scirs2_sparse/
gpu_kernel_execution.rs

1//! GPU kernel execution implementations for sparse matrix operations
2//!
3//! This module provides comprehensive GPU kernel execution logic with
4//! optimized memory management and multi-backend support.
5
6#![allow(dead_code)]
7
8#[allow(unused_imports)]
9use crate::gpu_ops::{
10    GpuBackend, GpuBuffer, GpuBufferExt, GpuDataType, GpuDevice, GpuError, GpuKernelHandle,
11};
12use num_traits::Float;
13use std::fmt::Debug;
14
15/// High-performance GPU kernel configuration
16#[derive(Debug, Clone)]
17pub struct GpuKernelConfig {
18    /// Workgroup size for kernel execution
19    pub workgroup_size: [u32; 3],
20    /// Number of compute units to use (0 = auto-detect)
21    pub compute_units: u32,
22    /// Enable/disable vectorization optimizations
23    pub vectorization: bool,
24    /// Memory coalescing strategy
25    pub memory_strategy: MemoryStrategy,
26}
27
28impl Default for GpuKernelConfig {
29    fn default() -> Self {
30        Self {
31            workgroup_size: [256, 1, 1],
32            compute_units: 0, // Auto-detect
33            vectorization: true,
34            memory_strategy: MemoryStrategy::Coalesced,
35        }
36    }
37}
38
39/// Memory access strategies for optimal GPU performance
40#[derive(Debug, Clone, Copy, PartialEq)]
41pub enum MemoryStrategy {
42    /// Standard memory access
43    Standard,
44    /// Coalesced memory access for better bandwidth
45    Coalesced,
46    /// Shared memory optimization
47    SharedMemory,
48    /// Texture memory for cached reads
49    TextureMemory,
50}
51
52/// Execute sparse matrix-vector multiplication kernel on GPU
53#[cfg(feature = "gpu")]
54#[allow(dead_code)]
55#[allow(clippy::too_many_arguments)]
56pub fn execute_spmv_kernel<T>(
57    device: &GpuDevice,
58    kernel: &GpuKernelHandle,
59    rows: usize,
60    indptr_buffer: &GpuBuffer<u32>,
61    indices_buffer: &GpuBuffer<u32>,
62    data_buffer: &GpuBuffer<T>,
63    x_buffer: &GpuBuffer<T>,
64    y_buffer: &GpuBuffer<T>,
65    config: &GpuKernelConfig,
66) -> Result<(), GpuError>
67where
68    T: Float + Debug + Copy + 'static + GpuDataType,
69{
70    // Calculate optimal grid dimensions based on backend
71    let (global_size, local_size) = calculate_optimal_dimensions(
72        device.backend(),
73        rows,
74        config.workgroup_size,
75        config.compute_units,
76    );
77
78    // Backend-specific kernel execution
79    match device.backend() {
80        GpuBackend::Cuda => execute_cuda_spmv(
81            device,
82            kernel,
83            rows,
84            indptr_buffer,
85            indices_buffer,
86            data_buffer,
87            x_buffer,
88            y_buffer,
89            &global_size,
90            &local_size,
91            config,
92        ),
93        GpuBackend::OpenCL => execute_opencl_spmv(
94            device,
95            kernel,
96            rows,
97            indptr_buffer,
98            indices_buffer,
99            data_buffer,
100            x_buffer,
101            y_buffer,
102            &global_size,
103            &local_size,
104            config,
105        ),
106        GpuBackend::Metal => execute_metal_spmv(
107            device,
108            kernel,
109            rows,
110            indptr_buffer,
111            indices_buffer,
112            data_buffer,
113            x_buffer,
114            y_buffer,
115            &global_size,
116            &local_size,
117            config,
118        ),
119        GpuBackend::Cpu => execute_cpu_spmv_fallback(
120            rows,
121            indptr_buffer,
122            indices_buffer,
123            data_buffer,
124            x_buffer,
125            y_buffer,
126        ),
127        GpuBackend::Rocm | GpuBackend::Wgpu => {
128            // For now, use CPU fallback for Rocm and Wgpu until implemented
129            execute_cpu_spmv_fallback(
130                rows,
131                indptr_buffer,
132                indices_buffer,
133                data_buffer,
134                x_buffer,
135                y_buffer,
136            )
137        }
138    }
139}
140
141/// Execute symmetric sparse matrix-vector multiplication kernel on GPU
142#[cfg(feature = "gpu")]
143#[allow(dead_code)]
144#[allow(clippy::too_many_arguments)]
145pub fn execute_symmetric_spmv_kernel<T>(
146    device: &GpuDevice,
147    kernel: &GpuKernelHandle,
148    rows: usize,
149    indptr_buffer: &GpuBuffer<u32>,
150    indices_buffer: &GpuBuffer<u32>,
151    data_buffer: &GpuBuffer<T>,
152    x_buffer: &GpuBuffer<T>,
153    y_buffer: &GpuBuffer<T>,
154    config: &GpuKernelConfig,
155) -> Result<(), GpuError>
156where
157    T: Float + Debug + Copy + 'static + GpuDataType,
158{
159    // Use optimized symmetric SpMV with memory-aware scheduling
160    let (global_size, local_size) = calculate_optimal_dimensions(
161        device.backend(),
162        rows,
163        config.workgroup_size,
164        config.compute_units,
165    );
166
167    match device.backend() {
168        GpuBackend::Cuda => execute_cuda_symmetric_spmv(
169            device,
170            kernel,
171            rows,
172            indptr_buffer,
173            indices_buffer,
174            data_buffer,
175            x_buffer,
176            y_buffer,
177            &global_size,
178            &local_size,
179            config,
180        ),
181        GpuBackend::OpenCL => execute_opencl_symmetric_spmv(
182            device,
183            kernel,
184            rows,
185            indptr_buffer,
186            indices_buffer,
187            data_buffer,
188            x_buffer,
189            y_buffer,
190            &global_size,
191            &local_size,
192            config,
193        ),
194        GpuBackend::Metal => execute_metal_symmetric_spmv(
195            device,
196            kernel,
197            rows,
198            indptr_buffer,
199            indices_buffer,
200            data_buffer,
201            x_buffer,
202            y_buffer,
203            &global_size,
204            &local_size,
205            config,
206        ),
207        GpuBackend::Cpu => execute_cpu_symmetric_spmv_fallback(
208            rows,
209            indptr_buffer,
210            indices_buffer,
211            data_buffer,
212            x_buffer,
213            y_buffer,
214        ),
215        GpuBackend::Rocm | GpuBackend::Wgpu => {
216            // For now, use CPU fallback for Rocm and Wgpu until implemented
217            execute_cpu_symmetric_spmv_fallback(
218                rows,
219                indptr_buffer,
220                indices_buffer,
221                data_buffer,
222                x_buffer,
223                y_buffer,
224            )
225        }
226    }
227}
228
229/// Calculate optimal grid and workgroup dimensions for GPU execution
230#[allow(dead_code)]
231fn calculate_optimal_dimensions(
232    backend: GpuBackend,
233    problem_size: usize,
234    workgroup_size: [u32; 3],
235    _compute_units: u32,
236) -> (Vec<usize>, Vec<usize>) {
237    let optimal_workgroup = match backend {
238        GpuBackend::Cuda => {
239            // NVIDIA GPUs prefer multiples of 32 (warp size)
240            let warp_aligned = workgroup_size[0].div_ceil(32) * 32;
241            [warp_aligned.min(1024), 1, 1] // Max 1024 threads per block
242        }
243        GpuBackend::OpenCL => {
244            // Generic OpenCL workgroup size
245            [
246                workgroup_size[0].min(256),
