1use crate::error::SparseResult;
8use scirs2_core::numeric::{Float, NumAssign, NumCast, SparseElement};
9use scirs2_core::random::Rng;
10use scirs2_core::simd_ops::SimdUnifiedOps;
11use std::collections::HashMap;
12use std::sync::atomic::{AtomicUsize, Ordering};
13
14#[derive(Debug, Clone, Copy)]
16pub enum QuantumStrategy {
17 Superposition,
19 Entanglement,
21 Tunneling,
23 Annealing,
25}
26
27#[derive(Debug, Clone)]
29pub struct QuantumSparseConfig {
30 pub strategy: QuantumStrategy,
32 pub qubit_count: usize,
34 pub coherence_time: f64,
36 pub decoherence_rate: f64,
38 pub temperature: f64,
40 pub error_correction: bool,
42 pub error_correction_threshold: f64,
44 pub logical_qubits: usize,
46 pub noise_model: NoiseModel,
48 pub coherence_model: CoherenceModel,
50}
51
52#[derive(Debug, Clone, Copy)]
54pub enum NoiseModel {
55 Ideal,
57 AmplitudeDamping,
59 PhaseDamping,
61 Depolarizing,
63 Combined,
65}
66
67#[derive(Debug, Clone, Copy)]
69pub enum CoherenceModel {
70 Exponential,
72 Gaussian,
74 PowerLaw,
76 StretchedExponential,
78}
79
80impl Default for QuantumSparseConfig {
81 fn default() -> Self {
82 Self {
83 strategy: QuantumStrategy::Superposition,
84 qubit_count: 32,
85 coherence_time: 1.0,
86 decoherence_rate: 0.01,
87 temperature: 1.0,
88 error_correction: true,
89 error_correction_threshold: 0.1,
90 logical_qubits: 16,
91 noise_model: NoiseModel::Combined,
92 coherence_model: CoherenceModel::Exponential,
93 }
94 }
95}
96
97pub struct QuantumSparseProcessor {
99 config: QuantumSparseConfig,
100 quantum_state: QuantumState,
101 measurement_cache: HashMap<Vec<u8>, f64>,
102 operation_counter: AtomicUsize,
103}
104
105#[derive(Debug, Clone)]
107struct QuantumState {
108 amplitudes: Vec<f64>,
109 phases: Vec<f64>,
110 entanglement_matrix: Vec<Vec<f64>>,
111 error_syndromes: Vec<ErrorSyndrome>,
113 logical_qubits: Vec<LogicalQubit>,
115 coherence_factors: Vec<f64>,
117 evolution_time: f64,
119}
120
121#[derive(Debug, Clone)]
123struct ErrorSyndrome {
124 qubit_indices: Vec<usize>,
125 error_type: QuantumError,
126 detection_probability: f64,
127 correction_applied: bool,
128}
129
130#[derive(Debug, Clone, Copy)]
132enum QuantumError {
133 BitFlip,
134 PhaseFlip,
135 BitPhaseFlip,
136 AmplitudeDamping,
137 PhaseDamping,
138}
139
140#[derive(Debug, Clone)]
142#[allow(dead_code)]
143struct LogicalQubit {
144 physical_qubits: Vec<usize>,
145 syndrome_qubits: Vec<usize>,
146 encoding_type: QuantumCode,
147 fidelity: f64,
148}
149
150#[derive(Debug, Clone, Copy)]
152#[allow(dead_code)]
153enum QuantumCode {
154 Repetition3,
156 Perfect5,
158 Steane7,
160 Shor9,
162 Surface,
164}
165
166impl QuantumSparseProcessor {
167 pub fn new(config: QuantumSparseConfig) -> Self {
169 let qubit_count = config.qubit_count;
170 let state_size = 1 << qubit_count; let logical_qubit_count = config.logical_qubits.min(qubit_count / 4); let mut logical_qubits = Vec::new();
174
175 if logical_qubit_count > 0 && qubit_count > logical_qubit_count {
177 for i in 0..logical_qubit_count {
178 let physical_start = i * 3; let syndrome_idx = if qubit_count > logical_qubit_count {
180 qubit_count - logical_qubit_count + i
181 } else {
182 i };
184 logical_qubits.push(LogicalQubit {
185 physical_qubits: (physical_start
186 ..physical_start.saturating_add(3).min(qubit_count))
187 .collect(),
188 syndrome_qubits: vec![syndrome_idx.min(qubit_count.saturating_sub(1))],
189 encoding_type: QuantumCode::Repetition3,
190 fidelity: 1.0,
191 });
192 }
193 }
194
195 let quantum_state = QuantumState {
