scirs2_sparse/gpu/
cuda.rs

1//! CUDA backend for sparse matrix GPU operations
2//!
3//! This module provides CUDA-specific implementations for sparse matrix operations.
4
5use crate::csr_array::CsrArray;
6use crate::error::{SparseError, SparseResult};
7use crate::sparray::SparseArray;
8use scirs2_core::ndarray::{Array1, ArrayView1};
9use scirs2_core::numeric::{Float, SparseElement};
10use std::fmt::Debug;
11
12#[cfg(feature = "gpu")]
13use crate::gpu_kernel_execution::{GpuKernelConfig, MemoryStrategy};
14
15#[cfg(feature = "gpu")]
16pub use scirs2_core::gpu::{GpuBackend, GpuBuffer, GpuContext, GpuDataType, GpuKernelHandle};
17
18#[cfg(feature = "gpu")]
19pub use scirs2_core::GpuError;
20
21/// CUDA kernel source code for sparse matrix-vector multiplication
22pub const CUDA_SPMV_KERNEL_SOURCE: &str = r#"
23extern "C" __global__ void spmv_csr_kernel(
24    int rows,
25    const int* __restrict__ indptr,
26    const int* __restrict__ indices,
27    const float* __restrict__ data,
28    const float* __restrict__ x,
29    float* __restrict__ y
30) {
31    int row = blockIdx.x * blockDim.x + threadIdx.x;
32    if (row >= rows) return;
33    
34    float sum = 0.0f;
35    int start = indptr[row];
36    int end = indptr[row + 1];
37    
38    // Vectorized loop for better memory access patterns
39    for (int j = start; j < end; j++) {
40        sum += data[j] * x[indices[j]];
41    }
42    
43    y[row] = sum;
44}
45
46extern "C" __global__ void spmv_csr_vectorized_kernel(
47    int rows,
48    const int* __restrict__ indptr,
49    const int* __restrict__ indices,
50    const float* __restrict__ data,
51    const float* __restrict__ x,
52    float* __restrict__ y
53) {
54    int row = blockIdx.x * blockDim.x + threadIdx.x;
55    if (row >= rows) return;
56    
57    float sum = 0.0f;
58    int start = indptr[row];
59    int end = indptr[row + 1];
60    
61    // Use shared memory for better performance
62    extern __shared__ float sdata[];
63    int tid = threadIdx.x;
64    
65    sdata[tid] = 0.0f;
66    __syncthreads();
67    
68    for (int j = start; j < end; j++) {
69        sdata[tid] += data[j] * x[indices[j]];
70    }
71    
72    __syncthreads();
73    y[row] = sdata[tid];
74}
75"#;
76
77/// CUDA warp-level sparse matrix-vector multiplication kernel
78pub const CUDA_WARP_SPMV_KERNEL_SOURCE: &str = r#"
79extern "C" __global__ void spmv_csr_warp_kernel(
80    int rows,
81    const int* __restrict__ indptr,
82    const int* __restrict__ indices,
83    const float* __restrict__ data,
84    const float* __restrict__ x,
85    float* __restrict__ y
86) {
87    int warp_id = blockIdx.x * blockDim.x + threadIdx.x;
88    int lane_id = threadIdx.x % 32;
89    int row = warp_id / 32;
90    
91    if (row >= rows) return;
92    
93    int start = indptr[row];
94    int end = indptr[row + 1];
95    float sum = 0.0f;
96    
97    // Warp-level parallelization
98    for (int j = start + lane_id; j < end; j += 32) {
99        sum += data[j] * x[indices[j]];
100    }
101    
102    // Warp reduction
103    #pragma unroll
104    for (int offset = 16; offset > 0; offset /= 2) {
105        sum += __shfl_down_sync(0xffffffff, sum, offset);
106    }
107    
108    if (lane_id == 0) {
109        y[row] = sum;
110    }
111}
112"#;
113
114/// CUDA sparse matrix operations
115pub struct CudaSpMatVec {
116    context: Option<scirs2_core::gpu::GpuContext>,
117    kernel_handle: Option<scirs2_core::gpu::GpuKernelHandle>,
118    vectorized_kernel: Option<scirs2_core::gpu::GpuKernelHandle>,
119    warp_kernel: Option<scirs2_core::gpu::GpuKernelHandle>,
120}
121
122impl CudaSpMatVec {
123    /// Create a new CUDA sparse matrix-vector multiplication handler
124    pub fn new() -> SparseResult<Self> {
125        // Try to create CUDA context
126        #[cfg(feature = "gpu")]
127        let context = match scirs2_core::gpu::GpuContext::new(scirs2_core::gpu::GpuBackend::Cuda) {
128            Ok(ctx) => Some(ctx),
129            Err(_) => None, // CUDA not available, will use CPU fallback
130        };
131        #[cfg(not(feature = "gpu"))]
132        let context = None;
133
134        let mut handler = Self {
135            context,
136            kernel_handle: None,
137            vectorized_kernel: None,
138            warp_kernel: None,
139        };
140
141        // Compile kernels if context is available
142        #[cfg(feature = "gpu")]
143        if handler.context.is_some() {