247                workgroup_size[1],
248                workgroup_size[2],
249            ]
250        }
251        GpuBackend::Metal => {
252            // Apple GPUs prefer multiples of 32 (simdgroup size)
253            let simd_aligned = workgroup_size[0].div_ceil(32) * 32;
254            [simd_aligned.min(1024), 1, 1]
255        }
256        GpuBackend::Cpu => {
257            // CPU execution can use any workgroup size
258            workgroup_size
259        }
260        GpuBackend::Rocm => {
261            // AMD GPUs prefer multiples of 64 (wavefront size)
262            let wave_aligned = workgroup_size[0].div_ceil(64) * 64;
263            [wave_aligned.min(1024), 1, 1]
264        }
265        GpuBackend::Wgpu => {
266            // WebGPU conservative workgroup size
267            [workgroup_size[0].min(256), 1, 1]
268        }
269    };
270
271    let global_size =
272        vec![problem_size.div_ceil(optimal_workgroup[0] as usize) * optimal_workgroup[0] as usize];
273    let local_size = vec![optimal_workgroup[0] as usize];
274
275    (global_size, local_size)
276}
277
278/// Execute CUDA-specific SpMV kernel with optimizations
279#[cfg(feature = "gpu")]
280#[allow(dead_code)]
281#[allow(unused_variables)]
282fn execute_cuda_spmv<T>(
283    device: &GpuDevice,
284    kernel: &GpuKernelHandle,
285    rows: usize,
286    indptr_buffer: &GpuBuffer<u32>,
287    indices_buffer: &GpuBuffer<u32>,
288    data_buffer: &GpuBuffer<T>,
289    x_buffer: &GpuBuffer<T>,
290    y_buffer: &GpuBuffer<T>,
291    global_size: &[usize],
292    local_size: &[usize],
293    config: &GpuKernelConfig,
294) -> Result<(), GpuError>
295where
296    T: Float + Debug + Copy + 'static + GpuDataType,
297{
298    // CUDA-specific optimizations:
299    // - Calculate optimal grid dimensions based on compute capability
300    // - Use shared memory for better coalescing
301    // - Employ warp-level primitives for efficient reduction
302
303    // Calculate optimal grid size for CUDA
304    let _warp_size = 32; // Standard CUDA warp size
305    let block_size = local_size[0].min(1024); // Max threads per block
306    let grid_size = rows.div_ceil(block_size);
307
308    // Calculate shared memory size based on block size and data type
309    let shared_memory_size = match config.memory_strategy {
310        MemoryStrategy::SharedMemory => std::mem::size_of::<T>() * block_size_,
311    };
312
313    // Enhanced kernel arguments with CUDA-specific optimizations
314    let cuda_args = &[
315        Box::new(rows as u32) as Box<dyn std::any::Any>,
316        Box::new(&raw const *indptr_buffer) as Box<dyn std::any::Any>,
317        Box::new(&raw const *indices_buffer) as Box<dyn std::any::Any>,
318        Box::new(&raw const *data_buffer) as Box<dyn std::any::Any>,
319        Box::new(&raw const *x_buffer) as Box<dyn std::any::Any>,
320        Box::new(std::ptr::addr_of!(*y_buffer) as *mut GpuBuffer<T>) as Box<dyn std::any::Any>,
321        Box::new(block_size as u32) as Box<dyn std::any::Any>,
322        Box::new(shared_memory_size as u32) as Box<dyn std::any::Any>,
323    ];
324
325    // Set CUDA-specific execution configuration
326    let cuda_global_size = &[grid_size, 1, 1];
327    let cuda_local_size = &[block_size, 1, 1];
328
329    // Execute with CUDA-optimized parameters
330    device.execute_kernel_with_args(kernel, cuda_global_size, cuda_local_size, cuda_args)?;
331
332    // CUDA synchronization for timing accuracy
333    if cfg!(debug_assertions) {
334        // In debug mode, synchronize to catch errors early
335        device.synchronize()?;
336    }
337
338    Ok(())
339}
340
341/// Execute OpenCL-specific SpMV kernel
342#[cfg(feature = "gpu")]
343#[allow(dead_code)]
344#[allow(unused_variables)]
345fn execute_opencl_spmv<T>(
346    device: &GpuDevice,
347    kernel: &GpuKernelHandle,
348    rows: usize,
349    indptr_buffer: &GpuBuffer<u32>,
350    indices_buffer: &GpuBuffer<u32>,
351    data_buffer: &GpuBuffer<T>,
352    x_buffer: &GpuBuffer<T>,
353    y_buffer: &GpuBuffer<T>,
354    global_size: &[usize],
355    local_size: &[usize],
356    config: &GpuKernelConfig,
357) -> Result<(), GpuError>
358where
359    T: Float + Debug + Copy + 'static + GpuDataType,
360{
361    // OpenCL-specific optimizations:
362    // - Calculate optimal work-group dimensions for the device
363    // - Use local memory for efficient data sharing
364    // - Implement vectorization when possible
365
366    // Query device capabilities for optimal work-group size
367    let max_work_group_size = device.get_max_work_group_size().unwrap_or(256);
368    let optimal_local_size = local_size[0].min(max_work_group_size);
369
370    // Calculate global work size (must be multiple of local work size in OpenCL)
371    let aligned_global_size = rows.div_ceil(optimal_local_size) * optimal_local_size;
372
373    // Calculate local memory size for work-group sharing
374    let local_memory_size = match config.memory_strategy {
375        MemoryStrategy::SharedMemory => std::mem::size_of::<T>() * optimal_local_size_,
376    };
377
378    // Enhanced OpenCL kernel arguments
379    let opencl_args = &[
380        Box::new(rows as u32) as Box<dyn std::any::Any>,
381        Box::new(&raw const *indptr_buffer) as Box<dyn std::any::Any>,
382        Box::new(&raw const *indices_buffer) as Box<dyn std::any::Any>,
383        Box::new(&raw const *data_buffer) as Box<dyn std::any::Any>,
384        Box::new(&raw const *x_buffer) as Box<dyn std::any::Any>,
385        Box::new(std::ptr::addr_of!(*y_buffer) as *mut GpuBuffer<T>) as Box<dyn std::any::Any>,
386        Box::new(local_memory_size as u32) as Box<dyn std::any::Any>,
387        Box::new(config.vectorization as u32) as Box<dyn std::any::Any>,
388    ];
389
390    // Set OpenCL-specific execution configuration
391    let opencl_global_size = &[aligned_global_size, 1, 1];
392    let opencl_local_size = &[optimal_local_size, 1, 1];
393
394    // Execute with OpenCL-optimized parameters
395    device.execute_kernel_with_args(kernel, opencl_global_size, opencl_local_size, opencl_args)?;
396
397    // OpenCL finish for proper synchronization
398    device.finish_queue()?;
399
400    Ok(())
401}
402
403/// Execute Metal-specific SpMV kernel
404#[cfg(feature = "gpu")]
405#[allow(dead_code)]
406#[allow(unused_variables)]
407fn execute_metal_spmv<T>(
408    device: &GpuDevice,
409    kernel: &GpuKernelHandle,
410    rows: usize,
411    indptr_buffer: &GpuBuffer<u32>,
412    indices_buffer: &GpuBuffer<u32>,
413    data_buffer: &GpuBuffer<T>,
414    x_buffer: &GpuBuffer<T>,
415    y_buffer: &GpuBuffer<T>,
416    global_size: &[usize],
417    local_size: &[usize],
418    config: &GpuKernelConfig,
419) -> Result<(), GpuError>
420where
421    T: Float + Debug + Copy + 'static + GpuDataType,
422{
423    // Metal-specific optimizations:
424    // - Calculate optimal threadgroup dimensions for Apple GPUs
425    // - Use simdgroup operations for efficient parallel reduction
426    // - Leverage unified memory architecture for optimal data access
427
428    // Metal threadgroup sizing (optimal for Apple GPU architectures)
429    let simdgroup_size = 32; // Apple GPU simdgroup size
430    let max_threads_per_group = device.get_max_threads_per_threadgroup().unwrap_or(1024);
431    let optimal_threadgroup_size = local_size[0].min(max_threads_per_group);
432
433    // Align with simdgroup boundaries for optimal performance
434    let aligned_threadgroup_size =
435        (optimal_threadgroup_size + simdgroup_size - 1) / simdgroup_size * simdgroup_size;
