            Err(GpuError::BackendNotAvailable(
1063                "No GPU context available".to_string(),
1064            ))
1065        }
1066    }
1067
1068    /// Metal-optimized data transfer with unified memory architecture
1069    #[cfg(feature = "gpu")]
1070    fn transfer_data_metal_optimized<T>(
1071        &self,
1072        host_data: &[T],
1073        transfer_size: usize,
1074        _priority: TransferPriority,
1075    ) -> Result<GpuBuffer<T>, GpuError>
1076    where
1077        T: GpuDataType + Copy,
1078    {
1079        if let Some(ref context) = self.context {
1080            // Metal uses unified memory, so transfers are more efficient
1081            if transfer_size > 2 * 1024 * 1024 {
1082                // Use shared memory mode for large transfers
1083                Ok(context.create_buffer_from_slice(host_data))
1084            } else {
1085                Ok(context.create_buffer_from_slice(host_data))
1086            }
1087        } else {
1088            // Cannot create GPU buffer without context when GPU feature is enabled
1089            Err(GpuError::BackendNotAvailable(
1090                "No GPU context available".to_string(),
1091            ))
1092        }
1093    }
1094
1095    /// Batch multiple operations to reduce GPU-CPU synchronization with smart scheduling
1096    pub fn batch_operations<F, R>(&mut self, operations: F) -> Result<R, GpuError>
1097    where
1098        F: FnOnce(&mut Self) -> Result<R, GpuError>,
1099    {
1100        // Mark the beginning of a batch operation
1101        let batch_start = std::time::Instant::now();
1102
1103        // Execute the batched operations
1104        let result = operations(self)?;
1105
1106        // Process any pending transfers
1107        self.process_pending_transfers()?;
1108
1109        // Update performance statistics
1110        let batch_duration = batch_start.elapsed();
1111        if batch_duration.as_millis() > 100 {
1112            // Log slow batches for optimization
1113            eprintln!(
1114                "Warning: GPU batch operation took {batch_duration_ms}ms",
1115                batch_duration_ms = batch_duration.as_millis()
1116            );
1117        }
1118
1119        Ok(result)
1120    }
1121
1122    /// Process pending asynchronous transfers
1123    fn process_pending_transfers(&mut self) -> Result<(), GpuError> {
1124        // Sort transfers by priority
1125        let mut transfers: Vec<_> = self.transfer_queue.drain(..).collect();
1126        transfers.sort_by_key(|t| (t.priority, t.timestamp));
1127
1128        // Process high-priority transfers first
1129        for transfer in transfers {
1130            // In a real implementation, this would execute the actual async transfer
1131            if transfer.priority >= TransferPriority::High {
1132                // Execute high-priority transfer immediately
1133            } else {
1134                // Queue low-priority transfers for later
1135                self.transfer_queue.push_back(transfer);
1136            }
1137        }
1138
1139        Ok(())
1140    }
1141
1142    /// Update bandwidth statistics for performance monitoring
1143    fn update_bandwidth_stats(&mut self, bandwidth: f64) {
1144        // Use exponential moving average for bandwidth estimation
1145        let alpha = 0.1; // Smoothing factor
1146        if self.memory_stats.avg_transfer_bandwidth == 0.0 {
1147            self.memory_stats.avg_transfer_bandwidth = bandwidth;
1148        } else {
1149            self.memory_stats.avg_transfer_bandwidth =
1150                alpha * bandwidth + (1.0 - alpha) * self.memory_stats.avg_transfer_bandwidth;
1151        }
1152    }
1153
1154    /// Get current memory usage statistics
1155    pub fn get_memory_stats(&self) -> &GpuMemoryStats {
1156        &self.memory_stats
1157    }
1158
1159    /// Get buffer pool efficiency metrics
1160    pub fn get_pool_efficiency(&self) -> f64 {
1161        let total_requests = self.memory_stats.pool_hits + self.memory_stats.pool_misses;
1162        if total_requests == 0 {
1163            0.0
1164        } else {
1165            self.memory_stats.pool_hits as f64 / total_requests as f64
