Module neural_adaptive_sparse

Module neural_adaptive_sparse 

Source
Expand description

Neural-Adaptive Sparse Matrix Operations for Advanced Mode

This module implements neural network-inspired adaptive algorithms for sparse matrix operations that learn and optimize based on matrix characteristics and usage patterns.

§Architecture

The neural adaptive system consists of several interconnected components:

  • Neural Networks: Multi-layer perceptrons with attention mechanisms for pattern recognition
  • Transformer Models: Advanced attention-based models for complex pattern understanding
  • Reinforcement Learning: Agents that learn optimal strategies through trial and reward
  • Pattern Memory: Efficient storage and retrieval of learned optimization patterns
  • Configuration: Flexible configuration system for different use cases

§Usage

use scirs2_sparse::neural_adaptive_sparse::{
    NeuralAdaptiveSparseProcessor, NeuralAdaptiveConfig, OptimizationStrategy
};

// Create a configuration
let config = NeuralAdaptiveConfig::default();

// Create the processor
let mut processor = NeuralAdaptiveSparseProcessor::new(config);

// Use the processor to optimize matrix operations
// (actual matrix features would be extracted from real sparse matrices)
let matrix_features = vec![1.0, 2.0, 3.0]; // Simplified example
let context = OperationContext {
    matrix_shape: (1000, 1000),
    nnz: 5000,
    operation_type: OperationType::MatVec,
    performance_target: PerformanceTarget::Speed,
};

let strategy = processor.optimize_operation::<f64>(&matrix_features, &context)?;

§Performance Learning

The system learns from performance feedback to improve future optimizations:

use scirs2_sparse::neural_adaptive_sparse::{PerformanceMetrics, OptimizationStrategy};

// After executing the operation, provide performance feedback
let performance = PerformanceMetrics::new(
    0.1,  // execution_time
    0.8,  // cache_efficiency
    0.9,  // simd_utilization
    0.7,  // parallel_efficiency
    0.85, // memory_bandwidth
    OptimizationStrategy::SIMDVectorized,
);

processor.learn_from_performance(
    OptimizationStrategy::SIMDVectorized,
    performance,
    &matrix_features,
    &context,
)?;

Re-exports§

pub use config::NeuralAdaptiveConfig;
pub use pattern_memory::OptimizationStrategy;
pub use processor::NeuralAdaptiveSparseProcessor;
pub use processor::NeuralProcessorStats;
pub use processor::OperationContext;
pub use processor::OperationType;
pub use processor::PerformanceTarget;
pub use processor::ProcessorState;
pub use reinforcement_learning::PerformanceMetrics;
pub use reinforcement_learning::RLAlgorithm;
pub use neural_network::ActivationFunction;
pub use transformer::LayerGradients;
pub use transformer::TransformerGradients;

Modules§

config
Configuration for neural-adaptive sparse matrix processing
neural_network
Neural network components for sparse matrix optimization
pattern_memory
Pattern memory and fingerprinting for sparse matrix optimization
processor
Main neural-adaptive sparse matrix processor
reinforcement_learning
Reinforcement learning components for adaptive sparse matrix optimization
transformer
Transformer models for advanced pattern recognition in sparse matrices