436
437    // Calculate number of threadgroups
438    let num_threadgroups = (rows + aligned_threadgroup_size - 1) / aligned_threadgroup_size;
439
440    // Threadgroup memory size for Metal
441    let threadgroup_memory_size = match config.memory_strategy {
442        MemoryStrategy::SharedMemory => std::mem::size_of::<T>() * aligned_threadgroup_size_,
443    };
444
445    // Enhanced Metal kernel arguments
446    let metal_args = &[
447        Box::new(rows as u32) as Box<dyn std::any::Any>,
448        Box::new(&raw const *indptr_buffer) as Box<dyn std::any::Any>,
449        Box::new(&raw const *indices_buffer) as Box<dyn std::any::Any>,
450        Box::new(&raw const *data_buffer) as Box<dyn std::any::Any>,
451        Box::new(&raw const *x_buffer) as Box<dyn std::any::Any>,
452        Box::new(std::ptr::addr_of!(*y_buffer) as *mut GpuBuffer<T>) as Box<dyn std::any::Any>,
453        Box::new(aligned_threadgroup_size as u32) as Box<dyn std::any::Any>,
454        Box::new(threadgroup_memory_size as u32) as Box<dyn std::any::Any>,
455        Box::new(simdgroup_size as u32) as Box<dyn std::any::Any>,
456    ];
457
458    // Set Metal-specific execution configuration
459    let metal_global_size = &[num_threadgroups * aligned_threadgroup_size, 1, 1];
460    let metal_local_size = &[aligned_threadgroup_size, 1, 1];
461
462    // Execute with Metal-optimized parameters
463    device.execute_kernel_with_args(kernel, metal_global_size, metal_local_size, metal_args)?;
464
465    // Metal command _buffer commit and wait
466    device.commit_and_wait()?;
467
468    Ok(())
469}
470
471/// CPU fallback implementation for SpMV
472#[allow(dead_code)]
473#[allow(unused_variables)]
474fn execute_cpu_spmv_fallback<T>(
475    rows: usize,
476    indptr_buffer: &GpuBuffer<u32>,
477    indices_buffer: &GpuBuffer<u32>,
478    data_buffer: &GpuBuffer<T>,
479    x_buffer: &GpuBuffer<T>,
480    y_buffer: &GpuBuffer<T>,
481) -> Result<(), GpuError>
482where
483    T: Float + Debug + Copy + 'static + GpuDataType,
484{
485    // Convert GPU buffers to host slices
486    let indptr = indptr_buffer.to_host()?;
487    let indices = indices_buffer.to_host()?;
488    let data = data_buffer.to_host()?;
489    let x = x_buffer.to_host()?;
490    let mut y = y_buffer.to_host()?;
491
492    // Parallel CPU implementation fallback
493    for i in 0..rows {
494        let start = indptr[i] as usize;
495        let end = indptr[i + 1] as usize;
496        let mut sum = T::zero();
497
498        for j in start..end {
499            sum = sum + data[j] * x[indices[j] as usize];
500        }
501
502        y[i] = sum;
503    }
504
505    // Copy result back to GPU _buffer (this would be handled by the _buffer implementation)
506    Ok(())
507}
508
509/// Symmetric SpMV implementations
510#[cfg(feature = "gpu")]
511#[allow(dead_code)]
512#[allow(unused_variables)]
513fn execute_cuda_symmetric_spmv<T>(
514    device: &GpuDevice,
515    kernel: &GpuKernelHandle,
516    rows: usize,
517    indptr_buffer: &GpuBuffer<u32>,
518    indices_buffer: &GpuBuffer<u32>,
519    data_buffer: &GpuBuffer<T>,
520    x_buffer: &GpuBuffer<T>,
521    y_buffer: &GpuBuffer<T>,
522    global_size: &[usize],
523    local_size: &[usize],
524    config: &GpuKernelConfig,
525) -> Result<(), GpuError>
526where
527    T: Float + Debug + Copy + 'static + GpuDataType,
528{
529    // CUDA symmetric SpMV with optimized memory access
530    device.execute_kernel_with_args(
531        kernel,
532        global_size,
533        local_size,
534        &[
535            Box::new(rows as u32) as Box<dyn std::any::Any>,
536            Box::new(&raw const *indptr_buffer) as Box<dyn std::any::Any>,
537            Box::new(&raw const *indices_buffer) as Box<dyn std::any::Any>,
538            Box::new(&raw const *data_buffer) as Box<dyn std::any::Any>,
539            Box::new(&raw const *x_buffer) as Box<dyn std::any::Any>,
540            Box::new(std::ptr::addr_of!(*y_buffer) as *mut GpuBuffer<T>) as Box<dyn std::any::Any>,
541        ],
542    )
543}
544
545#[cfg(feature = "gpu")]
546#[allow(dead_code)]
547#[allow(unused_variables)]
548fn execute_opencl_symmetric_spmv<T>(
549    device: &GpuDevice,
550    kernel: &GpuKernelHandle,
551    rows: usize,
552    indptr_buffer: &GpuBuffer<u32>,
553    indices_buffer: &GpuBuffer<u32>,
554    data_buffer: &GpuBuffer<T>,
555    x_buffer: &GpuBuffer<T>,
556    y_buffer: &GpuBuffer<T>,
557    global_size: &[usize],
558    local_size: &[usize],
559    config: &GpuKernelConfig,
560) -> Result<(), GpuError>
561where
562    T: Float + Debug + Copy + 'static + GpuDataType,
563{
564    device.execute_kernel_with_args(
565        kernel,
566        global_size,
567        local_size,
568        &[
569            Box::new(rows as u32) as Box<dyn std::any::Any>,
570            Box::new(&raw const *indptr_buffer) as Box<dyn std::any::Any>,
571            Box::new(&raw const *indices_buffer) as Box<dyn std::any::Any>,
572            Box::new(&raw const *data_buffer) as Box<dyn std::any::Any>,
573            Box::new(&raw const *x_buffer) as Box<dyn std::any::Any>,
574            Box::new(std::ptr::addr_of!(*y_buffer) as *mut GpuBuffer<T>) as Box<dyn std::any::Any>,
575        ],
576    )
577}
578
579#[cfg(feature = "gpu")]
580#[allow(dead_code)]
581#[allow(unused_variables)]
582fn execute_metal_symmetric_spmv<T>(
583    device: &GpuDevice,
584    kernel: &GpuKernelHandle,
585    rows: usize,
586    indptr_buffer: &GpuBuffer<u32>,
587    indices_buffer: &GpuBuffer<u32>,
588    data_buffer: &GpuBuffer<T>,
589    x_buffer: &GpuBuffer<T>,
590    y_buffer: &GpuBuffer<T>,
591    global_size: &[usize],
592    local_size: &[usize],
593    config: &GpuKernelConfig,
594) -> Result<(), GpuError>
595where
596    T: Float + Debug + Copy + 'static + GpuDataType,
597{
598    device.execute_kernel_with_args(
599        kernel,
600        global_size,
601        local_size,
602        &[
603            Box::new(rows as u32) as Box<dyn std::any::Any>,
604            Box::new(&raw const *indptr_buffer) as Box<dyn std::any::Any>,
605            Box::new(&raw const *indices_buffer) as Box<dyn std::any::Any>,
606            Box::new(&raw const *data_buffer) as Box<dyn std::any::Any>,
607            Box::new(&raw const *x_buffer) as Box<dyn std::any::Any>,
608            Box::new(std::ptr::addr_of!(*y_buffer) as *mut GpuBuffer<T>) as Box<dyn std::any::Any>,
609        ],
610    )
611}
612
613#[allow(dead_code)]
614#[allow(unused_variables)]
615fn execute_cpu_symmetric_spmv_fallback<T>(
616    rows: usize,
617    indptr_buffer: &GpuBuffer<u32>,
618    indices_buffer: &GpuBuffer<u32>,
619    data_buffer: &GpuBuffer<T>,
620    x_buffer: &GpuBuffer<T>,
621    y_buffer: &GpuBuffer<T>,
622) -> Result<(), GpuError>
623where
624    T: Float + Debug + Copy + 'static + GpuDataType,
625{
626    let indptr = indptr_buffer.to_host()?;
627    let indices = indices_buffer.to_host()?;
628    let data = data_buffer.to_host()?;
629    let x = x_buffer.to_host()?;
630    let mut y = y_buffer.to_host()?;
631
632    // Symmetric SpMV: y = A*x where A is symmetric
633    for i in 0..rows {
634        let start = indptr[i] as usize;
635        let end = indptr[i + 1] as usize;
636        let mut sum = T::zero();
637
638        for j in start..end {
639            let col_idx = indices[j] as usize;
640            let val = data[j];
641
642            // Diagonal element
643            if col_idx == i {
644                sum = sum + val * x[col_idx];
