scirs2_sparse/neural_adaptive_sparse/
transformer.rs

1//! Transformer models for advanced pattern recognition in sparse matrices
2//!
3//! This module contains transformer-based architectures for learning complex
4//! patterns in sparse matrix operations and optimizing them adaptively.
5
6use super::neural_network::{ActivationFunction, AttentionHead, LayerNorm};
7use crate::error::SparseResult;
8use scirs2_core::random::Rng;
9
10/// Transformer model for advanced pattern recognition
11#[derive(Debug, Clone)]
12#[allow(dead_code)]
13pub(crate) struct TransformerModel {
14    pub encoder_layers: Vec<TransformerEncoderLayer>,
15    pub positional_encoding: Vec<Vec<f64>>,
16    pub embedding_dim: usize,
17}
18
19/// Transformer encoder layer
20#[derive(Debug, Clone)]
21pub(crate) struct TransformerEncoderLayer {
22    pub self_attention: MultiHeadAttention,
23    pub feed_forward: FeedForwardNetwork,
24    pub layer_norm1: LayerNorm,
25    pub layer_norm2: LayerNorm,
26    pub dropout_rate: f64,
27}
28
29/// Multi-head attention for transformer
30#[derive(Debug, Clone)]
31#[allow(dead_code)]
32pub(crate) struct MultiHeadAttention {
33    pub heads: Vec<AttentionHead>,
34    pub output_projection: Vec<Vec<f64>>,
35    pub num_heads: usize,
36    pub head_dim: usize,
37}
38
39/// Feed-forward network
40#[derive(Debug, Clone)]
41pub(crate) struct FeedForwardNetwork {
42    pub layer1: Vec<Vec<f64>>,
43    pub layer1_bias: Vec<f64>,
44    pub layer2: Vec<Vec<f64>>,
45    pub layer2_bias: Vec<f64>,
46    pub activation: ActivationFunction,
47}
48
49impl TransformerModel {
50    /// Create a new transformer model
51    pub fn new(
52        embedding_dim: usize,
53        num_layers: usize,
54        num_heads: usize,
55        ff_dim: usize,
56        max_sequence_length: usize,
57    ) -> Self {
58        let mut encoder_layers = Vec::new();
59
60        for _ in 0..num_layers {
61            encoder_layers.push(TransformerEncoderLayer::new(
62                embedding_dim,
63                num_heads,
64                ff_dim,
65            ));
66        }
67
68        let positional_encoding =
69            Self::create_positional_encoding(max_sequence_length, embedding_dim);
70
71        Self {
72            encoder_layers,
73            positional_encoding,
74            embedding_dim,
75        }
76    }
77
78    /// Create positional encoding for transformer
79    fn create_positional_encoding(max_length: usize, embedding_dim: usize) -> Vec<Vec<f64>> {
80        let mut pos_encoding = vec![vec![0.0; embedding_dim]; max_length];
81
82        for pos in 0..max_length {
83            for i in (0..embedding_dim).step_by(2) {
84                let angle = pos as f64 / 10000.0_f64.powf(i as f64 / embedding_dim as f64);
85                pos_encoding[pos][i] = angle.sin();
86                if i + 1 < embedding_dim {
87                    pos_encoding[pos][i + 1] = angle.cos();
88                }
89            }
90        }
91
92        pos_encoding
93    }
94
95    /// Forward pass through the transformer
96    pub fn forward(&self, input: &[Vec<f64>]) -> Vec<Vec<f64>> {
97        // Add positional encoding
98        let mut x = input.to_vec();
99        for (i, sequence) in x.iter_mut().enumerate() {
100            if i < self.positional_encoding.len() {
101                for (j, val) in sequence.iter_mut().enumerate() {
102                    if j < self.positional_encoding[i].len() {
103                        *val += self.positional_encoding[i][j];
104                    }
105                }
106            }
107        }
108
109        // Pass through encoder layers
110        for layer in &self.encoder_layers {
111            x = layer.forward(&x);
112        }
113
114        x
115    }
116
117    /// Encode matrix patterns using transformer
118    pub fn encode_matrix_pattern(&self, matrix_features: &[f64]) -> Vec<f64> {
119        // Convert 1D features to sequence format
120        let sequence_length = (matrix_features.len() / self.embedding_dim).max(1);
121        let mut sequence = vec![vec![0.0; self.embedding_dim]; sequence_length];
122
123        let mut idx = 0;
124        for i in 0..sequence_length {
125            for j in 0..self.embedding_dim {
126                if idx < matrix_features.len() {
127                    sequence[i][j] = matrix_features[idx];
128                    idx += 1;
129                }
130            }
131        }
132
133        // Process through transformer
134        let encoded = self.forward(&sequence);
135
136        // Pool the encoded sequence (simple mean pooling)
137        let mut pooled = vec![0.0; self.embedding_dim];
138        for sequence_step in &encoded {
139            for (i, &val) in sequence_step.iter().enumerate() {
140                if i < pooled.len() {
141                    pooled[i] += val / encoded.len() as f64;
142                }
143            }
144        }
145
146        pooled
147    }
148
149    /// Update transformer parameters (simplified training step)
150    pub fn update_parameters(&mut self, gradients: &TransformerGradients, learning_rate: f64) {
