scirs2_sparse/gpu/
cuda.rs

1//! CUDA backend for sparse matrix GPU operations
2//!
3//! This module provides CUDA-specific implementations for sparse matrix operations.
4
5use crate::csr_array::CsrArray;
6use crate::error::{SparseError, SparseResult};
7use crate::sparray::SparseArray;
8use scirs2_core::ndarray::{Array1, ArrayView1};
9use scirs2_core::numeric::Float;
10use std::fmt::Debug;
11
12#[cfg(feature = "gpu")]
13use crate::gpu_kernel_execution::{GpuKernelConfig, MemoryStrategy};
14
15#[cfg(feature = "gpu")]
16pub use scirs2_core::gpu::{GpuBackend, GpuBuffer, GpuContext, GpuDataType, GpuKernelHandle};
17
18#[cfg(feature = "gpu")]
19pub use scirs2_core::GpuError;
20
21/// CUDA kernel source code for sparse matrix-vector multiplication
22pub const CUDA_SPMV_KERNEL_SOURCE: &str = r#"
23extern "C" __global__ void spmv_csr_kernel(
24    int rows,
25    const int* __restrict__ indptr,
26    const int* __restrict__ indices,
27    const float* __restrict__ data,
28    const float* __restrict__ x,
29    float* __restrict__ y
30) {
31    int row = blockIdx.x * blockDim.x + threadIdx.x;
32    if (row >= rows) return;
33    
34    float sum = 0.0f;
35    int start = indptr[row];
36    int end = indptr[row + 1];
37    
38    // Vectorized loop for better memory access patterns
39    for (int j = start; j < end; j++) {
40        sum += data[j] * x[indices[j]];
41    }
42    
43    y[row] = sum;
44}
45
46extern "C" __global__ void spmv_csr_vectorized_kernel(
47    int rows,
48    const int* __restrict__ indptr,
49    const int* __restrict__ indices,
50    const float* __restrict__ data,
51    const float* __restrict__ x,
52    float* __restrict__ y
53) {
54    int row = blockIdx.x * blockDim.x + threadIdx.x;
55    if (row >= rows) return;
56    
57    float sum = 0.0f;
58    int start = indptr[row];
59    int end = indptr[row + 1];
60    
61    // Use shared memory for better performance
62    extern __shared__ float sdata[];
63    int tid = threadIdx.x;
64    
65    sdata[tid] = 0.0f;
66    __syncthreads();
67    
68    for (int j = start; j < end; j++) {
69        sdata[tid] += data[j] * x[indices[j]];
70    }
71    
72    __syncthreads();
73    y[row] = sdata[tid];
74}
75"#;
76
77/// CUDA warp-level sparse matrix-vector multiplication kernel
78pub const CUDA_WARP_SPMV_KERNEL_SOURCE: &str = r#"
79extern "C" __global__ void spmv_csr_warp_kernel(
80    int rows,
81    const int* __restrict__ indptr,
82    const int* __restrict__ indices,
83    const float* __restrict__ data,
84    const float* __restrict__ x,
85    float* __restrict__ y
86) {
87    int warp_id = blockIdx.x * blockDim.x + threadIdx.x;
88    int lane_id = threadIdx.x % 32;
89    int row = warp_id / 32;
90    
91    if (row >= rows) return;
92    
93    int start = indptr[row];
94    int end = indptr[row + 1];
95    float sum = 0.0f;
96    
97    // Warp-level parallelization
98    for (int j = start + lane_id; j < end; j += 32) {
99        sum += data[j] * x[indices[j]];
100    }
101    
102    // Warp reduction
103    #pragma unroll
104    for (int offset = 16; offset > 0; offset /= 2) {
105        sum += __shfl_down_sync(0xffffffff, sum, offset);
106    }
107    
108    if (lane_id == 0) {
109        y[row] = sum;
110    }
111}
112"#;
113
114/// CUDA sparse matrix operations
115pub struct CudaSpMatVec {
116    context: Option<scirs2_core::gpu::GpuContext>,
117    kernel_handle: Option<scirs2_core::gpu::GpuKernelHandle>,
118    vectorized_kernel: Option<scirs2_core::gpu::GpuKernelHandle>,
119    warp_kernel: Option<scirs2_core::gpu::GpuKernelHandle>,
120}
121
122impl CudaSpMatVec {
123    /// Create a new CUDA sparse matrix-vector multiplication handler
124    pub fn new() -> SparseResult<Self> {
125        // Try to create CUDA context
126        #[cfg(feature = "gpu")]
127        let context = match scirs2_core::gpu::GpuContext::new(scirs2_core::gpu::GpuBackend::Cuda) {
128            Ok(ctx) => Some(ctx),
129            Err(_) => None, // CUDA not available, will use CPU fallback
130        };
131        #[cfg(not(feature = "gpu"))]
132        let context = None;
133
134        let mut handler = Self {
135            context,
136            kernel_handle: None,
137            vectorized_kernel: None,
138            warp_kernel: None,
139        };
140
141        // Compile kernels if context is available
142        #[cfg(feature = "gpu")]
