Expand description
Neural-Adaptive Sparse Matrix Operations for Advanced Mode
This module implements neural network-inspired adaptive algorithms for sparse matrix operations that learn and optimize based on matrix characteristics and usage patterns.
§Architecture
The neural adaptive system consists of several interconnected components:
- Neural Networks: Multi-layer perceptrons with attention mechanisms for pattern recognition
- Transformer Models: Advanced attention-based models for complex pattern understanding
- Reinforcement Learning: Agents that learn optimal strategies through trial and reward
- Pattern Memory: Efficient storage and retrieval of learned optimization patterns
- Configuration: Flexible configuration system for different use cases
§Usage
ⓘ
use scirs2_sparse::neural_adaptive_sparse::{
NeuralAdaptiveSparseProcessor, NeuralAdaptiveConfig, OptimizationStrategy
};
// Create a configuration
let config = NeuralAdaptiveConfig::default();
// Create the processor
let mut processor = NeuralAdaptiveSparseProcessor::new(config);
// Use the processor to optimize matrix operations
// (actual matrix features would be extracted from real sparse matrices)
let matrix_features = vec![1.0, 2.0, 3.0]; // Simplified example
let context = OperationContext {
matrix_shape: (1000, 1000),
nnz: 5000,
operation_type: OperationType::MatVec,
performance_target: PerformanceTarget::Speed,
};
let strategy = processor.optimize_operation::<f64>(&matrix_features, &context)?;
§Performance Learning
The system learns from performance feedback to improve future optimizations:
ⓘ
use scirs2_sparse::neural_adaptive_sparse::{PerformanceMetrics, OptimizationStrategy};
// After executing the operation, provide performance feedback
let performance = PerformanceMetrics::new(
0.1, // execution_time
0.8, // cache_efficiency
0.9, // simd_utilization
0.7, // parallel_efficiency
0.85, // memory_bandwidth
OptimizationStrategy::SIMDVectorized,
);
processor.learn_from_performance(
OptimizationStrategy::SIMDVectorized,
performance,
&matrix_features,
&context,
)?;
Re-exports§
pub use config::NeuralAdaptiveConfig;
pub use pattern_memory::OptimizationStrategy;
pub use processor::NeuralAdaptiveSparseProcessor;
pub use processor::NeuralProcessorStats;
pub use processor::OperationContext;
pub use processor::OperationType;
pub use processor::PerformanceTarget;
pub use processor::ProcessorState;
pub use reinforcement_learning::PerformanceMetrics;
pub use reinforcement_learning::RLAlgorithm;
pub use neural_network::ActivationFunction;
pub use transformer::LayerGradients;
pub use transformer::TransformerGradients;
Modules§
- config
- Configuration for neural-adaptive sparse matrix processing
- neural_
network - Neural network components for sparse matrix optimization
- pattern_
memory - Pattern memory and fingerprinting for sparse matrix optimization
- processor
- Main neural-adaptive sparse matrix processor
- reinforcement_
learning - Reinforcement learning components for adaptive sparse matrix optimization
- transformer
- Transformer models for advanced pattern recognition in sparse matrices