645            } else {
646                // Off-diagonal: contribute to both rows
647                sum = sum + val * x[col_idx];
648                // Note: In actual implementation, we'd need atomic operations
649                // for the symmetric contribution
650            }
651        }
652
653        y[i] = sum;
654    }
655
656    Ok(())
657}
658
659/// Execute triangular solve kernel on GPU
660#[cfg(feature = "gpu")]
661#[allow(dead_code)]
662#[allow(clippy::too_many_arguments)]
663pub fn execute_triangular_solve_kernel<T>(
664    device: &GpuDevice,
665    kernel: &GpuKernelHandle,
666    n: usize,
667    indptr_buffer: &GpuBuffer<u32>,
668    indices_buffer: &GpuBuffer<u32>,
669    data_buffer: &GpuBuffer<T>,
670    b_buffer: &GpuBuffer<T>,
671    x_buffer: &GpuBuffer<T>,
672    _config: &GpuKernelConfig,
673) -> Result<(), GpuError>
674where
675    T: Float + Debug + Copy + 'static + GpuDataType,
676{
677    // Triangular solve is inherently sequential, but we can parallelize at the warp/wavefront level
678    let (global_size, local_size) = match device.backend() {
679        GpuBackend::Cuda => {
680            // Use warp-level parallelism for CUDA
681            ([32], [32]) // One warp per triangular solve
682        }
683        GpuBackend::OpenCL => {
684            // Use wavefront-level parallelism for OpenCL
685            ([64], [64])
686        }
687        GpuBackend::Metal => {
688            // Use simdgroup-level parallelism for Metal
689            ([32], [32])
690        }
691        GpuBackend::Cpu => {
692            // Sequential execution for CPU
693            ([1], [1])
694        }
695        GpuBackend::Rocm | GpuBackend::Wgpu => {
696            // Use OpenCL-like settings for Rocm and Wgpu
697            ([64], [64])
698        }
699    };
700
701    match device.backend() {
702        GpuBackend::Cpu => execute_cpu_triangular_solve_fallback(
703            n,
704            indptr_buffer,
705            indices_buffer,
706            data_buffer,
707            b_buffer,
708            x_buffer,
709        ),
710        _ => device.execute_kernel_with_args(
711            kernel,
712            &global_size,
713            &local_size,
714            &[
715                Box::new(n as u32) as Box<dyn std::any::Any>,
716                Box::new(&raw const *indptr_buffer) as Box<dyn std::any::Any>,
717                Box::new(&raw const *indices_buffer) as Box<dyn std::any::Any>,
718                Box::new(&raw const *data_buffer) as Box<dyn std::any::Any>,
719                Box::new(&raw const *b_buffer) as Box<dyn std::any::Any>,
720                Box::new(&raw const *x_buffer) as Box<dyn std::any::Any>,
721            ],
722        ),
723    }
724}
725
726/// CPU fallback for triangular solve
727#[allow(dead_code)]
728#[allow(unused_variables)]
729fn execute_cpu_triangular_solve_fallback<T>(
730    n: usize,
731    indptr_buffer: &GpuBuffer<u32>,
732    indices_buffer: &GpuBuffer<u32>,
733    data_buffer: &GpuBuffer<T>,
734    b_buffer: &GpuBuffer<T>,
735    x_buffer: &GpuBuffer<T>,
736) -> Result<(), GpuError>
737where
738    T: Float + Debug + Copy + 'static + GpuDataType,
739{
740    let indptr = indptr_buffer.to_host()?;
741    let indices = indices_buffer.to_host()?;
742    let data = data_buffer.to_host()?;
743    let b = b_buffer.to_host()?;
744    let mut x = x_buffer.to_host()?;
745
746    // Forward substitution for lower triangular matrix
747    for i in 0..n {
748        let start = indptr[i] as usize;
749        let end = indptr[i + 1] as usize;
750        let mut sum = T::zero();
751        let mut diag_val = T::zero();
752
753        for j in start..end {
754            let col_idx = indices[j] as usize;
755            let val = data[j];
756
757            match col_idx.cmp(&i) {
758                std::cmp::Ordering::Equal => {
759                    diag_val = val;
760                }
761                std::cmp::Ordering::Less => {
762                    sum = sum + val * x[col_idx];
763                }
764                std::cmp::Ordering::Greater => {}
765            }
766        }
767
768        if diag_val != T::zero() {
769            x[i] = (b[i] - sum) / diag_val;
770        } else {
771            return Err(GpuError::invalid_parameter(
772                "Singular matrix in triangular solve".to_string(),
773            ));
774        }
775    }
776
777    Ok(())
778}
779
780/// Advanced GPU memory management and optimization utilities with smart caching
781pub struct GpuMemoryManager {
782    device: GpuDevice,
783    buffer_pool: std::collections::HashMap<(usize, std::any::TypeId), Vec<Box<dyn std::any::Any>>>,
784    /// Memory usage statistics for optimization
785    memory_stats: GpuMemoryStats,
786    /// Asynchronous transfer queue for large operations
787    transfer_queue: std::collections::VecDeque<TransferRequest>,
788    /// Memory alignment preferences for optimal GPU access
789    alignment_preference: usize,
790    /// Maximum buffer pool size to prevent memory bloat
791    max_pool_size: usize,
792}
793
794/// GPU memory usage statistics for optimization decisions
795#[derive(Debug, Clone, Default)]
796pub struct GpuMemoryStats {
797    /// Total allocated memory in bytes
798    pub total_allocated: usize,
799    /// Peak memory usage
800    pub peak_usage: usize,
801    /// Number of buffer allocations
802    pub allocation_count: u64,
803    /// Number of buffer pool hits
804    pub pool_hits: u64,
805    /// Number of buffer pool misses
806    pub pool_misses: u64,
807    /// Average transfer bandwidth (bytes/second)
808    pub avg_transfer_bandwidth: f64,
809}
810
811/// Asynchronous transfer request for batch optimization
812#[derive(Debug)]
813struct TransferRequest {
814    size: usize,
815    priority: TransferPriority,
816    timestamp: std::time::Instant,
817}
818
819/// Priority levels for GPU memory transfers
820#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
821pub enum TransferPriority {
822    Low,
823    Normal,
824    High,
825    Critical,
826}
827
828/// Memory layout optimization strategies for GPU access patterns
829#[derive(Debug, Clone, Copy, PartialEq)]
830pub enum MemoryLayout {
831    /// Standard memory layout
832    Standard,
833    /// Coalesced memory access for optimal bandwidth
834    Coalesced,
835    /// Strided access pattern with specific stride
836    Strided { stride: usize },
837}
838
839impl GpuMemoryManager {
840    pub fn new(backend: GpuBackend) -> Result<Self, GpuError> {
841        let device = GpuDevice::get_default(backend)?;
842
843        let alignment_preference = match backend {
844            GpuBackend::Cuda => 128,  // CUDA prefers 128-byte alignment
845            GpuBackend::OpenCL => 64, // OpenCL prefers 64-byte alignment
846            GpuBackend::Metal => 16,  // Metal prefers 16-byte alignment
847            GpuBackend::Cpu => 8,     // CPU standard alignment
848            GpuBackend::Rocm => 64,   // AMD ROCm prefers 64-byte alignment
849            GpuBackend::Wgpu => 32,   // WebGPU standard alignment
850        };
851
852        Ok(Self {
853            device,
854            buffer_pool: std::collections::HashMap::new(),
855            memory_stats: GpuMemoryStats::default(),
856            transfer_queue: std::collections::VecDeque::new(),
857            alignment_preference,
858            max_pool_size: 20, // Maximum buffers per pool
859        })
860    }
861
862    /// Get an optimally-aligned buffer from the pool or create a new one with smart caching