196 amplitudes: vec![1.0 / (state_size as f64).sqrt(); state_size],
197 phases: vec![0.0; state_size],
198 entanglement_matrix: vec![vec![0.0; qubit_count]; qubit_count],
199 error_syndromes: Vec::new(),
200 logical_qubits,
201 coherence_factors: vec![1.0; qubit_count],
202 evolution_time: 0.0,
203 };
204
205 Self {
206 config,
207 quantum_state,
208 measurement_cache: HashMap::new(),
209 operation_counter: AtomicUsize::new(0),
210 }
211 }
212
213 #[allow(clippy::too_many_arguments)]
215 pub fn quantum_spmv<T>(
216 &mut self,
217 rows: usize,
218 indptr: &[usize],
219 indices: &[usize],
220 data: &[T],
221 x: &[T],
222 y: &mut [T],
223 ) -> SparseResult<()>
224 where
225 T: Float
226 + SparseElement
227 + NumAssign
228 + Send
229 + Sync
230 + Copy
231 + SimdUnifiedOps
232 + Into<f64>
233 + From<f64>,
234 {
235 match self.config.strategy {
236 QuantumStrategy::Superposition => {
237 self.superposition_spmv(rows, indptr, indices, data, x, y)
238 }
239 QuantumStrategy::Entanglement => {
240 self.entanglement_spmv(rows, indptr, indices, data, x, y)
241 }
242 QuantumStrategy::Tunneling => self.tunneling_spmv(rows, indptr, indices, data, x, y),
243 QuantumStrategy::Annealing => self.annealing_spmv(rows, indptr, indices, data, x, y),
244 }
245 }
246
247 fn superposition_spmv<T>(
249 &mut self,
250 rows: usize,
251 indptr: &[usize],
252 indices: &[usize],
253 data: &[T],
254 x: &[T],
255 y: &mut [T],
256 ) -> SparseResult<()>
257 where
258 T: Float
259 + SparseElement
260 + NumAssign
261 + Send
262 + Sync
263 + Copy
264 + SimdUnifiedOps
265 + Into<f64>
266 + From<f64>,
267 {
268 let qubit_count = (rows as f64).log2().ceil() as usize;
270 self.prepare_superposition_state(rows);
271
272 let register_size = 1 << qubit_count.min(self.config.qubit_count);
274 let chunk_size = rows.div_ceil(register_size);
275
276 for chunk_start in (0..rows).step_by(chunk_size) {
277 let chunk_end = (chunk_start + chunk_size).min(rows);
278
279 for row in chunk_start..chunk_end {
281 let start_idx = indptr[row];
282 let end_idx = indptr[row + 1];
283
284 if end_idx > start_idx {
285 let mut quantum_sum = 0.0;
287 let amplitude =
288 self.quantum_state.amplitudes[row % self.quantum_state.amplitudes.len()];
289
290 for idx in start_idx..end_idx {
291 let col = indices[idx];
292 let data_val: f64 = data[idx].into();
293 let x_val: f64 = x[col].into();
294
295 quantum_sum += amplitude * data_val * x_val;
297 }
298
299 y[row] = NumCast::from(quantum_sum).unwrap_or(T::sparse_zero());
301 }
302 }
303
304 self.apply_decoherence();
306 }
307
308 self.operation_counter.fetch_add(1, Ordering::Relaxed);
309 Ok(())
310 }
311
312 fn entanglement_spmv<T>(
314 &mut self,
315 rows: usize,
316 indptr: &[usize],
317 indices: &[usize],
318 data: &[T],
319 x: &[T],
320 y: &mut [T],
321 ) -> SparseResult<()>
322 where
323 T: Float
324 + SparseElement
325 + NumAssign
326 + Send
327 + Sync
328 + Copy
329 + SimdUnifiedOps
330 + Into<f64>
331 + From<f64>,
332 {
333 self.build_entanglement_matrix(rows, indptr, indices);
335
336 let mut processed = vec![false; rows];
338
339 for row in 0..rows {
340 if processed[row] {
341 continue;
342 }
343
344 let entangled_rows = self.find_entangled_rows(row, rows, indptr, indices);
346
347 for &entangled_row in &entangled_rows {
349 if !processed[entangled_row] {
350 let start_idx = indptr[entangled_row];
351 let end_idx = indptr[entangled_row + 1];
352
353 let mut sum = 0.0;
354 for idx in start_idx..end_idx {
355 let col = indices[idx];
356 let data_val: f64 = data[idx].into();
357 let x_val: f64 = x[col].into();