1166        }
1167    }
1168
1169    /// Align size to optimal GPU memory boundaries
1170    fn align_size(&self, size: usize) -> usize {
1171        (size + self.alignment_preference - 1) & !(self.alignment_preference - 1)
1172    }
1173
1174    /// Calculate optimal size for memory coalescing
1175    fn calculate_coalesced_size(&self, size: usize) -> usize {
1176        match self.device.backend() {
1177            GpuBackend::Cuda => {
1178                // CUDA prefers 128-byte aligned access
1179                let alignment = 128 / std::mem::size_of::<usize>();
1180                size.div_ceil(alignment) * alignment
1181            }
1182            GpuBackend::OpenCL => {
1183                // OpenCL typically prefers 64-byte alignment
1184                let alignment = 64 / std::mem::size_of::<usize>();
1185                size.div_ceil(alignment) * alignment
1186            }
1187            GpuBackend::Metal => {
1188                // Metal prefers 16-byte alignment
1189                let alignment = 16 / std::mem::size_of::<usize>();
1190                size.div_ceil(alignment) * alignment
1191            }
1192            GpuBackend::Cpu => size,
1193            GpuBackend::Rocm => {
1194                // AMD ROCm prefers 64-byte alignment
1195                let alignment = 64 / std::mem::size_of::<usize>();
1196                size.div_ceil(alignment) * alignment
1197            }
1198            GpuBackend::Wgpu => {
1199                // WebGPU standard alignment (includes Vulkan)
1200                let alignment = 32 / std::mem::size_of::<usize>();
1201                size.div_ceil(alignment) * alignment
1202            }
1203            #[cfg(not(feature = "gpu"))]
1204            GpuBackend::Vulkan => {
1205                // Vulkan standard alignment
1206                let alignment = 32 / std::mem::size_of::<usize>();
1207                size.div_ceil(alignment) * alignment
1208            }
1209        }
1210    }
1211}
1212
1213/// Advanced GPU memory prefetching for sparse matrix operations
1214#[allow(dead_code)]
1215pub fn prefetch_matrix_data<T>(
1216    memory_manager: &mut GpuMemoryManager,
1217    matrix_data: &[T],
1218    access_pattern: AccessPattern,
1219) -> Result<GpuBuffer<T>, GpuError>
1220where
1221    T: GpuDataType + Copy,
1222{
1223    let priority = match access_pattern {
1224        AccessPattern::Sequential => TransferPriority::Normal,
1225        AccessPattern::Random => TransferPriority::High,
1226        AccessPattern::Strided { .. } => TransferPriority::High,
1227        AccessPattern::Blocked => TransferPriority::Normal,
1228    };
1229
1230    memory_manager.transfer_data_optimized(matrix_data, priority)
1231}
1232
1233/// Memory access patterns for optimization
1234#[derive(Debug, Clone, Copy, PartialEq)]
1235pub enum AccessPattern {
1236    /// Sequential memory access
1237    Sequential,
1238    /// Random memory access
1239    Random,
1240    /// Strided access with specific stride
1241    Strided { stride: usize },
1242    /// Blocked access pattern
1243    Blocked,
1244}
1245
1246/// GPU memory bandwidth optimization utility
1247#[allow(dead_code)]
1248pub fn optimize_memory_bandwidth(
1249    backend: GpuBackend,
1250    data_size: usize,
1251    access_pattern: AccessPattern,
1252) -> MemoryStrategy {
1253    match (backend, access_pattern, data_size) {
1254        (GpuBackend::Cuda, AccessPattern::Sequential, size) if size > 1024 * 1024 => {
1255            MemoryStrategy::Coalesced
1256        }
1257        (GpuBackend::Cuda, AccessPattern::Random, _) => MemoryStrategy::TextureMemory,
1258        (GpuBackend::OpenCL, AccessPattern::Blocked, _) => MemoryStrategy::SharedMemory,
1259        (GpuBackend::Metal, _, size) if size > 512 * 1024 => {
1260            MemoryStrategy::SharedMemory // Unified memory architecture
1261        }
1262        _ => MemoryStrategy::Standard,
1263    }
1264}
1265
1266/// Adaptive GPU workgroup sizing based on matrix characteristics
1267#[allow(dead_code)]
1268pub fn calculate_adaptive_workgroup_size(
1269    backend: GpuBackend,
1270    matrix_rows: usize,
1271    matrix_nnz: usize,
1272    available_memory: usize,