151        for (layer_idx, layer) in self.encoder_layers.iter_mut().enumerate() {
152            if layer_idx < gradients.layer_gradients.len() {
153                layer.update_parameters(&gradients.layer_gradients[layer_idx], learning_rate);
154            }
155        }
156    }
157}
158
159impl TransformerEncoderLayer {
160    /// Create a new transformer encoder layer
161    pub fn new(embedding_dim: usize, num_heads: usize, ff_dim: usize) -> Self {
162        Self {
163            self_attention: MultiHeadAttention::new(embedding_dim, num_heads),
164            feed_forward: FeedForwardNetwork::new(embedding_dim, ff_dim),
165            layer_norm1: LayerNorm::new(embedding_dim),
166            layer_norm2: LayerNorm::new(embedding_dim),
167            dropout_rate: 0.1,
168        }
169    }
170
171    /// Forward pass through encoder layer
172    pub fn forward(&self, input: &[Vec<f64>]) -> Vec<Vec<f64>> {
173        // Self-attention with residual connection
174        let attention_output = self.self_attention.forward(input);
175        let mut norm1_input = Vec::new();
176
177        for (i, attention_seq) in attention_output.iter().enumerate() {
178            let mut residual = attention_seq.clone();
179            if i < input.len() {
180                for (j, &input_val) in input[i].iter().enumerate() {
181                    if j < residual.len() {
182                        residual[j] += input_val;
183                    }
184                }
185            }
186            norm1_input.push(residual);
187        }
188
189        // First layer normalization
190        let norm1_output: Vec<Vec<f64>> = norm1_input
191            .iter()
192            .map(|seq| self.layer_norm1.normalize(seq))
193            .collect();
194
195        // Feed-forward with residual connection
196        let ff_output = self.feed_forward.forward(&norm1_output);
197        let mut norm2_input = Vec::new();
198
199        for (i, ff_seq) in ff_output.iter().enumerate() {
200            let mut residual = ff_seq.clone();
201            if i < norm1_output.len() {
202                for (j, &norm_val) in norm1_output[i].iter().enumerate() {
203                    if j < residual.len() {
204                        residual[j] += norm_val;
205                    }
206                }
207            }
208            norm2_input.push(residual);
209        }
210
211        // Second layer normalization
212        norm2_input
213            .iter()
214            .map(|seq| self.layer_norm2.normalize(seq))
215            .collect()
216    }
217
218    /// Update layer parameters
219    pub fn update_parameters(&mut self, gradients: &LayerGradients, learning_rate: f64) {
220        self.self_attention
221            .update_parameters(&gradients.attention_gradients, learning_rate);
222        self.feed_forward
223            .update_parameters(&gradients.ff_gradients, learning_rate);
224    }
225}
226
227impl MultiHeadAttention {
228    /// Create a new multi-head attention mechanism
229    pub fn new(embedding_dim: usize, num_heads: usize) -> Self {
230        let head_dim = embedding_dim / num_heads;
231        let mut heads = Vec::new();
232
233        for _ in 0..num_heads {
234            heads.push(AttentionHead::new(embedding_dim));
235        }
236
237        let output_projection = Self::initialize_weights(embedding_dim, embedding_dim);
238
239        Self {
240            heads,
241            output_projection,
242            num_heads,
243            head_dim,
244        }
245    }
246
247    /// Initialize weights
248    fn initialize_weights(input_dim: usize, output_dim: usize) -> Vec<Vec<f64>> {
249        let mut rng = scirs2_core::random::thread_rng();
250        let bound = (6.0 / (input_dim + output_dim) as f64).sqrt();
251
252        (0..output_dim)
253            .map(|_| {
254                (0..input_dim)
255                    .map(|_| rng.gen_range(-bound..bound))
256                    .collect()
257            })
258            .collect()
259    }
260
261    /// Forward pass through multi-head attention
262    pub fn forward(&self, input: &[Vec<f64>]) -> Vec<Vec<f64>> {
263        let mut all_head_outputs = Vec::new();
264
265        // Process each head
266        for head in &self.heads {
267            let mut head_output = Vec::new();
268            for sequence in input {
269                head_output.push(head.forward(sequence));
270            }
271            all_head_outputs.push(head_output);
272        }
273
274        // Concatenate head outputs and apply output projection
275        let mut result = Vec::new();
276        for seq_idx in 0..input.len() {
277            let mut concatenated = Vec::new();
278            for head_output in &all_head_outputs {
279                if seq_idx < head_output.len() {
280                    concatenated.extend(&head_output[seq_idx]);
281                }
282            }
283
284            // Apply output projection
285            let projected = self.linear_transform(&concatenated, &self.output_projection);
286            result.push(projected);
287        }
288
289        result
290    }
291
