Module linalg

Module linalg 

Source
Expand description

Linear algebra operations for sparse matrices

This module provides linear algebra operations for sparse matrices, including solvers, eigenvalue computations, and matrix functions.

Modules§

lanczos
Lanczos algorithm for sparse matrix eigenvalue computation
power_iteration
Power iteration method for sparse matrix eigenvalue computation

Structs§

AMGOptions
Options for the AMG preconditioner
AMGPreconditioner
AMG preconditioner implementation
ArpackOptions
BiCGOptions
Options for BiCG solver
BiCGSTABOptions
Options for BiCGSTAB solver
CGOptions
Options for conjugate gradient solver
CholeskyResult
Cholesky decomposition result
ConvolutionOperator
Convolution operator for matrix-free convolution operations
DiagonalOperator
Diagonal operator: D * x where D is a diagonal matrix
EigenResult
Result of an eigenvalue computation
EnhancedDiagonalOperator
Enhanced diagonal operator with SIMD and parallel acceleration
EnhancedDifferenceOperator
Enhanced difference operator with parallel acceleration
EnhancedOperatorOptions
Configuration for enhanced operators
EnhancedScaledOperator
Enhanced scaled operator with parallel acceleration
EnhancedSumOperator
Enhanced sum operator with parallel acceleration
FiniteDifferenceOperator
Finite difference operator for computing derivatives
GCROTOptions
Options for the GCROT solver
GCROTResult
Result from GCROT solver
GMRESOptions
Options for GMRES solver
IC0Preconditioner
Incomplete Cholesky factorization preconditioner (IC(0))
ICOptions
Options for incomplete Cholesky decomposition
ILU0Preconditioner
Incomplete LU factorization with zero fill-in (ILU(0))
ILUOptions
Options for incomplete LU decomposition
IdentityOperator
Identity operator: I * x = x
IterationResult
Result of an iterative solver
JacobiPreconditioner
Jacobi (diagonal) preconditioner
LDLTResult
LDLT decomposition result for symmetric indefinite matrices
LGMRESOptions
Options for the LGMRES solver
LGMRESResult
Result of the LGMRES solver
LSMROptions
Options for the LSMR solver
LSMRResult
Result from LSMR solver
LSQROptions
Options for the LSQR solver
LSQRResult
Result from LSQR solver
LUOptions
Options for LU decomposition
LUResult
LU decomposition result
LanczosOptions
Configuration options for the Lanczos algorithm
MINRESOptions
Options for MINRES solver
MINRESResult
Result of MINRES solver
PivotedCholeskyResult
Pivoted Cholesky decomposition result
PowerIterationOptions
Configuration options for the power iteration method
QMROptions
Options for QMR solver
QMRResult
Result of QMR solver
QRResult
QR decomposition result
SSORPreconditioner
Symmetric Successive Over-Relaxation (SSOR) preconditioner
SVDOptions
Options for SVD computation
SVDResult
Result of SVD computation
ScaledIdentityOperator
Scaled identity operator: (alpha * I) * x = alpha * x
SpaiOptions
Options for the SPAI preconditioner
SpaiPreconditioner
Sparse Approximate Inverse (SPAI) preconditioner
TFQMROptions
Options for the TFQMR solver
TFQMRResult
Result from TFQMR solver

Enums§

BoundaryCondition
ConvolutionMode
CycleType
Cycle types for AMG
EigenvalueMethod
EigenvalueMode
InterpolationType
Interpolation methods for AMG
PivotingStrategy
Pivoting strategy for LU decomposition
SmootherType
Smoother types for AMG

Traits§

AsLinearOperator
Convert a sparse matrix to a linear operator
IterativeSolver
Trait for iterative solvers
LinearOperator
Trait for representing a linear operator

Functions§

add
Matrix addition
bicg
Biconjugate Gradient solver
bicgstab
BiConjugate Gradient Stabilized method
cg
Conjugate gradient solver for symmetric positive definite systems
cgs
Conjugate Gradient Squared solver (CGS)
cholesky_decomposition
Compute sparse Cholesky decomposition
condest
Estimate the condition number of a sparse matrix
condest_enhanced
Enhanced condition number estimation for sparse arrays
convolution_operator
Create a convolution operator
diag_matrix
Create a diagonal matrix
eigs
Find eigenvalues and eigenvectors of a general (non-symmetric) sparse matrix
eigsh
Find eigenvalues and eigenvectors of a symmetric matrix using the Lanczos algorithm
eigsh_generalized
Solve the generalized symmetric eigenvalue problem Ax = λBx
eigsh_generalized_enhanced
Enhanced generalized eigenvalue solver with additional features
eigsh_shift_invert
Find eigenvalues near a target value using shift-and-invert mode
eigsh_shift_invert_enhanced
Enhanced symmetric eigenvalue solver with additional features
enhanced_add
Create an enhanced sum operator
enhanced_diagonal
Create utility functions for enhanced operators Create an enhanced diagonal operator
enhanced_scale
Create an enhanced scaled operator
enhanced_subtract
Create an enhanced difference operator
expm
Compute the matrix exponential using scaling and squaring with Padé approximation
expm_multiply
Compute the action of the matrix exponential on a vector: y = exp(t*A) * v
eye
Create an identity matrix
finite_difference_operator
Create a finite difference operator
gcrot
Generalized Conjugate Residual with Orthogonalization and Truncation method
gmres
Generalized Minimal Residual Method
incomplete_cholesky
Compute incomplete Cholesky decomposition (IC)
incomplete_lu
Compute incomplete LU decomposition (ILU)
inv
Matrix inverse
lanczos
Computes the extreme eigenvalues and corresponding eigenvectors of a symmetric matrix using the Lanczos algorithm.
ldlt_decomposition
Compute LDLT decomposition for symmetric indefinite matrices
lgmres
Solve A*x = b using the LGMRES method
lsmr
LSMR algorithm for sparse least squares problems
lsqr
LSQR algorithm for sparse least squares problems
lu_decomposition
Compute sparse LU decomposition with partial pivoting (backward compatibility)
lu_decomposition_with_options
Compute sparse LU decomposition with enhanced pivoting strategies
matmul
Matrix multiplication
matrix_power
Matrix power
minres
MINRES solver for symmetric indefinite systems
multiply
Element-wise multiplication (Hadamard product)
norm
Compute matrix norm
onenormest
Estimate the 1-norm of a sparse matrix using a randomized algorithm
onenormest_enhanced
Enhanced 1-norm estimation for sparse arrays
pivoted_cholesky_decomposition
Compute pivoted Cholesky decomposition
power_iteration
Computes the largest eigenvalue and corresponding eigenvector of a symmetric matrix using the power iteration method.
qmr
QMR (Quasi-Minimal Residual) solver for non-symmetric systems
qr_decomposition
Compute sparse QR decomposition using Givens rotations
sparse_direct_solve
Solve a sparse linear system using direct methods
sparse_lstsq
Solve a least squares problem
spsolve
Solve a sparse linear system Ax = b
svd_truncated
Compute truncated SVD using a specific method and parameters
svds
Compute the truncated SVD of a sparse matrix
tfqmr
Transpose-Free Quasi-Minimal Residual method
twonormest
Estimate the 2-norm (spectral norm) of a sparse matrix using power iteration
twonormest_enhanced
Enhanced 2-norm estimation for sparse arrays using power iteration

Type Aliases§

BiCGSTABResult
Result from BiCGSTAB solver
CGSOptions
Options for CGS solver
CGSResult