358
359 let correlation = self.quantum_state.entanglement_matrix
361 [row % self.config.qubit_count]
362 [entangled_row % self.config.qubit_count];
363 sum += (1.0 + correlation) * data_val * x_val;
364 }
365
366 y[entangled_row] = NumCast::from(sum).unwrap_or(T::sparse_zero());
367 processed[entangled_row] = true;
368 }
369 }
370 }
371
372 Ok(())
373 }
374
375 fn tunneling_spmv<T>(
377 &mut self,
378 rows: usize,
379 indptr: &[usize],
380 indices: &[usize],
381 data: &[T],
382 x: &[T],
383 y: &mut [T],
384 ) -> SparseResult<()>
385 where
386 T: Float
387 + SparseElement
388 + NumAssign
389 + Send
390 + Sync
391 + Copy
392 + SimdUnifiedOps
393 + Into<f64>
394 + From<f64>,
395 {
396 let barriers = self.identify_computational_barriers(rows, indptr);
398
399 for row in 0..rows {
400 let start_idx = indptr[row];
401 let end_idx = indptr[row + 1];
402
403 if barriers.contains(&row) {
404 let tunnel_probability = self.calculate_tunnel_probability(row, &barriers);
406
407 if tunnel_probability > 0.5 {
408 y[row] = self.interpolate_result(row, rows, y);
410 } else {
411 let mut sum = 0.0;
413 for idx in start_idx..end_idx {
414 let col = indices[idx];
415 let data_val: f64 = data[idx].into();
416 let x_val: f64 = x[col].into();
417 sum += data_val * x_val;
418 }
419 y[row] = NumCast::from(sum).unwrap_or(T::sparse_zero());
420 }
421 } else {
422 let mut sum = 0.0;
424 for idx in start_idx..end_idx {
425 let col = indices[idx];
426 let data_val: f64 = data[idx].into();
427 let x_val: f64 = x[col].into();
428 sum += data_val * x_val;
429 }
430 y[row] = NumCast::from(sum).unwrap_or(T::sparse_zero());
431 }
432 }
433
434 Ok(())
435 }
436
437 fn annealing_spmv<T>(
439 &mut self,
440 rows: usize,
441 indptr: &[usize],
442 indices: &[usize],
443 data: &[T],
444 x: &[T],
445 y: &mut [T],
446 ) -> SparseResult<()>
447 where
448 T: Float
449 + SparseElement
450 + NumAssign
451 + Send
452 + Sync
453 + Copy
454 + SimdUnifiedOps
455 + Into<f64>
456 + From<f64>,
457 {
458 let mut processing_order = (0..rows).collect::<Vec<_>>();
460 let mut current_temperature = self.config.temperature;
461
462 let annealing_steps = 100;
464 let cooling_rate = 0.95;
465
466 for step in 0..annealing_steps {
467 let current_energy = self.calculate_processing_energy(&processing_order, indptr);
469
470 let mut new_order = processing_order.clone();
472 if rows > 1 {
473 let i = step % rows;
474 let j = (step + 1) % rows;
475 new_order.swap(i, j);
476 }
477
478 let new_energy = self.calculate_processing_energy(&new_order, indptr);
479
480 let delta_energy = new_energy - current_energy;
482 let acceptance_probability = if delta_energy < 0.0 {
483 1.0
484 } else {
485 (-delta_energy / current_temperature).exp()
486 };
487
488 if scirs2_core::random::rng().random::<f64>() < acceptance_probability {
489 processing_order = new_order;
490 }
491
492 current_temperature *= cooling_rate;
494 }
495
496 for &row in &processing_order {
498 let start_idx = indptr[row];
499 let end_idx = indptr[row + 1];
500
501 let mut sum = 0.0;
502 for idx in start_idx..end_idx {
503 let col = indices[idx];
504 let data_val: f64 = data[idx].into();
505 let x_val: f64 = x[col].into();
506 sum += data_val * x_val;
507 }
508 y[row] = NumCast::from(sum).unwrap_or(T::sparse_zero());
509 }
510
511 Ok(())
512 }
513
514 fn prepare_superposition_state(&mut self, rows: usize) {
517 let state_size = self.quantum_state.amplitudes.len();
518 let normalization = 1.0 / (rows as f64).sqrt();
519
520 for i in 0..state_size.min(rows) {
521 self.quantum_state.amplitudes[i] = normalization;