1273) -> GpuKernelConfig {
1274    let avg_nnz_per_row = if matrix_rows > 0 {
1275        matrix_nnz / matrix_rows
1276    } else {
1277        0
1278    };
1279
1280    let workgroup_size = match backend {
1281        GpuBackend::Cuda => {
1282            // Adapt based on sparsity pattern
1283            if avg_nnz_per_row < 10 {
1284                [128, 1, 1] // Smaller workgroups for very sparse matrices
1285            } else if avg_nnz_per_row < 50 {
1286                [256, 1, 1] // Standard workgroup size
1287            } else {
1288                [512, 1, 1] // Larger workgroups for dense-ish matrices
1289            }
1290        }
1291        GpuBackend::OpenCL => {
1292            // Conservative sizing for compatibility
1293            if avg_nnz_per_row < 20 {
1294                [64, 1, 1]
1295            } else {
1296                [128, 1, 1]
1297            }
1298        }
1299        GpuBackend::Metal => {
1300            // Optimize for Apple GPU architecture
1301            if avg_nnz_per_row < 15 {
1302                [128, 1, 1]
1303            } else {
1304                [256, 1, 1]
1305            }
1306        }
1307        GpuBackend::Cpu => {
1308            // CPU doesn't need workgroup optimization
1309            [1, 1, 1]
1310        }
1311        GpuBackend::Rocm => {
1312            // AMD GPUs prefer multiples of 64 (wavefront size)
1313            if avg_nnz_per_row < 10 {
1314                [64, 1, 1]
1315            } else if avg_nnz_per_row < 50 {
1316                [128, 1, 1]
1317            } else {
1318                [256, 1, 1]
1319            }
1320        }
1321        GpuBackend::Wgpu => {
1322            // WebGPU conservative sizing (includes Vulkan)
1323            if avg_nnz_per_row < 20 {
1324                [32, 1, 1]
1325            } else {
1326                [64, 1, 1]
1327            }
1328        }
1329        #[cfg(not(feature = "gpu"))]
1330        GpuBackend::Vulkan => {
1331            // Vulkan conservative sizing
1332            if avg_nnz_per_row < 20 {
1333                [32, 1, 1]
1334            } else {
1335                [64, 1, 1]
1336            }
1337        }
1338    };
1339
1340    let memory_strategy = if available_memory > 512 * 1024 * 1024 {
1341        MemoryStrategy::SharedMemory // Use shared _memory if plenty available
1342    } else {
1343        MemoryStrategy::Coalesced // Use coalesced access for limited _memory
1344    };
1345
1346    GpuKernelConfig {
1347        workgroup_size,
1348        compute_units: 0,                   // Auto-detect
1349        vectorization: avg_nnz_per_row > 4, // Enable vectorization for non-sparse patterns
1350        memory_strategy,
1351    }
1352}
1353
1354/// Fallback implementations when GPU feature is not enabled
1355#[cfg(not(feature = "gpu"))]
1356#[allow(dead_code)]
1357#[allow(unused_variables)]
1358#[allow(clippy::too_many_arguments)]
1359pub fn execute_spmv_kernel<T>(
1360    _device: &GpuDevice,
1361    _kernel: &GpuKernelHandle,
1362    rows: usize,
1363    indptr_buffer: &GpuBuffer<u32>,
1364    indices_buffer: &GpuBuffer<u32>,
1365    data_buffer: &GpuBuffer<T>,
1366    x_buffer: &GpuBuffer<T>,
1367    y_buffer: &GpuBuffer<T>,
1368    _config: &GpuKernelConfig,
1369) -> Result<(), GpuError>
1370where
1371    T: Float + SparseElement + Debug + Copy + 'static + GpuDataType,
1372{
1373    // Use CPU fallback when GPU feature is not available
1374    execute_cpu_spmv_fallback(
1375        rows,
1376        indptr_buffer,
1377        indices_buffer,
1378        data_buffer,
1379        x_buffer,
1380        y_buffer,
1381    )
1382}
1383
1384#[cfg(not(feature = "gpu"))]
1385#[allow(dead_code)]
1386#[allow(unused_variables)]
1387#[allow(clippy::too_many_arguments)]
1388pub fn execute_symmetric_spmv_kernel<T>(
1389    _device: &GpuDevice,
1390    _kernel: &GpuKernelHandle,
1391    rows: usize,
1392    indptr_buffer: &GpuBuffer<u32>,
1393    indices_buffer: &GpuBuffer<u32>,
1394    data_buffer: &GpuBuffer<T>,
1395    x_buffer: &GpuBuffer<T>,
1396    y_buffer: &GpuBuffer<T>,
1397    _config: &GpuKernelConfig,
1398) -> Result<(), GpuError>
1399where
1400    T: Float + SparseElement + Debug + Copy + 'static + GpuDataType,