144            let _ = handler.compile_kernels();
145        }
146
147        Ok(handler)
148    }
149
150    /// Compile CUDA kernels for sparse matrix operations
151    #[cfg(feature = "gpu")]
152    pub fn compile_kernels(&mut self) -> Result<(), scirs2_core::gpu::GpuError> {
153        if let Some(ref context) = self.context {
154            // Compile kernels using the context
155            self.kernel_handle =
156                context.execute(|compiler| compiler.compile(CUDA_SPMV_KERNEL_SOURCE).ok());
157
158            self.vectorized_kernel =
159                context.execute(|compiler| compiler.compile(CUDA_SPMV_KERNEL_SOURCE).ok());
160
161            self.warp_kernel =
162                context.execute(|compiler| compiler.compile(CUDA_WARP_SPMV_KERNEL_SOURCE).ok());
163
164            if self.kernel_handle.is_some() {
165                Ok(())
166            } else {
167                Err(scirs2_core::gpu::GpuError::KernelCompilationError(
168                    "Failed to compile CUDA kernels".to_string(),
169                ))
170            }
171        } else {
172            Err(scirs2_core::gpu::GpuError::BackendNotAvailable(
173                "CUDA".to_string(),
174            ))
175        }
176    }
177
178    /// Execute CUDA sparse matrix-vector multiplication
179    #[cfg(feature = "gpu")]
180    pub fn execute_spmv<T>(
181        &self,
182        matrix: &CsrArray<T>,
183        vector: &ArrayView1<T>,
184        _device: &super::GpuDevice,
185    ) -> SparseResult<Array1<T>>
186    where
187        T: Float + SparseElement + Debug + Copy + scirs2_core::gpu::GpuDataType,
188    {
189        let (rows, cols) = matrix.shape();
190        if cols != vector.len() {
191            return Err(SparseError::DimensionMismatch {
192                expected: cols,
193                found: vector.len(),
194            });
195        }
196
197        if let Some(ref context) = self.context {
198            if let Some(ref kernel) = self.kernel_handle {
199                // Upload data to GPU
200                let indptr_buffer = context.create_buffer_from_slice(
201                    matrix.get_indptr().as_slice().expect("Operation failed"),
202                );
203                let indices_buffer = context.create_buffer_from_slice(
204                    matrix.get_indices().as_slice().expect("Operation failed"),
205                );
206                let data_buffer = context.create_buffer_from_slice(
207                    matrix.get_data().as_slice().expect("Operation failed"),
208                );
209                let vector_buffer =
210                    context.create_buffer_from_slice(vector.as_slice().expect("Operation failed"));
211                let result_buffer = context.create_buffer::<T>(rows);
212
213                // Set kernel parameters
214                kernel.set_buffer("indptr", &indptr_buffer);
215                kernel.set_buffer("indices", &indices_buffer);
216                kernel.set_buffer("data", &data_buffer);
217                kernel.set_buffer("vector", &vector_buffer);
218                kernel.set_buffer("result", &result_buffer);
219                kernel.set_u32("rows", rows as u32);
220
221                // Launch kernel
222                let grid_size = ((rows + 255) / 256, 1, 1);
223                let block_size = (256, 1, 1);
224
225                // Execute kernel
226                let args = vec![scirs2_core::gpu::DynamicKernelArg::U32(rows as u32)];
227
228                context
229                    .launch_kernel("spmv_csr_kernel", grid_size, block_size, &args)
230                    .map_err(|e| {
231                        SparseError::ComputationError(format!(
232                            "CUDA kernel execution failed: {:?}",
233                            e
234                        ))
235                    })?;
236
237                // Read result back
238                let mut result_vec = vec![T::sparse_zero(); rows];
239                result_buffer.copy_to_host(&mut result_vec).map_err(|e| {
240                    SparseError::ComputationError(format!(
241                        "Failed to copy result from GPU: {:?}",
242                        e
243                    ))
244                })?;
245                Ok(Array1::from_vec(result_vec))
246            } else {
247                Err(SparseError::ComputationError(
248                    "CUDA kernel not compiled".to_string(),
