Expand description
Linear algebra operations for sparse matrices
This module provides linear algebra operations for sparse matrices, including solvers, eigenvalue computations, and matrix functions.
Modules§
- lanczos
- Lanczos algorithm for sparse matrix eigenvalue computation
- power_
iteration - Power iteration method for sparse matrix eigenvalue computation
Structs§
- AMGOptions
- Options for the AMG preconditioner
- AMGPreconditioner
- AMG preconditioner implementation
- Arpack
Options - BiCG
Options - Options for BiCG solver
- BiCGSTAB
Options - Options for BiCGSTAB solver
- CGOptions
- Options for conjugate gradient solver
- Cholesky
Result - Cholesky decomposition result
- Convolution
Operator - Convolution operator for matrix-free convolution operations
- Diagonal
Operator - Diagonal operator: D * x where D is a diagonal matrix
- Eigen
Result - Result of an eigenvalue computation
- Enhanced
Diagonal Operator - Enhanced diagonal operator with SIMD and parallel acceleration
- Enhanced
Difference Operator - Enhanced difference operator with parallel acceleration
- Enhanced
Operator Options - Configuration for enhanced operators
- Enhanced
Scaled Operator - Enhanced scaled operator with parallel acceleration
- Enhanced
SumOperator - Enhanced sum operator with parallel acceleration
- Finite
Difference Operator - Finite difference operator for computing derivatives
- GCROT
Options - Options for the GCROT solver
- GCROT
Result - Result from GCROT solver
- GMRES
Options - Options for GMRES solver
- IC0Preconditioner
- Incomplete Cholesky factorization preconditioner (IC(0))
- ICOptions
- Options for incomplete Cholesky decomposition
- ILU0
Preconditioner - Incomplete LU factorization with zero fill-in (ILU(0))
- ILUOptions
- Options for incomplete LU decomposition
- Identity
Operator - Identity operator: I * x = x
- Iteration
Result - Result of an iterative solver
- Jacobi
Preconditioner - Jacobi (diagonal) preconditioner
- LDLT
Result - LDLT decomposition result for symmetric indefinite matrices
- LGMRES
Options - Options for the LGMRES solver
- LGMRES
Result - Result of the LGMRES solver
- LSMR
Options - Options for the LSMR solver
- LSMR
Result - Result from LSMR solver
- LSQR
Options - Options for the LSQR solver
- LSQR
Result - Result from LSQR solver
- LUOptions
- Options for LU decomposition
- LUResult
- LU decomposition result
- Lanczos
Options - Configuration options for the Lanczos algorithm
- MINRES
Options - Options for MINRES solver
- MINRES
Result - Result of MINRES solver
- Pivoted
Cholesky Result - Pivoted Cholesky decomposition result
- Power
Iteration Options - Configuration options for the power iteration method
- QMROptions
- Options for QMR solver
- QMRResult
- Result of QMR solver
- QRResult
- QR decomposition result
- SSOR
Preconditioner - Symmetric Successive Over-Relaxation (SSOR) preconditioner
- SVDOptions
- Options for SVD computation
- SVDResult
- Result of SVD computation
- Scaled
Identity Operator - Scaled identity operator: (alpha * I) * x = alpha * x
- Spai
Options - Options for the SPAI preconditioner
- Spai
Preconditioner - Sparse Approximate Inverse (SPAI) preconditioner
- TFQMR
Options - Options for the TFQMR solver
- TFQMR
Result - Result from TFQMR solver
Enums§
- Boundary
Condition - Convolution
Mode - Cycle
Type - Cycle types for AMG
- Eigenvalue
Method - Eigenvalue
Mode - Interpolation
Type - Interpolation methods for AMG
- Pivoting
Strategy - Pivoting strategy for LU decomposition
- Smoother
Type - Smoother types for AMG
Traits§
- AsLinear
Operator - Convert a sparse matrix to a linear operator
- Iterative
Solver - Trait for iterative solvers
- Linear
Operator - Trait for representing a linear operator
Functions§
- add
- Matrix addition
- bicg
- Biconjugate Gradient solver
- bicgstab