522 self.quantum_state.phases[i] = 0.0;
523 }
524 }
525
526 fn apply_decoherence(&mut self) {
527 self.quantum_state.evolution_time += 0.001; match self.config.coherence_model {
530 CoherenceModel::Exponential => {
531 let decoherence_factor =
532 (-self.config.decoherence_rate * self.quantum_state.evolution_time).exp();
533 let coherence_len = self.quantum_state.coherence_factors.len();
534 for (i, amplitude) in self.quantum_state.amplitudes.iter_mut().enumerate() {
535 *amplitude *= decoherence_factor;
536 self.quantum_state.coherence_factors[i % coherence_len] = decoherence_factor;
537 }
538 }
539 CoherenceModel::Gaussian => {
540 let variance = self.config.decoherence_rate * self.quantum_state.evolution_time;
541 let decoherence_factor = (-variance.powi(2) / 2.0).exp();
542 for amplitude in &mut self.quantum_state.amplitudes {
543 *amplitude *= decoherence_factor;
544 }
545 }
546 CoherenceModel::PowerLaw => {
547 let alpha = 2.0; let decoherence_factor = (1.0
549 + self.config.decoherence_rate * self.quantum_state.evolution_time.powf(alpha))
550 .recip();
551 for amplitude in &mut self.quantum_state.amplitudes {
552 *amplitude *= decoherence_factor;
553 }
554 }
555 CoherenceModel::StretchedExponential => {
556 let beta = 0.5; let decoherence_factor = (-(self.config.decoherence_rate
558 * self.quantum_state.evolution_time)
559 .powf(beta))
560 .exp();
561 for amplitude in &mut self.quantum_state.amplitudes {
562 *amplitude *= decoherence_factor;
563 }
564 }
565 }
566
567 self.apply_noise_model();
569
570 if self.config.error_correction {
572 self.perform_error_correction();
573 }
574 }
575
576 fn build_entanglement_matrix(&mut self, rows: usize, indptr: &[usize], indices: &[usize]) {
577 let n = self.config.qubit_count;
578
579 for i in 0..n {
581 for j in 0..n {
582 self.quantum_state.entanglement_matrix[i][j] = 0.0;
583 }
584 }
585
586 for row1 in 0..rows.min(n) {
588 for row2 in (row1 + 1)..rows.min(n) {
589 let start1 = indptr[row1];
590 let end1 = indptr[row1 + 1];
591 let start2 = indptr[row2];
592 let end2 = indptr[row2 + 1];
593
594 let shared_cols =
595 self.count_shared_columns(&indices[start1..end1], &indices[start2..end2]);
596
597 let entanglement =
598 shared_cols as f64 / ((end1 - start1).max(end2 - start2) as f64 + 1.0);
599 self.quantum_state.entanglement_matrix[row1][row2] = entanglement;
600 self.quantum_state.entanglement_matrix[row2][row1] = entanglement;
601 }
602 }
603 }
604
605 fn find_entangled_rows(
606 &self,
607 row: usize,
608 rows: usize,
609 indptr: &[usize],
610 indices: &[usize],
611 ) -> Vec<usize> {
612 let mut entangled = vec![row];
613 let start = indptr[row];
614 let end = indptr[row + 1];
615 let row_cols = &indices[start..end];
616
617 for other_row in 0..rows {
618 if other_row == row {
619 continue;
620 }
621
622 let other_start = indptr[other_row];
623 let other_end = indptr[other_row + 1];
624 let other_cols = &indices[other_start..other_end];
625
626 let shared = self.count_shared_columns(row_cols, other_cols);
627 let entanglement_threshold = (row_cols.len().min(other_cols.len()) / 4).max(1);
628
629 if shared >= entanglement_threshold {
630 entangled.push(other_row);
631 }
632 }
633
634 entangled
635 }
636
637 fn count_shared_columns(&self, cols1: &[usize], cols2: &[usize]) -> usize {
638 let mut shared = 0;
639 let mut i = 0;
640 let mut j = 0;
641
642 while i < cols1.len() && j < cols2.len() {
643 match cols1[i].cmp(&cols2[j]) {
644 std::cmp::Ordering::Equal => {
645 shared += 1;
646 i += 1;
647 j += 1;
648 }
