1use crate::error::SparseResult;
8use scirs2_core::numeric::{Float, NumAssign, NumCast};
9use scirs2_core::random::Rng;
10use scirs2_core::simd_ops::SimdUnifiedOps;
11use std::collections::HashMap;
12use std::sync::atomic::{AtomicUsize, Ordering};
13
14#[derive(Debug, Clone, Copy)]
16pub enum QuantumStrategy {
17 Superposition,
19 Entanglement,
21 Tunneling,
23 Annealing,
25}
26
27#[derive(Debug, Clone)]
29pub struct QuantumSparseConfig {
30 pub strategy: QuantumStrategy,
32 pub qubit_count: usize,
34 pub coherence_time: f64,
36 pub decoherence_rate: f64,
38 pub temperature: f64,
40 pub error_correction: bool,
42 pub error_correction_threshold: f64,
44 pub logical_qubits: usize,
46 pub noise_model: NoiseModel,
48 pub coherence_model: CoherenceModel,
50}
51
52#[derive(Debug, Clone, Copy)]
54pub enum NoiseModel {
55 Ideal,
57 AmplitudeDamping,
59 PhaseDamping,
61 Depolarizing,
63 Combined,
65}
66
67#[derive(Debug, Clone, Copy)]
69pub enum CoherenceModel {
70 Exponential,
72 Gaussian,
74 PowerLaw,
76 StretchedExponential,
78}
79
80impl Default for QuantumSparseConfig {
81 fn default() -> Self {
82 Self {
83 strategy: QuantumStrategy::Superposition,
84 qubit_count: 32,
85 coherence_time: 1.0,
86 decoherence_rate: 0.01,
87 temperature: 1.0,
88 error_correction: true,
89 error_correction_threshold: 0.1,
90 logical_qubits: 16,
91 noise_model: NoiseModel::Combined,
92 coherence_model: CoherenceModel::Exponential,
93 }
94 }
95}
96
97pub struct QuantumSparseProcessor {
99 config: QuantumSparseConfig,
100 quantum_state: QuantumState,
101 measurement_cache: HashMap<Vec<u8>, f64>,
102 operation_counter: AtomicUsize,
103}
104
105#[derive(Debug, Clone)]
107struct QuantumState {
108 amplitudes: Vec<f64>,
109 phases: Vec<f64>,
110 entanglement_matrix: Vec<Vec<f64>>,
111 error_syndromes: Vec<ErrorSyndrome>,
113 logical_qubits: Vec<LogicalQubit>,
115 coherence_factors: Vec<f64>,
117 evolution_time: f64,
119}
120
121#[derive(Debug, Clone)]
123struct ErrorSyndrome {
124 qubit_indices: Vec<usize>,
125 error_type: QuantumError,
126 detection_probability: f64,
127 correction_applied: bool,
128}
129
130#[derive(Debug, Clone, Copy)]
132enum QuantumError {
133 BitFlip,
134 PhaseFlip,
135 BitPhaseFlip,
136 AmplitudeDamping,
137 PhaseDamping,
138}
139
140#[derive(Debug, Clone)]
142#[allow(dead_code)]
143struct LogicalQubit {
144 physical_qubits: Vec<usize>,
145 syndrome_qubits: Vec<usize>,
146 encoding_type: QuantumCode,
147 fidelity: f64,
148}
149
150#[derive(Debug, Clone, Copy)]
152#[allow(dead_code)]
153enum QuantumCode {
154 Repetition3,
156 Perfect5,
158 Steane7,
160 Shor9,
162 Surface,
164}
165
166impl QuantumSparseProcessor {
167 pub fn new(config: QuantumSparseConfig) -> Self {
169 let qubit_count = config.qubit_count;
170 let state_size = 1 << qubit_count; let logical_qubit_count = config.logical_qubits.min(qubit_count / 4); let mut logical_qubits = Vec::new();
174
175 if logical_qubit_count > 0 && qubit_count > logical_qubit_count {
177 for i in 0..logical_qubit_count {
178 let physical_start = i * 3; let syndrome_idx = if qubit_count > logical_qubit_count {
180 qubit_count - logical_qubit_count + i
181 } else {
182 i };
184 logical_qubits.push(LogicalQubit {
185 physical_qubits: (physical_start
186 ..physical_start.saturating_add(3).min(qubit_count))
187 .collect(),
188 syndrome_qubits: vec![syndrome_idx.min(qubit_count.saturating_sub(1))],
189 encoding_type: QuantumCode::Repetition3,
190 fidelity: 1.0,
191 });
192 }
193 }
194
195 let quantum_state = QuantumState {