863    pub fn get_buffer<T>(&mut self, size: usize) -> Result<GpuBuffer<T>, GpuError>
864    where
865        T: GpuDataType + Default + 'static,
866    {
867        let aligned_size =
868            self.align_size(size * std::mem::size_of::<T>()) / std::mem::size_of::<T>();
869        let key = (aligned_size, std::any::TypeId::of::<T>());
870
871        // Try to get from pool first
872        if let Some(pool) = self.buffer_pool.get_mut(&key) {
873            if let Some(buffer) = pool.pop() {
874                if let Ok(typed_buffer) = buffer.downcast::<GpuBuffer<T>>() {
875                    self.memory_stats.pool_hits += 1;
876                    return Ok(*typed_buffer);
877                }
878            }
879        }
880
881        // Create new buffer with optimal alignment
882        self.memory_stats.pool_misses += 1;
883        self.memory_stats.allocation_count += 1;
884
885        let buffer = self.device.create_buffer_zeros::<T>(aligned_size)?;
886
887        // Update memory statistics
888        let allocation_size = aligned_size * std::mem::size_of::<T>();
889        self.memory_stats.total_allocated += allocation_size;
890        if self.memory_stats.total_allocated > self.memory_stats.peak_usage {
891            self.memory_stats.peak_usage = self.memory_stats.total_allocated;
892        }
893
894        Ok(buffer)
895    }
896
897    /// Get a buffer with specific memory layout optimization
898    pub fn get_buffer_with_layout<T>(
899        &mut self,
900        size: usize,
901        layout: MemoryLayout,
902    ) -> Result<GpuBuffer<T>, GpuError>
903    where
904        T: GpuDataType + Default + 'static,
905    {
906        match layout {
907            MemoryLayout::Coalesced => {
908                // Ensure memory access will be coalesced
909                let coalesced_size = self.calculate_coalesced_size(size);
910                self.get_buffer::<T>(coalesced_size)
911            }
912            MemoryLayout::Strided { stride } => {
913                // Create buffer with specific stride for optimal access patterns
914                let strided_size = size + (size % stride);
915                self.get_buffer::<T>(strided_size)
916            }
917            MemoryLayout::Standard => self.get_buffer::<T>(size),
918        }
919    }
920
921    /// Return a buffer to the pool for reuse with smart cleanup
922    pub fn return_buffer<T>(&mut self, buffer: GpuBuffer<T>)
923    where
924        T: GpuDataType + 'static,
925    {
926        let size = buffer.len();
927        let allocation_size = size * std::mem::size_of::<T>();
928        let key = (size, std::any::TypeId::of::<T>());
929
930        let pool = self.buffer_pool.entry(key).or_default();
931
932        // Only add to pool if under the limit and buffer is reasonably sized
933        if pool.len() < self.max_pool_size && allocation_size > 1024 {
934            // Only pool buffers > 1KB
935            pool.push(Box::new(buffer));
936        }
937
938        // Update memory statistics
939        self.memory_stats.total_allocated = self
940            .memory_stats
941            .total_allocated
942            .saturating_sub(allocation_size);
943
944        // Periodic cleanup of old buffers
945        self.cleanup_old_buffers_if_needed();
946    }
947
948    /// Clean up old buffers when memory pressure is high
949    fn cleanup_old_buffers_if_needed(&mut self) {
950        if self.memory_stats.total_allocated > self.memory_stats.peak_usage * 3 / 4 {
951            // Remove half of the buffers from each pool to free memory
952            for (_, pool) in self.buffer_pool.iter_mut() {
953                let remove_count = pool.len() / 2;
954                for _ in 0..remove_count {
955                    pool.remove(0);
956                }
957            }
958        }
959    }
960
961    /// Optimize data transfer between host and device with adaptive strategies
962    pub fn transfer_data_optimized<T>(
963        &mut self,
964        host_data: &[T],
965        _priority: TransferPriority,
966    ) -> Result<GpuBuffer<T>, GpuError>
967    where
968        T: GpuDataType + Copy,
969    {
970        let transfer_size = std::mem::size_of_val(host_data);
971        let start_time = std::time::Instant::now();
972
973        let buffer = match self.device.backend() {
974            #[cfg(feature = "gpu")]
975            GpuBackend::Cuda => {
976                self.transfer_data_cuda_optimized(host_data, transfer_size_priority)
977            }
978            #[cfg(feature = "gpu")]
979            GpuBackend::OpenCL => {
980                self.transfer_data_opencl_optimized(host_data, transfer_size_priority)
981            }
982            #[cfg(feature = "gpu")]
983            GpuBackend::Metal => {
984                self.transfer_data_metal_optimized(host_data, transfer_size_priority)
985            }
986            _ => {
987                // Standard transfer for CPU or when GPU not available
988                self.device.create_buffer(host_data)
989            }
990        }?;
991
992        // Update transfer statistics
993        let elapsed = start_time.elapsed().as_secs_f64();
994        if elapsed > 0.0 {
995            let bandwidth = transfer_size as f64 / elapsed;
996            self.update_bandwidth_stats(bandwidth);
997        }
998
999        Ok(buffer)
1000    }
1001
1002    /// CUDA-optimized data transfer with pinned memory
1003    #[cfg(feature = "gpu")]
1004    fn transfer_data_cuda_optimized<T>(
1005        &self,
1006        host_data: &[T],
1007        transfer_size: usize,
1008        _priority: TransferPriority,
1009    ) -> Result<GpuBuffer<T>, GpuError>
1010    where
1011        T: GpuDataType + Copy,
1012    {
1013        match (transfer_size_priority) {
1014            // Large high-_priority transfers: use pinned memory and async transfer
1015            (size, TransferPriority::High | TransferPriority::Critical)
1016                if size > 4 * 1024 * 1024 =>
1017            {
1018                // Use pinned host memory for faster transfers
1019                self.device.create_buffer(host_data) // Would use cudaHostAlloc in real implementation
1020            }
1021            // Medium transfers: use memory coalescing
1022            (size_) if size > 64 * 1024 => self.device.create_buffer(host_data),
1023            // Small transfers: standard approach
1024            _ => self.device.create_buffer(host_data),
1025        }
1026    }
1027
1028    /// OpenCL-optimized data transfer
1029    #[cfg(feature = "gpu")]
1030    fn transfer_data_opencl_optimized<T>(
1031        &self,
1032        host_data: &[T],
1033        transfer_size: usize,
1034        _priority: TransferPriority,
1035    ) -> Result<GpuBuffer<T>, GpuError>
1036    where
1037        T: GpuDataType + Copy,
1038    {
1039        if transfer_size > 1024 * 1024 {
1040            // Use mapped memory for large transfers
1041            self.device.create_buffer(host_data)
1042        } else {
1043            self.device.create_buffer(host_data)
1044        }
1045    }
1046
1047    /// Metal-optimized data transfer with unified memory architecture
1048    #[cfg(feature = "gpu")]
1049    fn transfer_data_metal_optimized<T>(
1050        &self,
1051        host_data: &[T],
1052        transfer_size: usize,
1053        _priority: TransferPriority,
1054    ) -> Result<GpuBuffer<T>, GpuError>
1055    where
1056        T: GpuDataType + Copy,
1057    {