292    /// Linear transformation
293    fn linear_transform(&self, input: &[f64], weights: &[Vec<f64>]) -> Vec<f64> {
294        let mut output = vec![0.0; weights.len()];
295
296        for (i, neuron_weights) in weights.iter().enumerate() {
297            let mut sum = 0.0;
298            for (j, &input_val) in input.iter().enumerate() {
299                if j < neuron_weights.len() {
300                    sum += neuron_weights[j] * input_val;
301                }
302            }
303            output[i] = sum;
304        }
305
306        output
307    }
308
309    /// Update attention parameters
310    pub fn update_parameters(&mut self, gradients: &AttentionGradients, learning_rate: f64) {
311        // Simplified parameter update
312        // In practice, this would involve proper gradient computation and application
313        for (head_idx, head) in self.heads.iter_mut().enumerate() {
314            // Update head parameters (simplified)
315            // Real implementation would have proper gradient handling
316        }
317    }
318}
319
320impl FeedForwardNetwork {
321    /// Create a new feed-forward network
322    pub fn new(embedding_dim: usize, ff_dim: usize) -> Self {
323        Self {
324            layer1: Self::initialize_weights(embedding_dim, ff_dim),
325            layer1_bias: vec![0.0; ff_dim],
326            layer2: Self::initialize_weights(ff_dim, embedding_dim),
327            layer2_bias: vec![0.0; embedding_dim],
328            activation: ActivationFunction::ReLU,
329        }
330    }
331
332    /// Initialize weights
333    fn initialize_weights(input_dim: usize, output_dim: usize) -> Vec<Vec<f64>> {
334        let mut rng = scirs2_core::random::thread_rng();
335        let bound = (6.0 / (input_dim + output_dim) as f64).sqrt();
336
337        (0..output_dim)
338            .map(|_| {
339                (0..input_dim)
340                    .map(|_| rng.gen_range(-bound..bound))
341                    .collect()
342            })
343            .collect()
344    }
345
346    /// Forward pass through feed-forward network
347    pub fn forward(&self, input: &[Vec<f64>]) -> Vec<Vec<f64>> {
348        let mut result = Vec::new();
349
350        for sequence in input {
351            // First layer
352            let mut layer1_output = vec![0.0; self.layer1.len()];
353            for (i, neuron_weights) in self.layer1.iter().enumerate() {
354                let mut sum = self.layer1_bias[i];
355                for (j, &input_val) in sequence.iter().enumerate() {
356                    if j < neuron_weights.len() {
357                        sum += neuron_weights[j] * input_val;
358                    }
359                }
360                layer1_output[i] = self.apply_activation(sum);
361            }
362
363            // Second layer
364            let mut layer2_output = vec![0.0; self.layer2.len()];
365            for (i, neuron_weights) in self.layer2.iter().enumerate() {
366                let mut sum = self.layer2_bias[i];
367                for (j, &layer1_val) in layer1_output.iter().enumerate() {
368                    if j < neuron_weights.len() {
369                        sum += neuron_weights[j] * layer1_val;
370                    }
371                }
372                layer2_output[i] = sum; // No activation on output layer
373            }
374
375            result.push(layer2_output);
376        }
377
378        result
379    }
380
381    /// Apply activation function
382    fn apply_activation(&self, x: f64) -> f64 {
383        match self.activation {
384            ActivationFunction::ReLU => x.max(0.0),
385            ActivationFunction::Sigmoid => 1.0 / (1.0 + (-x).exp()),
386            ActivationFunction::Tanh => x.tanh(),
387            ActivationFunction::Swish => x * (1.0 / (1.0 + (-x).exp())),
388            ActivationFunction::Gelu => 0.5 * x * (1.0 + (x * 0.7978845608028654).tanh()),
389        }
390    }
391
392    /// Update feed-forward parameters
393    pub fn update_parameters(&mut self, gradients: &FFGradients, learning_rate: f64) {
394        // Simplified parameter update
395        // Real implementation would apply computed gradients
396    }
397}
398
399/// Gradient structures for transformer training
400#[derive(Debug, Clone)]
401pub struct TransformerGradients {
402    pub layer_gradients: Vec<LayerGradients>,
403}
404
405#[derive(Debug, Clone)]
406pub struct LayerGradients {
407    pub attention_gradients: AttentionGradients,
408    pub ff_gradients: FFGradients,
409}
410
411#[derive(Debug, Clone)]
412pub struct AttentionGradients {
413    pub head_gradients: Vec<HeadGradients>,
414    pub output_projection_gradients: Vec<Vec<f64>>,
415}
416
417#[derive(Debug, Clone)]
418pub struct HeadGradients {
419    pub query_gradients: Vec<Vec<f64>>,
420    pub key_gradients: Vec<Vec<f64>>,
421    pub value_gradients: Vec<Vec<f64>>,
422}
423
424#[derive(Debug, Clone)]
425pub struct FFGradients {
426    pub layer1_weight_gradients: Vec<Vec<f64>>,
427    pub layer1_bias_gradients: Vec<f64>,
428    pub layer2_weight_gradients: Vec<Vec<f64>>,
429    pub layer2_bias_gradients: Vec<f64>,
430}