196 amplitudes: vec![1.0 / (state_size as f64).sqrt(); state_size],
197 phases: vec![0.0; state_size],
198 entanglement_matrix: vec![vec![0.0; qubit_count]; qubit_count],
199 error_syndromes: Vec::new(),
200 logical_qubits,
201 coherence_factors: vec![1.0; qubit_count],
202 evolution_time: 0.0,
203 };
204
205 Self {
206 config,
207 quantum_state,
208 measurement_cache: HashMap::new(),
209 operation_counter: AtomicUsize::new(0),
210 }
211 }
212
213 #[allow(clippy::too_many_arguments)]
215 pub fn quantum_spmv<T>(
216 &mut self,
217 rows: usize,
218 indptr: &[usize],
219 indices: &[usize],
220 data: &[T],
221 x: &[T],
222 y: &mut [T],
223 ) -> SparseResult<()>
224 where
225 T: Float + NumAssign + Send + Sync + Copy + SimdUnifiedOps + Into<f64> + From<f64>,
226 {
227 match self.config.strategy {
228 QuantumStrategy::Superposition => {
229 self.superposition_spmv(rows, indptr, indices, data, x, y)
230 }
231 QuantumStrategy::Entanglement => {
232 self.entanglement_spmv(rows, indptr, indices, data, x, y)
233 }
234 QuantumStrategy::Tunneling => self.tunneling_spmv(rows, indptr, indices, data, x, y),
235 QuantumStrategy::Annealing => self.annealing_spmv(rows, indptr, indices, data, x, y),
236 }
237 }
238
239 fn superposition_spmv<T>(
241 &mut self,
242 rows: usize,
243 indptr: &[usize],
244 indices: &[usize],
245 data: &[T],
246 x: &[T],
247 y: &mut [T],
248 ) -> SparseResult<()>
249 where
250 T: Float + NumAssign + Send + Sync + Copy + SimdUnifiedOps + Into<f64> + From<f64>,
251 {
252 let qubit_count = (rows as f64).log2().ceil() as usize;
254 self.prepare_superposition_state(rows);
255
256 let register_size = 1 << qubit_count.min(self.config.qubit_count);
258 let chunk_size = rows.div_ceil(register_size);
259
260 for chunk_start in (0..rows).step_by(chunk_size) {
261 let chunk_end = (chunk_start + chunk_size).min(rows);
262
263 for row in chunk_start..chunk_end {
265 let start_idx = indptr[row];
266 let end_idx = indptr[row + 1];
267
268 if end_idx > start_idx {
269 let mut quantum_sum = 0.0;
271 let amplitude =
272 self.quantum_state.amplitudes[row % self.quantum_state.amplitudes.len()];
273
274 for idx in start_idx..end_idx {
275 let col = indices[idx];
276 let data_val: f64 = data[idx].into();
277 let x_val: f64 = x[col].into();
278
279 quantum_sum += amplitude * data_val * x_val;
281 }
282
283 y[row] = NumCast::from(quantum_sum).unwrap_or(T::zero());
285 }
286 }
287
288 self.apply_decoherence();
290 }
291
292 self.operation_counter.fetch_add(1, Ordering::Relaxed);
293 Ok(())
294 }
295
296 fn entanglement_spmv<T>(
298 &mut self,
299 rows: usize,
300 indptr: &[usize],
301 indices: &[usize],
302 data: &[T],
303 x: &[T],
304 y: &mut [T],
305 ) -> SparseResult<()>
306 where
307 T: Float + NumAssign + Send + Sync + Copy + SimdUnifiedOps + Into<f64> + From<f64>,
308 {
309 self.build_entanglement_matrix(rows, indptr, indices);
311
312 let mut processed = vec![false; rows];
314
315 for row in 0..rows {
316 if processed[row] {
317 continue;
318 }
319
320 let entangled_rows = self.find_entangled_rows(row, rows, indptr, indices);
322
323 for &entangled_row in &entangled_rows {
325 if !processed[entangled_row] {
326 let start_idx = indptr[entangled_row];
327 let end_idx = indptr[entangled_row + 1];
328
329 let mut sum = 0.0;
330 for idx in start_idx..end_idx {
331 let col = indices[idx];
332 let data_val: f64 = data[idx].into();
333 let x_val: f64 = x[col].into();
334
335 let correlation = self.quantum_state.entanglement_matrix
337 [row % self.config.qubit_count]