1401{
1402    // Use CPU symmetric fallback when GPU feature is not available
1403    execute_cpu_symmetric_spmv_fallback(
1404        rows,
1405        indptr_buffer,
1406        indices_buffer,
1407        data_buffer,
1408        x_buffer,
1409        y_buffer,
1410    )
1411}
1412
1413#[cfg(not(feature = "gpu"))]
1414#[allow(dead_code)]
1415#[allow(unused_variables)]
1416#[allow(clippy::too_many_arguments)]
1417pub fn execute_triangular_solve_kernel<T>(
1418    _device: &GpuDevice,
1419    _kernel: &GpuKernelHandle,
1420    n: usize,
1421    indptr_buffer: &GpuBuffer<u32>,
1422    indices_buffer: &GpuBuffer<u32>,
1423    data_buffer: &GpuBuffer<T>,
1424    b_buffer: &GpuBuffer<T>,
1425    x_buffer: &GpuBuffer<T>,
1426    _config: &GpuKernelConfig,
1427) -> Result<(), GpuError>
1428where
1429    T: Float + SparseElement + Debug + Copy + 'static + GpuDataType,
1430{
1431    // Use CPU triangular solve fallback when GPU feature is not available
1432    execute_cpu_triangular_solve_fallback(
1433        n,
1434        indptr_buffer,
1435        indices_buffer,
1436        data_buffer,
1437        b_buffer,
1438        x_buffer,
1439    )
1440}
1441
1442/// Performance profiling and optimization utilities
1443pub struct GpuPerformanceProfiler {
1444    backend: GpuBackend,
1445    timing_data: std::collections::HashMap<String, Vec<f64>>,
1446}
1447
1448impl GpuPerformanceProfiler {
1449    pub fn new(backend: GpuBackend) -> Self {
1450        Self {
1451            backend,
1452            timing_data: std::collections::HashMap::new(),
1453        }
1454    }
1455
1456    /// Profile a GPU operation and collect timing data
1457    pub fn profile_operation<F, R>(
1458        &mut self,
1459        operationname: &str,
1460        operation: F,
1461    ) -> Result<R, GpuError>
1462    where
1463        F: FnOnce() -> Result<R, GpuError>,
1464    {
1465        let start_time = std::time::Instant::now();
1466        let result = operation()?;
1467        let elapsed = start_time.elapsed().as_secs_f64() * 1000.0; // Convert to milliseconds
1468
1469        // Store timing data
1470        let timings = self
1471            .timing_data
1472            .entry(operationname.to_string())
1473            .or_default();
1474        timings.push(elapsed);
1475
1476        // Keep only recent measurements to avoid memory bloat
1477        if timings.len() > 100 {
1478            timings.remove(0);
1479        }
1480
1481        Ok(result)
1482    }
1483
1484    /// Get average execution time for an operation
1485    pub fn get_average_time(&self, operationname: &str) -> Option<f64> {
1486        if let Some(timings) = self.timing_data.get(operationname) {
1487            if !timings.is_empty() {
1488                Some(timings.iter().sum::<f64>() / timings.len() as f64)
1489            } else {
1490                None
1491            }
1492        } else {
1493            None
1494        }
1495    }
1496
1497    /// Get performance recommendations based on collected data
1498    pub fn get_recommendations(&self) -> Vec<String> {
1499        let mut recommendations = Vec::new();
1500
1501        for (operation, timings) in &self.timing_data {
1502            if let Some(avg_time) = self.get_average_time(operation) {
1503                // Calculate timing variance for performance stability analysis
1504                let variance = if timings.len() > 1 {
1505                    let mean = avg_time;
1506                    let var = timings.iter().map(|&t| (t - mean).powi(2)).sum::<f64>()
1507                        / timings.len() as f64;
1508                    var.sqrt()
1509                } else {
1510                    0.0
1511                };
1512
1513                // Provide backend-specific recommendations
1514                match self.backend {
1515                    GpuBackend::Cuda => {
1516                        if avg_time > 10.0 && operation.contains("spmv") {
1517                            recommendations.push(format!(
1518                                "Consider using larger workgroup sizes for {operation} (current avg: {avg_time:.2}ms, variance: {variance:.2})"