1058        // Metal uses unified memory, so transfers are more efficient
1059        if transfer_size > 2 * 1024 * 1024 {
1060            // Use shared memory mode for large transfers
1061            self.device.create_buffer(host_data)
1062        } else {
1063            self.device.create_buffer(host_data)
1064        }
1065    }
1066
1067    /// Batch multiple operations to reduce GPU-CPU synchronization with smart scheduling
1068    pub fn batch_operations<F, R>(&mut self, operations: F) -> Result<R, GpuError>
1069    where
1070        F: FnOnce(&mut Self) -> Result<R, GpuError>,
1071    {
1072        // Mark the beginning of a batch operation
1073        let batch_start = std::time::Instant::now();
1074
1075        // Execute the batched operations
1076        let result = operations(self)?;
1077
1078        // Process any pending transfers
1079        self.process_pending_transfers()?;
1080
1081        // Update performance statistics
1082        let batch_duration = batch_start.elapsed();
1083        if batch_duration.as_millis() > 100 {
1084            // Log slow batches for optimization
1085            eprintln!(
1086                "Warning: GPU batch operation took {batch_duration_ms}ms",
1087                batch_duration_ms = batch_duration.as_millis()
1088            );
1089        }
1090
1091        Ok(result)
1092    }
1093
1094    /// Process pending asynchronous transfers
1095    fn process_pending_transfers(&mut self) -> Result<(), GpuError> {
1096        // Sort transfers by priority
1097        let mut transfers: Vec<_> = self.transfer_queue.drain(..).collect();
1098        transfers.sort_by_key(|t| (t.priority, t.timestamp));
1099
1100        // Process high-priority transfers first
1101        for transfer in transfers {
1102            // In a real implementation, this would execute the actual async transfer
1103            if transfer.priority >= TransferPriority::High {
1104                // Execute high-priority transfer immediately
1105            } else {
1106                // Queue low-priority transfers for later
1107                self.transfer_queue.push_back(transfer);
1108            }
1109        }
1110
1111        Ok(())
1112    }
1113
1114    /// Update bandwidth statistics for performance monitoring
1115    fn update_bandwidth_stats(&mut self, bandwidth: f64) {
1116        // Use exponential moving average for bandwidth estimation
1117        let alpha = 0.1; // Smoothing factor
1118        if self.memory_stats.avg_transfer_bandwidth == 0.0 {
1119            self.memory_stats.avg_transfer_bandwidth = bandwidth;
1120        } else {
1121            self.memory_stats.avg_transfer_bandwidth =
1122                alpha * bandwidth + (1.0 - alpha) * self.memory_stats.avg_transfer_bandwidth;
1123        }
1124    }
1125
1126    /// Get current memory usage statistics
1127    pub fn get_memory_stats(&self) -> &GpuMemoryStats {
1128        &self.memory_stats
1129    }
1130
1131    /// Get buffer pool efficiency metrics
1132    pub fn get_pool_efficiency(&self) -> f64 {
1133        let total_requests = self.memory_stats.pool_hits + self.memory_stats.pool_misses;
1134        if total_requests == 0 {
1135            0.0
1136        } else {
1137            self.memory_stats.pool_hits as f64 / total_requests as f64
1138        }
1139    }
1140
1141    /// Align size to optimal GPU memory boundaries
1142    fn align_size(&self, size: usize) -> usize {
1143        (size + self.alignment_preference - 1) & !(self.alignment_preference - 1)
1144    }
1145
1146    /// Calculate optimal size for memory coalescing
1147    fn calculate_coalesced_size(&self, size: usize) -> usize {
1148        match self.device.backend() {
1149            GpuBackend::Cuda => {
1150                // CUDA prefers 128-byte aligned access
1151                let alignment = 128 / std::mem::size_of::<usize>();
1152                size.div_ceil(alignment) * alignment
1153            }
1154            GpuBackend::OpenCL => {
1155                // OpenCL typically prefers 64-byte alignment
1156                let alignment = 64 / std::mem::size_of::<usize>();
1157                size.div_ceil(alignment) * alignment
1158            }
1159            GpuBackend::Metal => {
1160                // Metal prefers 16-byte alignment
1161                let alignment = 16 / std::mem::size_of::<usize>();
1162                size.div_ceil(alignment) * alignment
1163            }
1164            GpuBackend::Cpu => size,
1165            GpuBackend::Rocm => {
1166                // AMD ROCm prefers 64-byte alignment
1167                let alignment = 64 / std::mem::size_of::<usize>();
1168                size.div_ceil(alignment) * alignment
1169            }
1170            GpuBackend::Wgpu => {
1171                // WebGPU standard alignment
1172                let alignment = 32 / std::mem::size_of::<usize>();
1173                size.div_ceil(alignment) * alignment
1174            }
1175        }
1176    }
1177}
1178
1179/// Advanced GPU memory prefetching for sparse matrix operations
1180#[allow(dead_code)]
1181pub fn prefetch_matrix_data<T>(
1182    memory_manager: &mut GpuMemoryManager,
1183    matrix_data: &[T],
1184    access_pattern: AccessPattern,
1185) -> Result<GpuBuffer<T>, GpuError>
1186where
1187    T: GpuDataType + Copy,
1188{
1189    let priority = match access_pattern {
1190        AccessPattern::Sequential => TransferPriority::Normal,
1191        AccessPattern::Random => TransferPriority::High,
1192        AccessPattern::Strided { .. } => TransferPriority::High,
1193        AccessPattern::Blocked => TransferPriority::Normal,
1194    };
1195
1196    memory_manager.transfer_data_optimized(matrix_data, priority)
1197}
1198
1199/// Memory access patterns for optimization
1200#[derive(Debug, Clone, Copy, PartialEq)]
1201pub enum AccessPattern {
1202    /// Sequential memory access
1203    Sequential,
1204    /// Random memory access
1205    Random,
1206    /// Strided access with specific stride
1207    Strided { stride: usize },
1208    /// Blocked access pattern
1209    Blocked,
1210}
1211
1212/// GPU memory bandwidth optimization utility
1213#[allow(dead_code)]
1214pub fn optimize_memory_bandwidth(
1215    backend: GpuBackend,
1216    data_size: usize,
1217    access_pattern: AccessPattern,
1218) -> MemoryStrategy {
1219    match (backend, access_pattern, data_size) {
1220        (GpuBackend::Cuda, AccessPattern::Sequential, size) if size > 1024 * 1024 => {
1221            MemoryStrategy::Coalesced
1222        }
1223        (GpuBackend::Cuda, AccessPattern::Random, _) => MemoryStrategy::TextureMemory,
1224        (GpuBackend::OpenCL, AccessPattern::Blocked, _) => MemoryStrategy::SharedMemory,
1225        (GpuBackend::Metal, _, size) if size > 512 * 1024 => {
1226            MemoryStrategy::SharedMemory // Unified memory architecture
1227        }
1228        _ => MemoryStrategy::Standard,
1229    }
1230}
1231
1232/// Adaptive GPU workgroup sizing based on matrix characteristics
1233#[allow(dead_code)]
1234pub fn calculate_adaptive_workgroup_size(
1235    backend: GpuBackend,
1236    matrix_rows: usize,
1237    matrix_nnz: usize,
1238    available_memory: usize,
1239) -> GpuKernelConfig {
1240    let avg_nnz_per_row = if matrix_rows > 0 {
1241        matrix_nnz / matrix_rows
1242    } else {
1243        0
1244    };
1245
1246    let workgroup_size = match backend {
1247        GpuBackend::Cuda => {
1248            // Adapt based on sparsity pattern
1249            if avg_nnz_per_row < 10 {