338 [entangled_row % self.config.qubit_count];
339 sum += (1.0 + correlation) * data_val * x_val;
340 }
341
342 y[entangled_row] = NumCast::from(sum).unwrap_or(T::zero());
343 processed[entangled_row] = true;
344 }
345 }
346 }
347
348 Ok(())
349 }
350
351 fn tunneling_spmv<T>(
353 &mut self,
354 rows: usize,
355 indptr: &[usize],
356 indices: &[usize],
357 data: &[T],
358 x: &[T],
359 y: &mut [T],
360 ) -> SparseResult<()>
361 where
362 T: Float + NumAssign + Send + Sync + Copy + SimdUnifiedOps + Into<f64> + From<f64>,
363 {
364 let barriers = self.identify_computational_barriers(rows, indptr);
366
367 for row in 0..rows {
368 let start_idx = indptr[row];
369 let end_idx = indptr[row + 1];
370
371 if barriers.contains(&row) {
372 let tunnel_probability = self.calculate_tunnel_probability(row, &barriers);
374
375 if tunnel_probability > 0.5 {
376 y[row] = self.interpolate_result(row, rows, y);
378 } else {
379 let mut sum = 0.0;
381 for idx in start_idx..end_idx {
382 let col = indices[idx];
383 let data_val: f64 = data[idx].into();
384 let x_val: f64 = x[col].into();
385 sum += data_val * x_val;
386 }
387 y[row] = NumCast::from(sum).unwrap_or(T::zero());
388 }
389 } else {
390 let mut sum = 0.0;
392 for idx in start_idx..end_idx {
393 let col = indices[idx];
394 let data_val: f64 = data[idx].into();
395 let x_val: f64 = x[col].into();
396 sum += data_val * x_val;
397 }
398 y[row] = NumCast::from(sum).unwrap_or(T::zero());
399 }
400 }
401
402 Ok(())
403 }
404
405 fn annealing_spmv<T>(
407 &mut self,
408 rows: usize,
409 indptr: &[usize],
410 indices: &[usize],
411 data: &[T],
412 x: &[T],
413 y: &mut [T],
414 ) -> SparseResult<()>
415 where
416 T: Float + NumAssign + Send + Sync + Copy + SimdUnifiedOps + Into<f64> + From<f64>,
417 {
418 let mut processing_order = (0..rows).collect::<Vec<_>>();
420 let mut current_temperature = self.config.temperature;
421
422 let annealing_steps = 100;
424 let cooling_rate = 0.95;
425
426 for step in 0..annealing_steps {
427 let current_energy = self.calculate_processing_energy(&processing_order, indptr);
429
430 let mut new_order = processing_order.clone();
432 if rows > 1 {
433 let i = step % rows;
434 let j = (step + 1) % rows;
435 new_order.swap(i, j);
436 }
437
438 let new_energy = self.calculate_processing_energy(&new_order, indptr);
439
440 let delta_energy = new_energy - current_energy;
442 let acceptance_probability = if delta_energy < 0.0 {
443 1.0
444 } else {
445 (-delta_energy / current_temperature).exp()
446 };
447
448 if scirs2_core::random::rng().random::<f64>() < acceptance_probability {
449 processing_order = new_order;
450 }
451
452 current_temperature *= cooling_rate;
454 }
455
456 for &row in &processing_order {
458 let start_idx = indptr[row];
459 let end_idx = indptr[row + 1];
460
461 let mut sum = 0.0;
462 for idx in start_idx..end_idx {
463 let col = indices[idx];
464 let data_val: f64 = data[idx].into();
465 let x_val: f64 = x[col].into();
466 sum += data_val * x_val;
467 }
468 y[row] = NumCast::from(sum).unwrap_or(T::zero());
469 }
470
471 Ok(())
472 }
473
474 fn prepare_superposition_state(&mut self, rows: usize) {
477 let state_size = self.quantum_state.amplitudes.len();
478 let normalization = 1.0 / (rows as f64).sqrt();
479
480 for i in 0..state_size.min(rows) {
481 self.quantum_state.amplitudes[i] = normalization;
482 self.quantum_state.phases[i] = 0.0;
483 }
484 }
485
486 fn apply_decoherence(&mut self) {
487 self.quantum_state.evolution_time += 0.001; match self.config.coherence_model {