- BiConjugate Gradient Stabilized method
- cg
- Conjugate gradient solver for symmetric positive definite systems
- cgs
- Conjugate Gradient Squared solver (CGS)
- cholesky_
decomposition - Compute sparse Cholesky decomposition
- condest
- Estimate the condition number of a sparse matrix
- condest_
enhanced - Enhanced condition number estimation for sparse arrays
- convolution_
operator - Create a convolution operator
- diag_
matrix - Create a diagonal matrix
- eigs
- Find eigenvalues and eigenvectors of a general (non-symmetric) sparse matrix
- eigsh
- Find eigenvalues and eigenvectors of a symmetric matrix using the Lanczos algorithm
- eigsh_
generalized - Solve the generalized symmetric eigenvalue problem Ax = λBx
- eigsh_
generalized_ enhanced - Enhanced generalized eigenvalue solver with additional features
- eigsh_
shift_ invert - Find eigenvalues near a target value using shift-and-invert mode
- eigsh_
shift_ invert_ enhanced - Enhanced symmetric eigenvalue solver with additional features
- enhanced_
add - Create an enhanced sum operator
- enhanced_
diagonal - Create utility functions for enhanced operators Create an enhanced diagonal operator
- enhanced_
scale - Create an enhanced scaled operator
- enhanced_
subtract - Create an enhanced difference operator
- expm
- Compute the matrix exponential using scaling and squaring with Padé approximation
- expm_
multiply - Compute the action of the matrix exponential on a vector: y = exp(t*A) * v
- eye
- Create an identity matrix
- finite_
difference_ operator - Create a finite difference operator
- gcrot
- Generalized Conjugate Residual with Orthogonalization and Truncation method
- gmres
- Generalized Minimal Residual Method
- incomplete_
cholesky - Compute incomplete Cholesky decomposition (IC)
- incomplete_
lu - Compute incomplete LU decomposition (ILU)
- inv
- Matrix inverse
- lanczos
- Computes the extreme eigenvalues and corresponding eigenvectors of a symmetric matrix using the Lanczos algorithm.
- ldlt_
decomposition - Compute LDLT decomposition for symmetric indefinite matrices
- lgmres
- Solve A*x = b using the LGMRES method
- lsmr
- LSMR algorithm for sparse least squares problems
- lsqr
- LSQR algorithm for sparse least squares problems
- lu_
decomposition - Compute sparse LU decomposition with partial pivoting (backward compatibility)
- lu_
decomposition_ with_ options - Compute sparse LU decomposition with enhanced pivoting strategies
- matmul
- Matrix multiplication
- matrix_
power - Matrix power
- minres
- MINRES solver for symmetric indefinite systems
- multiply
- Element-wise multiplication (Hadamard product)
- norm
- Compute matrix norm
- onenormest
- Estimate the 1-norm of a sparse matrix using a randomized algorithm
- onenormest_
enhanced - Enhanced 1-norm estimation for sparse arrays
- pivoted_
cholesky_ decomposition - Compute pivoted Cholesky decomposition
- power_
iteration - Computes the largest eigenvalue and corresponding eigenvector of a symmetric matrix using the power iteration method.
- qmr
- QMR (Quasi-Minimal Residual) solver for non-symmetric systems
- qr_
decomposition - Compute sparse QR decomposition using Givens rotations
- sparse_
direct_ solve - Solve a sparse linear system using direct methods
- sparse_
lstsq - Solve a least squares problem
- spsolve
- Solve a sparse linear system Ax = b
- svd_
truncated - Compute truncated SVD using a specific method and parameters
- svds
- Compute the truncated SVD of a sparse matrix
- tfqmr
- Transpose-Free Quasi-Minimal Residual method
- twonormest
- Estimate the 2-norm (spectral norm) of a sparse matrix using power iteration
- twonormest_
enhanced - Enhanced 2-norm estimation for sparse arrays using power iteration
Type Aliases§
- BiCGSTAB
Result - Result from BiCGSTAB solver
- CGSOptions
- Options for CGS solver
- CGSResult