143        if handler.context.is_some() {
144            let _ = handler.compile_kernels();
145        }
146
147        Ok(handler)
148    }
149
150    /// Compile CUDA kernels for sparse matrix operations
151    #[cfg(feature = "gpu")]
152    pub fn compile_kernels(&mut self) -> Result<(), scirs2_core::gpu::GpuError> {
153        if let Some(ref context) = self.context {
154            // Compile kernels using the context
155            self.kernel_handle =
156                context.execute(|compiler| compiler.compile(CUDA_SPMV_KERNEL_SOURCE).ok());
157
158            self.vectorized_kernel =
159                context.execute(|compiler| compiler.compile(CUDA_SPMV_KERNEL_SOURCE).ok());
160
161            self.warp_kernel =
162                context.execute(|compiler| compiler.compile(CUDA_WARP_SPMV_KERNEL_SOURCE).ok());
163
164            if self.kernel_handle.is_some() {
165                Ok(())
166            } else {
167                Err(scirs2_core::gpu::GpuError::KernelCompilationError(
168                    "Failed to compile CUDA kernels".to_string(),
169                ))
170            }
171        } else {
172            Err(scirs2_core::gpu::GpuError::BackendNotAvailable(
173                "CUDA".to_string(),
174            ))
175        }
176    }
177
178    /// Execute CUDA sparse matrix-vector multiplication
179    #[cfg(feature = "gpu")]
180    pub fn execute_spmv<T>(
181        &self,
182        matrix: &CsrArray<T>,
183        vector: &ArrayView1<T>,
184        _device: &super::GpuDevice,
185    ) -> SparseResult<Array1<T>>
186    where
187        T: Float + Debug + Copy + scirs2_core::gpu::GpuDataType,
188    {
189        let (rows, cols) = matrix.shape();
190        if cols != vector.len() {
191            return Err(SparseError::DimensionMismatch {
192                expected: cols,
193                found: vector.len(),
194            });
195        }
196
197        if let Some(ref context) = self.context {
198            if let Some(ref kernel) = self.kernel_handle {
199                // Upload data to GPU
200                let indptr_buffer =
201                    context.create_buffer_from_slice(matrix.get_indptr().as_slice().unwrap());
202                let indices_buffer =
203                    context.create_buffer_from_slice(matrix.get_indices().as_slice().unwrap());
204                let data_buffer =
205                    context.create_buffer_from_slice(matrix.get_data().as_slice().unwrap());
206                let vector_buffer = context.create_buffer_from_slice(vector.as_slice().unwrap());
207                let result_buffer = context.create_buffer::<T>(rows);
208
209                // Set kernel parameters
210                kernel.set_buffer("indptr", &indptr_buffer);
211                kernel.set_buffer("indices", &indices_buffer);
212                kernel.set_buffer("data", &data_buffer);
213                kernel.set_buffer("vector", &vector_buffer);
214                kernel.set_buffer("result", &result_buffer);
215                kernel.set_u32("rows", rows as u32);
216
217                // Launch kernel
218                let grid_size = ((rows + 255) / 256, 1, 1);
219                let block_size = (256, 1, 1);
220
221                // Execute kernel
222                let args = vec![scirs2_core::gpu::DynamicKernelArg::U32(rows as u32)];
223
224                context
225                    .launch_kernel("spmv_csr_kernel", grid_size, block_size, &args)
226                    .map_err(|e| {
227                        SparseError::ComputationError(format!(
228                            "CUDA kernel execution failed: {:?}",
229                            e
230                        ))
231                    })?;
232
233                // Read result back
234                let mut result_vec = vec![T::zero(); rows];
235                result_buffer.copy_to_host(&mut result_vec).map_err(|e| {
236                    SparseError::ComputationError(format!(
237                        "Failed to copy result from GPU: {:?}",
238                        e
239                    ))
240                })?;
241                Ok(Array1::from_vec(result_vec))
242            } else {
243                Err(SparseError::ComputationError(
244                    "CUDA kernel not compiled".to_string(),
245                ))
246            }
247        } else {