249                ))
250            }
251        } else {
252            // Fallback to CPU implementation
253            matrix.dot_vector(vector)
254        }
255    }
256
257    /// Execute optimized CUDA sparse matrix-vector multiplication
258    #[cfg(feature = "gpu")]
259    pub fn execute_optimized_spmv<T>(
260        &self,
261        matrix: &CsrArray<T>,
262        vector: &ArrayView1<T>,
263        device: &super::GpuDevice,
264        optimization_level: CudaOptimizationLevel,
265    ) -> SparseResult<Array1<T>>
266    where
267        T: Float + SparseElement + Debug + Copy + super::GpuDataType,
268    {
269        let (rows, cols) = matrix.shape();
270        if cols != vector.len() {
271            return Err(SparseError::DimensionMismatch {
272                expected: cols,
273                found: vector.len(),
274            });
275        }
276
277        // Choose kernel based on optimization level
278        let kernel = match optimization_level {
279            CudaOptimizationLevel::Basic => &self.kernel_handle,
280            CudaOptimizationLevel::Vectorized => &self.vectorized_kernel,
281            CudaOptimizationLevel::WarpLevel => &self.warp_kernel,
282        };
283
284        if let Some(ref k) = kernel {
285            self.execute_kernel_with_optimization(matrix, vector, device, k, optimization_level)
286        } else {
287            Err(SparseError::ComputationError(
288                "CUDA kernel not available for requested optimization level".to_string(),
289            ))
290        }
291    }
292
293    #[cfg(feature = "gpu")]
294    fn execute_kernel_with_optimization<T>(
295        &self,
296        _matrix: &CsrArray<T>,
297        _vector: &ArrayView1<T>,
298        _device: &super::GpuDevice,
299        _kernel: &super::GpuKernelHandle,
300        _optimization_level: CudaOptimizationLevel,
301    ) -> SparseResult<Array1<T>>
302    where
303        T: Float + SparseElement + Debug + Copy + super::GpuDataType,
304    {
305        // Placeholder implementation - CUDA optimized execution needs proper API integration
306        Err(SparseError::ComputationError(
307            "CUDA optimized execution not yet implemented".to_string(),
308        ))
309
310        // TODO: Implement actual CUDA kernel execution
311        // The following code is commented out as it needs proper GPU buffer setup:
312        /*
313        // Configure launch parameters based on optimization level
314        let (grid_size, block_size, shared_memory) = match optimization_level {
315            CudaOptimizationLevel::Basic => ((rows + 255) / 256, 256, 0),
316            CudaOptimizationLevel::Vectorized => {
317                ((rows + 127) / 128, 128, 128 * std::mem::size_of::<f32>())
318            }
319            CudaOptimizationLevel::WarpLevel => ((rows * 32 + 255) / 256, 256, 0),
320        };
321
322        // Launch kernel with optimized parameters
323        device.launch_kernel_with_shared_memory(
324            kernel,
325            [grid_size as u32, 1, 1],
326            [block_size as u32, 1, 1],
327            shared_memory,
328            &[
329                &(rows as i32),
330                &indptr_gpu,
331                &indices_gpu,
332                &data_gpu,
333                &vector_gpu,
334                &mut result_gpu,
335            ],
336        )?;
337
338        // Download result
339        let result_host = result_gpu.to_host()?;
340        Ok(Array1::from_vec(result_host))
341        */
342    }
343
344    /// CPU fallback implementation
345    #[cfg(not(feature = "gpu"))]
346    pub fn execute_spmv_cpu<T>(
347        &self,
348        matrix: &CsrArray<T>,
349        vector: &ArrayView1<T>,
350    ) -> SparseResult<Array1<T>>
351    where
352        T: Float + SparseElement + Debug + Copy + std::iter::Sum,
353    {
354        matrix.dot_vector(vector)
355    }
356}
357
358impl Default for CudaSpMatVec {
359    fn default() -> Self {
360        Self::new().unwrap_or_else(|_| Self {
361            context: None,
362            kernel_handle: None,
363            vectorized_kernel: None,
364            warp_kernel: None,
365        })
366    }
367}
368
369/// CUDA optimization levels for sparse matrix operations
370#[derive(Debug, Clone, Copy, PartialEq, Eq, Default)]
371pub enum CudaOptimizationLevel {
372    /// Basic thread-per-row implementation
373    #[default]