490 CoherenceModel::Exponential => {
491 let decoherence_factor =
492 (-self.config.decoherence_rate * self.quantum_state.evolution_time).exp();
493 let coherence_len = self.quantum_state.coherence_factors.len();
494 for (i, amplitude) in self.quantum_state.amplitudes.iter_mut().enumerate() {
495 *amplitude *= decoherence_factor;
496 self.quantum_state.coherence_factors[i % coherence_len] = decoherence_factor;
497 }
498 }
499 CoherenceModel::Gaussian => {
500 let variance = self.config.decoherence_rate * self.quantum_state.evolution_time;
501 let decoherence_factor = (-variance.powi(2) / 2.0).exp();
502 for amplitude in &mut self.quantum_state.amplitudes {
503 *amplitude *= decoherence_factor;
504 }
505 }
506 CoherenceModel::PowerLaw => {
507 let alpha = 2.0; let decoherence_factor = (1.0
509 + self.config.decoherence_rate * self.quantum_state.evolution_time.powf(alpha))
510 .recip();
511 for amplitude in &mut self.quantum_state.amplitudes {
512 *amplitude *= decoherence_factor;
513 }
514 }
515 CoherenceModel::StretchedExponential => {
516 let beta = 0.5; let decoherence_factor = (-(self.config.decoherence_rate
518 * self.quantum_state.evolution_time)
519 .powf(beta))
520 .exp();
521 for amplitude in &mut self.quantum_state.amplitudes {
522 *amplitude *= decoherence_factor;
523 }
524 }
525 }
526
527 self.apply_noise_model();
529
530 if self.config.error_correction {
532 self.perform_error_correction();
533 }
534 }
535
536 fn build_entanglement_matrix(&mut self, rows: usize, indptr: &[usize], indices: &[usize]) {
537 let n = self.config.qubit_count;
538
539 for i in 0..n {
541 for j in 0..n {
542 self.quantum_state.entanglement_matrix[i][j] = 0.0;
543 }
544 }
545
546 for row1 in 0..rows.min(n) {
548 for row2 in (row1 + 1)..rows.min(n) {
549 let start1 = indptr[row1];
550 let end1 = indptr[row1 + 1];
551 let start2 = indptr[row2];
552 let end2 = indptr[row2 + 1];
553
554 let shared_cols =
555 self.count_shared_columns(&indices[start1..end1], &indices[start2..end2]);
556
557 let entanglement =
558 shared_cols as f64 / ((end1 - start1).max(end2 - start2) as f64 + 1.0);
559 self.quantum_state.entanglement_matrix[row1][row2] = entanglement;
560 self.quantum_state.entanglement_matrix[row2][row1] = entanglement;
561 }
562 }
563 }
564
565 fn find_entangled_rows(
566 &self,
567 row: usize,
568 rows: usize,
569 indptr: &[usize],
570 indices: &[usize],
571 ) -> Vec<usize> {
572 let mut entangled = vec![row];
573 let start = indptr[row];
574 let end = indptr[row + 1];
575 let row_cols = &indices[start..end];
576
577 for other_row in 0..rows {
578 if other_row == row {
579 continue;
580 }
581
582 let other_start = indptr[other_row];
583 let other_end = indptr[other_row + 1];
584 let other_cols = &indices[other_start..other_end];
585
586 let shared = self.count_shared_columns(row_cols, other_cols);
587 let entanglement_threshold = (row_cols.len().min(other_cols.len()) / 4).max(1);
588
589 if shared >= entanglement_threshold {
590 entangled.push(other_row);
591 }
592 }
593
594 entangled
595 }
596
597 fn count_shared_columns(&self, cols1: &[usize], cols2: &[usize]) -> usize {
598 let mut shared = 0;
599 let mut i = 0;
600 let mut j = 0;
601
602 while i < cols1.len() && j < cols2.len() {
603 match cols1[i].cmp(&cols2[j]) {
604 std::cmp::Ordering::Equal => {
605 shared += 1;
606 i += 1;
607 j += 1;
608 }
609 std::cmp::Ordering::Less => {
610 i += 1;
611 }
612 std::cmp::Ordering::Greater => {
613 j += 1;
614 }
615 }
616 }
617
618 shared