248            // Fallback to CPU implementation
249            matrix.dot_vector(vector)
250        }
251    }
252
253    /// Execute optimized CUDA sparse matrix-vector multiplication
254    #[cfg(feature = "gpu")]
255    pub fn execute_optimized_spmv<T>(
256        &self,
257        matrix: &CsrArray<T>,
258        vector: &ArrayView1<T>,
259        device: &super::GpuDevice,
260        optimization_level: CudaOptimizationLevel,
261    ) -> SparseResult<Array1<T>>
262    where
263        T: Float + Debug + Copy + super::GpuDataType,
264    {
265        let (rows, cols) = matrix.shape();
266        if cols != vector.len() {
267            return Err(SparseError::DimensionMismatch {
268                expected: cols,
269                found: vector.len(),
270            });
271        }
272
273        // Choose kernel based on optimization level
274        let kernel = match optimization_level {
275            CudaOptimizationLevel::Basic => &self.kernel_handle,
276            CudaOptimizationLevel::Vectorized => &self.vectorized_kernel,
277            CudaOptimizationLevel::WarpLevel => &self.warp_kernel,
278        };
279
280        if let Some(ref k) = kernel {
281            self.execute_kernel_with_optimization(matrix, vector, device, k, optimization_level)
282        } else {
283            Err(SparseError::ComputationError(
284                "CUDA kernel not available for requested optimization level".to_string(),
285            ))
286        }
287    }
288
289    #[cfg(feature = "gpu")]
290    fn execute_kernel_with_optimization<T>(
291        &self,
292        _matrix: &CsrArray<T>,
293        _vector: &ArrayView1<T>,
294        _device: &super::GpuDevice,
295        _kernel: &super::GpuKernelHandle,
296        _optimization_level: CudaOptimizationLevel,
297    ) -> SparseResult<Array1<T>>
298    where
299        T: Float + Debug + Copy + super::GpuDataType,
300    {
301        // Placeholder implementation - CUDA optimized execution needs proper API integration
302        Err(SparseError::ComputationError(
303            "CUDA optimized execution not yet implemented".to_string(),
304        ))
305
306        // TODO: Implement actual CUDA kernel execution
307        // The following code is commented out as it needs proper GPU buffer setup:
308        /*
309        // Configure launch parameters based on optimization level
310        let (grid_size, block_size, shared_memory) = match optimization_level {
311            CudaOptimizationLevel::Basic => ((rows + 255) / 256, 256, 0),
312            CudaOptimizationLevel::Vectorized => {
313                ((rows + 127) / 128, 128, 128 * std::mem::size_of::<f32>())
314            }
315            CudaOptimizationLevel::WarpLevel => ((rows * 32 + 255) / 256, 256, 0),
316        };
317
318        // Launch kernel with optimized parameters
319        device.launch_kernel_with_shared_memory(
320            kernel,
321            [grid_size as u32, 1, 1],
322            [block_size as u32, 1, 1],
323            shared_memory,
324            &[
325                &(rows as i32),
326                &indptr_gpu,
327                &indices_gpu,
328                &data_gpu,
329                &vector_gpu,
330                &mut result_gpu,
331            ],
332        )?;
333
334        // Download result
335        let result_host = result_gpu.to_host()?;
336        Ok(Array1::from_vec(result_host))
337        */
338    }
339
340    /// CPU fallback implementation
341    #[cfg(not(feature = "gpu"))]
342    pub fn execute_spmv_cpu<T>(
343        &self,
344        matrix: &CsrArray<T>,
345        vector: &ArrayView1<T>,
346    ) -> SparseResult<Array1<T>>
347    where
348        T: Float + Debug + Copy + std::iter::Sum,
349    {
350        matrix.dot_vector(vector)
351    }
352}
353
354impl Default for CudaSpMatVec {
355    fn default() -> Self {
356        Self::new().unwrap_or_else(|_| Self {
357            context: None,
358            kernel_handle: None,
359            vectorized_kernel: None,
360            warp_kernel: None,
361        })
362    }
363}
364
365/// CUDA optimization levels for sparse matrix operations
366#[derive(Debug, Clone, Copy, PartialEq, Eq)]
367pub enum CudaOptimizationLevel {
368    /// Basic thread-per-row implementation
369    Basic,
370    /// Vectorized implementation with shared memory
371    Vectorized,
372    /// Warp-level implementation for better memory coalescing