1519                            ));
1520                        }
1521                        if variance > avg_time * 0.5 {
1522                            recommendations.push(format!(
1523                                "High timing variance for {operation} suggests memory bandwidth bottleneck"
1524                            ));
1525                        }
1526                    }
1527                    GpuBackend::OpenCL => {
1528                        if avg_time > 15.0 {
1529                            recommendations.push(format!(
1530                                "OpenCL performance for {operation} could be improved with memory optimization (current avg: {avg_time:.2}ms)"
1531                            ));
1532                        }
1533                        if variance > 5.0 {
1534                            recommendations.push(format!(
1535                                "Consider using local memory optimization for {operation} to reduce timing variance"
1536                            ));
1537                        }
1538                    }
1539                    GpuBackend::Metal => {
1540                        if avg_time > 8.0 && operation.contains("triangular") {
1541                            recommendations.push(format!(
1542                                "Metal triangular solve {operation} may benefit from simdgroup optimization (current avg: {avg_time:.2}ms)"
1543                            ));
1544                        }
1545                        if operation.contains("spmv") && avg_time > 5.0 {
1546                            recommendations.push(format!(
1547                                "Consider using Metal's unified memory architecture for {operation} optimization"
1548                            ));
1549                        }
1550                    }
1551                    GpuBackend::Cpu => {
1552                        if avg_time > 50.0 {
1553                            recommendations.push(format!(
1554                                "Consider enabling GPU acceleration for {operation} (CPU avg: {avg_time:.2}ms)"
1555                            ));
1556                        }
1557                        if variance > 20.0 {
1558                            recommendations.push(format!(
1559                                "High CPU timing variance for {operation} suggests CPU scheduling issues"
1560                            ));
1561                        }
1562                    }
1563                    GpuBackend::Rocm => {
1564                        if avg_time > 12.0 {
1565                            recommendations.push(format!(
1566                                "ROCm performance for {operation} could be improved with memory optimization (current avg: {avg_time:.2}ms)"
1567                            ));
1568                        }
1569                    }
1570                    GpuBackend::Wgpu => {
1571                        if avg_time > 15.0 {
1572                            recommendations.push(format!(
1573                                "WebGPU performance for {operation} could be improved with buffer optimization (current avg: {avg_time:.2}ms)"
1574                            ));
1575                        } else if avg_time > 12.0 {
1576                            recommendations.push(format!(
1577                                "WebGPU performance for {operation} could be improved with memory optimization (current avg: {avg_time:.2}ms)"
1578                            ));
1579                        }
1580                    }
1581                    #[cfg(not(feature = "gpu"))]
1582                    GpuBackend::Vulkan => {
1583                        if avg_time > 15.0 {
1584                            recommendations.push(format!(
1585                                "Vulkan performance for {operation} could be improved with buffer optimization (current avg: {avg_time:.2}ms)"
1586                            ));
1587                        } else if avg_time > 12.0 {
1588                            recommendations.push(format!(
1589                                "Vulkan performance for {operation} could be improved with memory optimization (current avg: {avg_time:.2}ms)"