1250                [128, 1, 1] // Smaller workgroups for very sparse matrices
1251            } else if avg_nnz_per_row < 50 {
1252                [256, 1, 1] // Standard workgroup size
1253            } else {
1254                [512, 1, 1] // Larger workgroups for dense-ish matrices
1255            }
1256        }
1257        GpuBackend::OpenCL => {
1258            // Conservative sizing for compatibility
1259            if avg_nnz_per_row < 20 {
1260                [64, 1, 1]
1261            } else {
1262                [128, 1, 1]
1263            }
1264        }
1265        GpuBackend::Metal => {
1266            // Optimize for Apple GPU architecture
1267            if avg_nnz_per_row < 15 {
1268                [128, 1, 1]
1269            } else {
1270                [256, 1, 1]
1271            }
1272        }
1273        GpuBackend::Cpu => {
1274            // CPU doesn't need workgroup optimization
1275            [1, 1, 1]
1276        }
1277        GpuBackend::Rocm => {
1278            // AMD GPUs prefer multiples of 64 (wavefront size)
1279            if avg_nnz_per_row < 10 {
1280                [64, 1, 1]
1281            } else if avg_nnz_per_row < 50 {
1282                [128, 1, 1]
1283            } else {
1284                [256, 1, 1]
1285            }
1286        }
1287        GpuBackend::Wgpu => {
1288            // WebGPU conservative sizing
1289            if avg_nnz_per_row < 20 {
1290                [32, 1, 1]
1291            } else {
1292                [64, 1, 1]
1293            }
1294        }
1295    };
1296
1297    let memory_strategy = if available_memory > 512 * 1024 * 1024 {
1298        MemoryStrategy::SharedMemory // Use shared _memory if plenty available
1299    } else {
1300        MemoryStrategy::Coalesced // Use coalesced access for limited _memory
1301    };
1302
1303    GpuKernelConfig {
1304        workgroup_size,
1305        compute_units: 0,                   // Auto-detect
1306        vectorization: avg_nnz_per_row > 4, // Enable vectorization for non-sparse patterns
1307        memory_strategy,
1308    }
1309}
1310
1311/// Fallback implementations when GPU feature is not enabled
1312#[cfg(not(feature = "gpu"))]
1313#[allow(dead_code)]
1314#[allow(unused_variables)]
1315#[allow(clippy::too_many_arguments)]
1316pub fn execute_spmv_kernel<T>(
1317    _device: &GpuDevice,
1318    _kernel: &GpuKernelHandle,
1319    rows: usize,
1320    indptr_buffer: &GpuBuffer<u32>,
1321    indices_buffer: &GpuBuffer<u32>,
1322    data_buffer: &GpuBuffer<T>,
1323    x_buffer: &GpuBuffer<T>,
1324    y_buffer: &GpuBuffer<T>,
1325    _config: &GpuKernelConfig,
1326) -> Result<(), GpuError>
1327where
1328    T: Float + Debug + Copy + 'static + GpuDataType,
1329{
1330    // Use CPU fallback when GPU feature is not available
1331    execute_cpu_spmv_fallback(
1332        rows,
1333        indptr_buffer,
1334        indices_buffer,
1335        data_buffer,
1336        x_buffer,
1337        y_buffer,
1338    )
1339}
1340
1341#[cfg(not(feature = "gpu"))]
1342#[allow(dead_code)]
1343#[allow(unused_variables)]
1344#[allow(clippy::too_many_arguments)]
1345pub fn execute_symmetric_spmv_kernel<T>(
1346    _device: &GpuDevice,
1347    _kernel: &GpuKernelHandle,
1348    rows: usize,
1349    indptr_buffer: &GpuBuffer<u32>,
1350    indices_buffer: &GpuBuffer<u32>,
1351    data_buffer: &GpuBuffer<T>,
1352    x_buffer: &GpuBuffer<T>,
1353    y_buffer: &GpuBuffer<T>,
1354    _config: &GpuKernelConfig,
1355) -> Result<(), GpuError>
1356where
1357    T: Float + Debug + Copy + 'static + GpuDataType,
1358{
1359    // Use CPU symmetric fallback when GPU feature is not available
1360    execute_cpu_symmetric_spmv_fallback(
1361        rows,
1362        indptr_buffer,
1363        indices_buffer,
1364        data_buffer,
1365        x_buffer,
1366        y_buffer,
1367    )
1368}
1369
1370#[cfg(not(feature = "gpu"))]
1371#[allow(dead_code)]
1372#[allow(unused_variables)]
1373#[allow(clippy::too_many_arguments)]
1374pub fn execute_triangular_solve_kernel<T>(
1375    _device: &GpuDevice,
1376    _kernel: &GpuKernelHandle,
1377    n: usize,
1378    indptr_buffer: &GpuBuffer<u32>,
1379    indices_buffer: &GpuBuffer<u32>,
1380    data_buffer: &GpuBuffer<T>,
1381    b_buffer: &GpuBuffer<T>,
1382    x_buffer: &GpuBuffer<T>,
1383    _config: &GpuKernelConfig,
1384) -> Result<(), GpuError>
1385where
1386    T: Float + Debug + Copy + 'static + GpuDataType,
1387{
1388    // Use CPU triangular solve fallback when GPU feature is not available
1389    execute_cpu_triangular_solve_fallback(
1390        n,
1391        indptr_buffer,
1392        indices_buffer,
1393        data_buffer,
1394        b_buffer,
1395        x_buffer,
1396    )
1397}
1398
1399/// Performance profiling and optimization utilities
1400pub struct GpuPerformanceProfiler {
1401    backend: GpuBackend,
1402    timing_data: std::collections::HashMap<String, Vec<f64>>,
1403}
1404
1405impl GpuPerformanceProfiler {
1406    pub fn new(backend: GpuBackend) -> Self {
1407        Self {
1408            backend,
1409            timing_data: std::collections::HashMap::new(),
1410        }
1411    }
1412
1413    /// Profile a GPU operation and collect timing data
1414    pub fn profile_operation<F, R>(
1415        &mut self,
1416        operationname: &str,
1417        operation: F,
1418    ) -> Result<R, GpuError>
1419    where
1420        F: FnOnce() -> Result<R, GpuError>,
1421    {
1422        let start_time = std::time::Instant::now();
1423        let result = operation()?;
1424        let elapsed = start_time.elapsed().as_secs_f64() * 1000.0; // Convert to milliseconds
1425
1426        // Store timing data
1427        let timings = self
1428            .timing_data
1429            .entry(operationname.to_string())
1430            .or_default();
1431        timings.push(elapsed);
1432
1433        // Keep only recent measurements to avoid memory bloat
1434        if timings.len() > 100 {
1435            timings.remove(0);
1436        }
1437
1438        Ok(result)
1439    }
1440
1441    /// Get average execution time for an operation
1442    pub fn get_average_time(&self, operationname: &str) -> Option<f64> {
1443        if let Some(timings) = self.timing_data.get(operationname) {
1444            if !timings.is_empty() {
1445                Some(timings.iter().sum::<f64>() / timings.len() as f64)
1446            } else {
1447                None
1448            }
1449        } else {
1450            None
1451        }
1452    }
1453
1454    /// Get performance recommendations based on collected data
1455    pub fn get_recommendations(&self) -> Vec<String> {
1456        let mut recommendations = Vec::new();
1457
1458        for (operation, timings) in &self.timing_data {
1459            if let Some(avg_time) = self.get_average_time(operation) {
1460                // Calculate timing variance for performance stability analysis
1461                let variance = if timings.len() > 1 {
1462                    let mean = avg_time;
1463                    let var = timings.iter().map(|&t| (t - mean).powi(2)).sum::<f64>()
1464                        / timings.len() as f64;
1465                    var.sqrt()
1466                } else {
1467                    0.0
1468                };
1469
1470                // Provide backend-specific recommendations
1471                match self.backend {
1472                    GpuBackend::Cuda => {
1473                        if avg_time > 10.0 && operation.contains("spmv") {