374    Basic,
375    /// Vectorized implementation with shared memory
376    Vectorized,
377    /// Warp-level implementation for better memory coalescing
378    WarpLevel,
379}
380
381/// CUDA memory management for sparse matrices
382pub struct CudaMemoryManager {
383    #[allow(dead_code)]
384    allocated_buffers: Vec<String>,
385}
386
387impl CudaMemoryManager {
388    /// Create a new CUDA memory manager
389    pub fn new() -> Self {
390        Self {
391            allocated_buffers: Vec::new(),
392        }
393    }
394
395    /// Allocate GPU memory for sparse matrix data
396    #[cfg(feature = "gpu")]
397    pub fn allocate_sparse_matrix<T>(
398        &mut self,
399        _matrix: &CsrArray<T>,
400        _device: &super::GpuDevice,
401    ) -> Result<CudaMatrixBuffers<T>, super::GpuError>
402    where
403        T: super::GpuDataType + Copy + Float + SparseElement + Debug,
404    {
405        // Placeholder implementation - requires GpuContext instead of GpuDevice
406        Err(super::GpuError::BackendNotImplemented(
407            super::GpuBackend::Cuda,
408        ))
409    }
410
411    /// Allocate GPU memory with optimal memory layout
412    #[cfg(feature = "gpu")]
413    pub fn allocate_optimized<T>(
414        &mut self,
415        _data: &[T],
416        _device: &super::GpuDevice,
417        _access_pattern: MemoryAccessPattern,
418    ) -> Result<super::GpuBuffer<T>, super::GpuError>
419    where
420        T: super::GpuDataType + Copy + Float + SparseElement + Debug,
421    {
422        // This functionality should use GpuContext instead of GpuDevice
423        // For now, return an error indicating this needs proper implementation
424        Err(super::GpuError::BackendNotImplemented(
425            super::GpuBackend::Cuda,
426        ))
427    }
428}
429
430impl Default for CudaMemoryManager {
431    fn default() -> Self {
432        Self::new()
433    }
434}
435
436/// GPU memory buffers for sparse matrix data
437#[cfg(feature = "gpu")]
438pub struct CudaMatrixBuffers<T: super::GpuDataType> {
439    pub indptr: super::GpuBuffer<usize>,
440    pub indices: super::GpuBuffer<usize>,
441    pub data: super::GpuBuffer<T>,
442}
443
444/// Memory access patterns for optimization
445#[derive(Debug, Clone, Copy)]
446pub enum MemoryAccessPattern {
447    /// Sequential memory access
448    Sequential,
449    /// Random memory access
450    Random,
451    /// Strided memory access
452    Strided,
453}
454
455#[cfg(test)]
456mod tests {
457    use super::*;
458    use scirs2_core::ndarray::Array1;
459
460    #[test]
461    fn test_cuda_spmv_creation() {
462        let cuda_spmv = CudaSpMatVec::new();
463        assert!(cuda_spmv.is_ok());
464    }
465
466    #[test]
467    fn test_cuda_optimization_levels() {
468        let basic = CudaOptimizationLevel::Basic;
469        let vectorized = CudaOptimizationLevel::Vectorized;
470        let warp = CudaOptimizationLevel::WarpLevel;
471
472        assert_ne!(basic, vectorized);
473        assert_ne!(vectorized, warp);
474        assert_eq!(
475            CudaOptimizationLevel::default(),
476            CudaOptimizationLevel::Basic
477        );
478    }
479
480    #[test]
481    fn test_cuda_memory_manager() {
482        let manager = CudaMemoryManager::new();
483        assert_eq!(manager.allocated_buffers.len(), 0);
484    }
485
486    #[test]
487    fn test_memory_access_patterns() {
488        let patterns = [
489            MemoryAccessPattern::Sequential,
490            MemoryAccessPattern::Random,
491            MemoryAccessPattern::Strided,
492        ];
493
494        // Test that all patterns are defined
495        for pattern in &patterns {
496            match pattern {
497                MemoryAccessPattern::Sequential => (),
498                MemoryAccessPattern::Random => (),
499                MemoryAccessPattern::Strided => (),
500            }
501        }
502    }
503
504    #[test]
505    #[allow(clippy::const_is_empty)]
506    fn test_kernel_sources() {
507        assert!(!CUDA_SPMV_KERNEL_SOURCE.is_empty());
508        assert!(!CUDA_WARP_SPMV_KERNEL_SOURCE.is_empty());
509
510        // Check that kernels contain expected function names
511        assert!(CUDA_SPMV_KERNEL_SOURCE.contains("spmv_csr_kernel"));
512        assert!(CUDA_SPMV_KERNEL_SOURCE.contains("spmv_csr_vectorized_kernel"));
513        assert!(CUDA_WARP_SPMV_KERNEL_SOURCE.contains("spmv_csr_warp_kernel"));
514    }
515}