373    WarpLevel,
374}
375
376impl Default for CudaOptimizationLevel {
377    fn default() -> Self {
378        Self::Basic
379    }
380}
381
382/// CUDA memory management for sparse matrices
383pub struct CudaMemoryManager {
384    #[allow(dead_code)]
385    allocated_buffers: Vec<String>,
386}
387
388impl CudaMemoryManager {
389    /// Create a new CUDA memory manager
390    pub fn new() -> Self {
391        Self {
392            allocated_buffers: Vec::new(),
393        }
394    }
395
396    /// Allocate GPU memory for sparse matrix data
397    #[cfg(feature = "gpu")]
398    pub fn allocate_sparse_matrix<T>(
399        &mut self,
400        _matrix: &CsrArray<T>,
401        _device: &super::GpuDevice,
402    ) -> Result<CudaMatrixBuffers<T>, super::GpuError>
403    where
404        T: super::GpuDataType + Copy + Float + Debug,
405    {
406        // Placeholder implementation - requires GpuContext instead of GpuDevice
407        Err(super::GpuError::BackendNotImplemented(
408            super::GpuBackend::Cuda,
409        ))
410    }
411
412    /// Allocate GPU memory with optimal memory layout
413    #[cfg(feature = "gpu")]
414    pub fn allocate_optimized<T>(
415        &mut self,
416        _data: &[T],
417        _device: &super::GpuDevice,
418        _access_pattern: MemoryAccessPattern,
419    ) -> Result<super::GpuBuffer<T>, super::GpuError>
420    where
421        T: super::GpuDataType + Copy + Float + Debug,
422    {
423        // This functionality should use GpuContext instead of GpuDevice
424        // For now, return an error indicating this needs proper implementation
425        Err(super::GpuError::BackendNotImplemented(
426            super::GpuBackend::Cuda,
427        ))
428    }
429}
430
431impl Default for CudaMemoryManager {
432    fn default() -> Self {
433        Self::new()
434    }
435}
436
437/// GPU memory buffers for sparse matrix data
438#[cfg(feature = "gpu")]
439pub struct CudaMatrixBuffers<T: super::GpuDataType> {
440    pub indptr: super::GpuBuffer<usize>,
441    pub indices: super::GpuBuffer<usize>,
442    pub data: super::GpuBuffer<T>,
443}
444
445/// Memory access patterns for optimization
446#[derive(Debug, Clone, Copy)]
447pub enum MemoryAccessPattern {
448    /// Sequential memory access
449    Sequential,
450    /// Random memory access
451    Random,
452    /// Strided memory access
453    Strided,
454}
455
456#[cfg(test)]
457mod tests {
458    use super::*;
459    use scirs2_core::ndarray::Array1;
460
461    #[test]
462    fn test_cuda_spmv_creation() {
463        let cuda_spmv = CudaSpMatVec::new();
464        assert!(cuda_spmv.is_ok());
465    }
466
467    #[test]
468    fn test_cuda_optimization_levels() {
469        let basic = CudaOptimizationLevel::Basic;
470        let vectorized = CudaOptimizationLevel::Vectorized;
471        let warp = CudaOptimizationLevel::WarpLevel;
472
473        assert_ne!(basic, vectorized);
474        assert_ne!(vectorized, warp);
475        assert_eq!(
476            CudaOptimizationLevel::default(),
477            CudaOptimizationLevel::Basic
478        );
479    }
480
481    #[test]
482    fn test_cuda_memory_manager() {
483        let manager = CudaMemoryManager::new();
484        assert_eq!(manager.allocated_buffers.len(), 0);
485    }
486
487    #[test]
488    fn test_memory_access_patterns() {
489        let patterns = [
490            MemoryAccessPattern::Sequential,
491            MemoryAccessPattern::Random,
492            MemoryAccessPattern::Strided,
493        ];
494
495        // Test that all patterns are defined
496        for pattern in &patterns {
497            match pattern {
498                MemoryAccessPattern::Sequential => (),
499                MemoryAccessPattern::Random => (),
500                MemoryAccessPattern::Strided => (),
501            }
502        }
503    }
504
505    #[test]
506    #[allow(clippy::const_is_empty)]
507    fn test_kernel_sources() {
508        assert!(!CUDA_SPMV_KERNEL_SOURCE.is_empty());
509        assert!(!CUDA_WARP_SPMV_KERNEL_SOURCE.is_empty());
510
511        // Check that kernels contain expected function names
512        assert!(CUDA_SPMV_KERNEL_SOURCE.contains("spmv_csr_kernel"));
513        assert!(CUDA_SPMV_KERNEL_SOURCE.contains("spmv_csr_vectorized_kernel"));
514        assert!(CUDA_WARP_SPMV_KERNEL_SOURCE.contains("spmv_csr_warp_kernel"));
515    }
516}