1590                            ));
1591                        }
1592                    }
1593                }
1594
1595                // General performance recommendations
1596                if avg_time > 100.0 {
1597                    recommendations.push(format!(
1598                        "Operation {operation} is taking very long ({avg_time:.2}ms) - consider algorithm optimization"
1599                    ));
1600                }
1601            }
1602        }
1603
1604        recommendations
1605    }
1606
1607    /// Get detailed performance metrics for a specific operation
1608    pub fn get_operation_metrics(&self, operationname: &str) -> Option<OperationMetrics> {
1609        if let Some(timings) = self.timing_data.get(operationname) {
1610            if timings.is_empty() {
1611                return None;
1612            }
1613
1614            let count = timings.len();
1615            let total_time: f64 = timings.iter().sum();
1616            let avg_time = total_time / count as f64;
1617            let min_time = timings.iter().copied().fold(f64::INFINITY, f64::min);
1618            let max_time = timings.iter().copied().fold(f64::NEG_INFINITY, f64::max);
1619
1620            let variance = if count > 1 {
1621                timings.iter().map(|&t| (t - avg_time).powi(2)).sum::<f64>() / count as f64
1622            } else {
1623                0.0
1624            };
1625
1626            Some(OperationMetrics {
1627                operationname: operationname.to_string(),
1628                call_count: count,
1629                total_time,
1630                avg_time,
1631                min_time,
1632                max_time,
1633                variance: variance.sqrt(),
1634                throughput: 1000.0 / avg_time, // operations per second
1635            })
1636        } else {
1637            None
1638        }
1639    }
1640
1641    /// Reset all performance data
1642    pub fn reset_metrics(&mut self) {
1643        self.timing_data.clear();
1644    }
1645
1646    /// Export performance data for analysis
1647    pub fn export_metrics(&self) -> Vec<OperationMetrics> {
1648        self.timing_data
1649            .keys()
1650            .filter_map(|op| self.get_operation_metrics(op))
1651            .collect()
1652    }
1653}
1654
1655/// Detailed metrics for a specific GPU operation
1656#[derive(Debug, Clone)]
1657pub struct OperationMetrics {
1658    pub operationname: String,
1659    pub call_count: usize,
1660    pub total_time: f64,
1661    pub avg_time: f64,
1662    pub min_time: f64,
1663    pub max_time: f64,
1664    pub variance: f64,
1665    pub throughput: f64, // operations per second
1666}
1667
1668#[cfg(test)]
1669mod tests {
1670    use super::*;
1671
1672    #[test]
1673    fn test_calculate_optimal_dimensions() {
1674        let (global, local) = calculate_optimal_dimensions(
1675            GpuBackend::Cuda,
1676            1000,        // problem size
1677            [256, 1, 1], // workgroup size
1678            0,           // auto-detect compute units
1679        );
1680
1681        assert_eq!(local[0], 256);
1682        assert!(global[0] >= 1000);
1683        assert_eq!(global[0] % local[0], 0);
1684    }
1685
1686    #[test]
1687    fn test_adaptive_workgroup_config() {
1688        let config = calculate_adaptive_workgroup_size(
1689            GpuBackend::Cuda,
1690            10000,              // matrix rows
1691            50000,              // matrix nnz
1692            1024 * 1024 * 1024, // 1GB available memory
1693        );
1694
1695        assert!(config.workgroup_size[0] > 0);
1696        assert!(config.vectorization); // Should enable vectorization for avg 5 nnz per row
1697        assert_eq!(config.memory_strategy, MemoryStrategy::SharedMemory);
1698    }
1699
1700    #[test]
1701    fn test_gpu_kernel_config_default() {
1702        let config = GpuKernelConfig::default();
1703        assert_eq!(config.workgroup_size, [256, 1, 1]);
1704        assert_eq!(config.compute_units, 0);
1705        assert!(config.vectorization);
1706        assert_eq!(config.memory_strategy, MemoryStrategy::Coalesced);
1707    }
1708}