619 }
620
621 fn identify_computational_barriers(&self, rows: usize, indptr: &[usize]) -> Vec<usize> {
622 let mut barriers = Vec::new();
623 let avg_nnz = if rows > 0 { indptr[rows] / rows } else { 0 };
624
625 for row in 0..rows {
626 let nnz = indptr[row + 1] - indptr[row];
627 if nnz > avg_nnz * 3 {
628 barriers.push(row);
630 }
631 }
632
633 barriers
634 }
635
636 fn calculate_tunnel_probability(&self, row: usize, barriers: &[usize]) -> f64 {
637 let _position = barriers.iter().position(|&b| b == row).unwrap_or(0) as f64;
638 let barrier_height = barriers.len() as f64;
639
640 let transmission = (-2.0 * barrier_height.sqrt()).exp();
642 transmission.clamp(0.0, 1.0)
643 }
644
645 fn interpolate_result<T>(&self, row: usize, rows: usize, y: &[T]) -> T
646 where
647 T: Float + NumAssign + Send + Sync + Copy + Into<f64> + From<f64>,
648 {
649 let prev_row = if row > 0 { row - 1 } else { 0 };
651 let next_row = if row < rows - 1 { row + 1 } else { rows - 1 };
652
653 if prev_row == next_row {
654 return T::zero();
655 }
656
657 let prev_val: f64 = y[prev_row].into();
658 let next_val: f64 = y[next_row].into();
659 let interpolated = (prev_val + next_val) / 2.0;
660
661 NumCast::from(interpolated).unwrap_or(T::zero())
662 }
663
664 fn calculate_processing_energy(&self, order: &[usize], indptr: &[usize]) -> f64 {
665 let mut energy = 0.0;
666 let mut _cache_hits = 0;
667 let cache_size = 64; let mut cache = std::collections::VecDeque::new();
669
670 for &row in order {
671 let nnz = indptr[row + 1] - indptr[row];
672
673 energy += nnz as f64;
675
676 if cache.contains(&row) {
677 _cache_hits += 1;
678 energy -= 0.5; } else {
680 if cache.len() >= cache_size {
681 cache.pop_front();
682 }
683 cache.push_back(row);
684 energy += 1.0; }
686 }
687
688 energy
689 }
690
691 fn apply_noise_model(&mut self) {
693 match self.config.noise_model {
694 NoiseModel::Ideal => {} NoiseModel::AmplitudeDamping => {
696 let gamma = self.config.decoherence_rate * 0.1;
697 for amplitude in &mut self.quantum_state.amplitudes {
698 *amplitude *= (1.0 - gamma).sqrt();
699 }
700 }
701 NoiseModel::PhaseDamping => {
702 let gamma = self.config.decoherence_rate * 0.1;
703 for (i, phase) in self.quantum_state.phases.iter_mut().enumerate() {
704 let random_phase = (scirs2_core::random::rng().random::<f64>() - 0.5) * gamma;
705 *phase += random_phase;
706 if i < self.quantum_state.amplitudes.len() {
708 self.quantum_state.amplitudes[i] *= 1.0 - gamma / 2.0;
709 }
710 }
711 }
712 NoiseModel::Depolarizing => {
713 let p = self.config.decoherence_rate * 0.05;
714 for amplitude in &mut self.quantum_state.amplitudes {
715 if scirs2_core::random::rng().random::<f64>() < p {
716 *amplitude *= 0.5; }
718 }
719 }
720 NoiseModel::Combined => {
721 let gamma_amp = self.config.decoherence_rate * 0.05;
723 let gamma_phase = self.config.decoherence_rate * 0.1;
724
725 for (i, amplitude) in self.quantum_state.amplitudes.iter_mut().enumerate() {
726 *amplitude *= (1.0 - gamma_amp).sqrt();
727 if i < self.quantum_state.phases.len() {
728 let random_phase =
729 (scirs2_core::random::rng().random::<f64>() - 0.5) * gamma_phase;
730 self.quantum_state.phases[i] += random_phase;
731 }
732 }
733 }
734 }
735 }
736
737 fn perform_error_correction(&mut self) {
739 self.detect_error_syndromes();
741
742 let syndromes_to_correct: Vec<_> = self
744 .quantum_state
745 .error_syndromes
746 .iter()
747 .enumerate()
748 .filter(|(_, syndrome)| {
749 !syndrome.correction_applied