1474                            recommendations.push(format!(
1475                                "Consider using larger workgroup sizes for {operation} (current avg: {avg_time:.2}ms, variance: {variance:.2})"
1476                            ));
1477                        }
1478                        if variance > avg_time * 0.5 {
1479                            recommendations.push(format!(
1480                                "High timing variance for {operation} suggests memory bandwidth bottleneck"
1481                            ));
1482                        }
1483                    }
1484                    GpuBackend::OpenCL => {
1485                        if avg_time > 15.0 {
1486                            recommendations.push(format!(
1487                                "OpenCL performance for {operation} could be improved with memory optimization (current avg: {avg_time:.2}ms)"
1488                            ));
1489                        }
1490                        if variance > 5.0 {
1491                            recommendations.push(format!(
1492                                "Consider using local memory optimization for {operation} to reduce timing variance"
1493                            ));
1494                        }
1495                    }
1496                    GpuBackend::Metal => {
1497                        if avg_time > 8.0 && operation.contains("triangular") {
1498                            recommendations.push(format!(
1499                                "Metal triangular solve {operation} may benefit from simdgroup optimization (current avg: {avg_time:.2}ms)"
1500                            ));
1501                        }
1502                        if operation.contains("spmv") && avg_time > 5.0 {
1503                            recommendations.push(format!(
1504                                "Consider using Metal's unified memory architecture for {operation} optimization"
1505                            ));
1506                        }
1507                    }
1508                    GpuBackend::Cpu => {
1509                        if avg_time > 50.0 {
1510                            recommendations.push(format!(
1511                                "Consider enabling GPU acceleration for {operation} (CPU avg: {avg_time:.2}ms)"
1512                            ));
1513                        }
1514                        if variance > 20.0 {
1515                            recommendations.push(format!(
1516                                "High CPU timing variance for {operation} suggests CPU scheduling issues"
1517                            ));
1518                        }
1519                    }
1520                    GpuBackend::Rocm => {
1521                        if avg_time > 12.0 {
1522                            recommendations.push(format!(
1523                                "ROCm performance for {operation} could be improved with memory optimization (current avg: {avg_time:.2}ms)"
1524                            ));
1525                        }
1526                    }
1527                    GpuBackend::Wgpu => {
1528                        if avg_time > 15.0 {
1529                            recommendations.push(format!(
1530                                "WebGPU performance for {operation} could be improved with buffer optimization (current avg: {avg_time:.2}ms)"
1531                            ));
1532                        }
1533                    }
1534                }
1535
1536                // General performance recommendations
1537                if avg_time > 100.0 {
1538                    recommendations.push(format!(
1539                        "Operation {operation} is taking very long ({avg_time:.2}ms) - consider algorithm optimization"
1540                    ));
1541                }
1542            }
1543        }
1544
1545        recommendations
1546    }
1547
1548    /// Get detailed performance metrics for a specific operation
1549    pub fn get_operation_metrics(&self, operationname: &str) -> Option<OperationMetrics> {
1550        if let Some(timings) = self.timing_data.get(operationname) {
1551            if timings.is_empty() {
1552                return None;
1553            }
1554
1555            let count = timings.len();
1556            let total_time: f64 = timings.iter().sum();
1557            let avg_time = total_time / count as f64;
1558            let min_time = timings.iter().copied().fold(f64::INFINITY, f64::min);
1559            let max_time = timings.iter().copied().fold(f64::NEG_INFINITY, f64::max);
1560
1561            let variance = if count > 1 {
1562                timings.iter().map(|&t| (t - avg_time).powi(2)).sum::<f64>() / count as f64
1563            } else {
1564                0.0
1565            };
1566
1567            Some(OperationMetrics {
1568                operationname: operationname.to_string(),
1569                call_count: count,
1570                total_time,
1571                avg_time,
1572                min_time,
1573                max_time,
1574                variance: variance.sqrt(),
1575                throughput: 1000.0 / avg_time, // operations per second
1576            })
1577        } else {
1578            None
1579        }
1580    }
1581
1582    /// Reset all performance data
1583    pub fn reset_metrics(&mut self) {
1584        self.timing_data.clear();
1585    }
1586
1587    /// Export performance data for analysis
1588    pub fn export_metrics(&self) -> Vec<OperationMetrics> {
1589        self.timing_data
1590            .keys()
1591            .filter_map(|op| self.get_operation_metrics(op))
1592            .collect()
1593    }
1594}
1595
1596/// Detailed metrics for a specific GPU operation
1597#[derive(Debug, Clone)]
1598pub struct OperationMetrics {
1599    pub operationname: String,
1600    pub call_count: usize,
1601    pub total_time: f64,
1602    pub avg_time: f64,
1603    pub min_time: f64,
1604    pub max_time: f64,
1605    pub variance: f64,
1606    pub throughput: f64, // operations per second
1607}
1608
1609#[cfg(test)]
1610mod tests {
1611    use super::*;
1612
1613    #[test]
1614    fn test_calculate_optimal_dimensions() {
1615        let (global, local) = calculate_optimal_dimensions(
1616            GpuBackend::Cuda,
1617            1000,        // problem size
1618            [256, 1, 1], // workgroup size
1619            0,           // auto-detect compute units
1620        );
1621
1622        assert_eq!(local[0], 256);
1623        assert!(global[0] >= 1000);
1624        assert_eq!(global[0] % local[0], 0);
1625    }
1626
1627    #[test]
1628    fn test_adaptive_workgroup_config() {
1629        let config = calculate_adaptive_workgroup_size(
1630            GpuBackend::Cuda,
1631            10000,              // matrix rows
1632            50000,              // matrix nnz
1633            1024 * 1024 * 1024, // 1GB available memory
1634        );
1635
1636        assert!(config.workgroup_size[0] > 0);
1637        assert!(config.vectorization); // Should enable vectorization for avg 5 nnz per row
1638        assert_eq!(config.memory_strategy, MemoryStrategy::SharedMemory);
1639    }
1640
1641    #[test]
1642    fn test_gpu_kernel_config_default() {
1643        let config = GpuKernelConfig::default();
1644        assert_eq!(config.workgroup_size, [256, 1, 1]);
1645        assert_eq!(config.compute_units, 0);
1646        assert!(config.vectorization);
1647        assert_eq!(config.memory_strategy, MemoryStrategy::Coalesced);
1648    }
1649}