750 && syndrome.detection_probability > self.config.error_correction_threshold
751 })
752 .map(|(i, syndrome)| (i, syndrome.clone()))
753 .collect();
754
755 for (index, syndrome) in syndromes_to_correct {
757 self.apply_error_correction(&syndrome);
758 self.quantum_state.error_syndromes[index].correction_applied = true;
759 }
760
761 self.update_logical_qubit_fidelities();
763
764 self.quantum_state
766 .error_syndromes
767 .retain(|s| !s.correction_applied || s.detection_probability > 0.9);
768 }
769
770 fn detect_error_syndromes(&mut self) {
772 for logical_qubit in &self.quantum_state.logical_qubits {
773 let syndrome_strength = self.measure_syndrome_strength(logical_qubit);
774
775 if syndrome_strength > self.config.error_correction_threshold {
776 let error_type = self.classify_error_type(logical_qubit, syndrome_strength);
777
778 let syndrome = ErrorSyndrome {
779 qubit_indices: logical_qubit.physical_qubits.clone(),
780 error_type,
781 detection_probability: syndrome_strength,
782 correction_applied: false,
783 };
784
785 self.quantum_state.error_syndromes.push(syndrome);
786 }
787 }
788 }
789
790 fn measure_syndrome_strength(&self, logicalqubit: &LogicalQubit) -> f64 {
792 let mut syndrome_strength = 0.0;
793
794 for &physical_qubit in &logicalqubit.physical_qubits {
795 if physical_qubit < self.quantum_state.coherence_factors.len() {
796 let coherence = self.quantum_state.coherence_factors[physical_qubit];
797 syndrome_strength += (1.0 - coherence).abs();
798 }
799 }
800
801 syndrome_strength / logicalqubit.physical_qubits.len() as f64
802 }
803
804 fn classify_error_type(
806 &self,
807 _logical_qubit: &LogicalQubit,
808 syndrome_strength: f64,
809 ) -> QuantumError {
810 if syndrome_strength > 0.8 {
812 QuantumError::BitPhaseFlip
813 } else if syndrome_strength > 0.5 {
814 if scirs2_core::random::rng().random::<f64>() > 0.5 {
815 QuantumError::BitFlip
816 } else {
817 QuantumError::PhaseFlip
818 }
819 } else if syndrome_strength > 0.3 {
820 QuantumError::AmplitudeDamping
821 } else {
822 QuantumError::PhaseDamping
823 }
824 }
825
826 fn apply_error_correction(&mut self, syndrome: &ErrorSyndrome) {
828 match syndrome.error_type {
829 QuantumError::BitFlip => {
830 for &qubit_idx in &syndrome.qubit_indices {
832 if qubit_idx < self.quantum_state.amplitudes.len() {
833 self.quantum_state.amplitudes[qubit_idx] =
835 -self.quantum_state.amplitudes[qubit_idx];
836 }
837 }
838 }
839 QuantumError::PhaseFlip => {
840 for &qubit_idx in &syndrome.qubit_indices {
842 if qubit_idx < self.quantum_state.phases.len() {
843 self.quantum_state.phases[qubit_idx] += std::f64::consts::PI;
844 }
845 }
846 }
847 QuantumError::BitPhaseFlip => {
848 for &qubit_idx in &syndrome.qubit_indices {
850 if qubit_idx < self.quantum_state.amplitudes.len() {
851 self.quantum_state.amplitudes[qubit_idx] =
852 -self.quantum_state.amplitudes[qubit_idx];
853 }
854 if qubit_idx < self.quantum_state.phases.len() {
855 self.quantum_state.phases[qubit_idx] += std::f64::consts::PI;
856 }
857 }
858 }
859 QuantumError::AmplitudeDamping => {
860 for &qubit_idx in &syndrome.qubit_indices {
862 if qubit_idx < self.quantum_state.coherence_factors.len() {
863 self.quantum_state.coherence_factors[qubit_idx] =
864 (self.quantum_state.coherence_factors[qubit_idx] + 1.0) / 2.0;
865 }
866 }
867 }
868 QuantumError::PhaseDamping => {
869 for &qubit_idx in &syndrome.qubit_indices {
871 if qubit_idx < self.quantum_state.phases.len() {
872 self.quantum_state.phases[qubit_idx] *= 0.9; }
874 }
875 }
876 }
877 }
878
879 fn update_logical_qubit_fidelities(&mut self) {
881 for logical_qubit in &mut self.quantum_state.logical_qubits {
882 let mut total_coherence = 0.0;
883 let mut count = 0;
884
885 for &physical_qubit in &logical_qubit.physical_qubits {
886 if physical_qubit < self.quantum_state.coherence_factors.len() {
887 total_coherence += self.quantum_state.coherence_factors[physical_qubit];
888 count += 1;
889 }
890 }
891
892 if count > 0 {
893 logical_qubit.fidelity = total_coherence / count as f64;
894 }
895 }
896 }
897
898 pub fn get_stats(&self) -> QuantumProcessorStats {
900 let avg_logical_fidelity = if !self.quantum_state.logical_qubits.is_empty() {
901 self.quantum_state
902 .logical_qubits
903 .iter()
904 .map(|q| q.fidelity)
905 .sum::<f64>()
906 / self.quantum_state.logical_qubits.len() as f64
907 } else {
908 0.0
909 };
910
911 QuantumProcessorStats {
912 operations_count: self.operation_counter.load(Ordering::Relaxed),
913 coherence_time: self.config.coherence_time,
914 decoherence_rate: self.config.decoherence_rate,
915 entanglement_strength: self.calculate_average_entanglement(),
916 cache_efficiency: self.measurement_cache.len() as f64,
917 error_correction_enabled: self.config.error_correction,
918 active_error_syndromes: self.quantum_state.error_syndromes.len(),
919 average_logical_fidelity: avg_logical_fidelity,
920 evolution_time: self.quantum_state.evolution_time,
921 }
922 }
923
924 fn calculate_average_entanglement(&self) -> f64 {
925 let n = self.config.qubit_count;
926 let mut total = 0.0;
927 let mut count = 0;
928
929 for i in 0..n {
930 for j in (i + 1)..n {
931 total += self.quantum_state.entanglement_matrix[i][j].abs();
932 count += 1;
933 }
934 }
935
936 if count > 0 {
937 total / count as f64
938 } else {
939 0.0
940 }
941 }
942}
943
944#[derive(Debug)]
946pub struct QuantumProcessorStats {
947 pub operations_count: usize,
948 pub coherence_time: f64,
949 pub decoherence_rate: f64,
950 pub entanglement_strength: f64,
951 pub cache_efficiency: f64,
952 pub error_correction_enabled: bool,
953 pub active_error_syndromes: usize,
954 pub average_logical_fidelity: f64,
955 pub evolution_time: f64,
956}
957
958#[cfg(test)]
959mod tests {
960 use super::*;
961
962 #[test]
963 #[ignore] fn test_quantum_sparse_processor_creation() {
965 let config = QuantumSparseConfig::default();
966 let processor = QuantumSparseProcessor::new(config);
967
968 assert_eq!(processor.config.qubit_count, 32);
969 assert_eq!(
970 processor.config.strategy as u8,
971 QuantumStrategy::Superposition as u8
972 );
973 }
974
975 #[test]
976 fn test_superposition_spmv() {
977 let config = QuantumSparseConfig {
978 strategy: QuantumStrategy::Superposition,
979 qubit_count: 4,
980 ..Default::default()
981 };
982 let mut processor = QuantumSparseProcessor::new(config);
983
984 let indptr = vec![0, 2, 3];
986 let indices = vec![0, 1, 1];
987 let data = vec![1.0, 2.0, 3.0];
988 let x = vec![1.0, 1.0];
989 let mut y = vec![0.0; 2];
990
991 processor
992 .quantum_spmv(2, &indptr, &indices, &data, &x, &mut y)
993 .unwrap();
994
995 assert!(y[0] > 2.0 && y[0] < 4.0);
997 assert!(y[1] > 2.0 && y[1] < 4.0);
998 }
999
1000 #[test]
1001 #[ignore] fn test_quantum_processor_stats() {
1003 let config = QuantumSparseConfig::default();
1004 let processor = QuantumSparseProcessor::new(config);
1005 let stats = processor.get_stats();
1006
1007 assert_eq!(stats.operations_count, 0);
1008 assert_eq!(stats.coherence_time, 1.0);
1009 assert_eq!(stats.decoherence_rate, 0.01);
1010 }
1011}