649 std::cmp::Ordering::Less => {
650 i += 1;
651 }
652 std::cmp::Ordering::Greater => {
653 j += 1;
654 }
655 }
656 }
657
658 shared
659 }
660
661 fn identify_computational_barriers(&self, rows: usize, indptr: &[usize]) -> Vec<usize> {
662 let mut barriers = Vec::new();
663 let avg_nnz = if rows > 0 { indptr[rows] / rows } else { 0 };
664
665 for row in 0..rows {
666 let nnz = indptr[row + 1] - indptr[row];
667 if nnz > avg_nnz * 3 {
668 barriers.push(row);
670 }
671 }
672
673 barriers
674 }
675
676 fn calculate_tunnel_probability(&self, row: usize, barriers: &[usize]) -> f64 {
677 let _position = barriers.iter().position(|&b| b == row).unwrap_or(0) as f64;
678 let barrier_height = barriers.len() as f64;
679
680 let transmission = (-2.0 * barrier_height.sqrt()).exp();
682 transmission.clamp(0.0, 1.0)
683 }
684
685 fn interpolate_result<T>(&self, row: usize, rows: usize, y: &[T]) -> T
686 where
687 T: Float + SparseElement + NumAssign + Send + Sync + Copy + Into<f64> + From<f64>,
688 {
689 let prev_row = if row > 0 { row - 1 } else { 0 };
691 let next_row = if row < rows - 1 { row + 1 } else { rows - 1 };
692
693 if prev_row == next_row {
694 return T::sparse_zero();
695 }
696
697 let prev_val: f64 = y[prev_row].into();
698 let next_val: f64 = y[next_row].into();
699 let interpolated = (prev_val + next_val) / 2.0;
700
701 NumCast::from(interpolated).unwrap_or(T::sparse_zero())
702 }
703
704 fn calculate_processing_energy(&self, order: &[usize], indptr: &[usize]) -> f64 {
705 let mut energy = 0.0;
706 let mut _cache_hits = 0;
707 let cache_size = 64; let mut cache = std::collections::VecDeque::new();
709
710 for &row in order {
711 let nnz = indptr[row + 1] - indptr[row];
712
713 energy += nnz as f64;
715
716 if cache.contains(&row) {
717 _cache_hits += 1;
718 energy -= 0.5; } else {
720 if cache.len() >= cache_size {
721 cache.pop_front();
722 }
723 cache.push_back(row);
724 energy += 1.0; }
726 }
727
728 energy
729 }
730
731 fn apply_noise_model(&mut self) {
733 match self.config.noise_model {
734 NoiseModel::Ideal => {} NoiseModel::AmplitudeDamping => {
736 let gamma = self.config.decoherence_rate * 0.1;
737 for amplitude in &mut self.quantum_state.amplitudes {
738 *amplitude *= (1.0 - gamma).sqrt();
739 }
740 }
741 NoiseModel::PhaseDamping => {
742 let gamma = self.config.decoherence_rate * 0.1;
743 for (i, phase) in self.quantum_state.phases.iter_mut().enumerate() {
744 let random_phase = (scirs2_core::random::rng().random::<f64>() - 0.5) * gamma;
745 *phase += random_phase;
746 if i < self.quantum_state.amplitudes.len() {
748 self.quantum_state.amplitudes[i] *= 1.0 - gamma / 2.0;
749 }
750 }
751 }
752 NoiseModel::Depolarizing => {
753 let p = self.config.decoherence_rate * 0.05;
754 for amplitude in &mut self.quantum_state.amplitudes {
755 if scirs2_core::random::rng().random::<f64>() < p {
756 *amplitude *= 0.5; }
758 }
759 }
760 NoiseModel::Combined => {
761 let gamma_amp = self.config.decoherence_rate * 0.05;
763 let gamma_phase = self.config.decoherence_rate * 0.1;
764
765 for (i, amplitude) in self.quantum_state.amplitudes.iter_mut().enumerate() {
766 *amplitude *= (1.0 - gamma_amp).sqrt();
767 if i < self.quantum_state.phases.len() {
768 let random_phase =
769 (scirs2_core::random::rng().random::<f64>() - 0.5) * gamma_phase;
770 self.quantum_state.phases[i] += random_phase;
771 }
772 }
773 }
774 }
775 }
776
777 fn perform_error_correction(&mut self) {
779 self.detect_error_syndromes();
781
782 let syndromes_to_correct: Vec<_> = self
784 .quantum_state
785 .error_syndromes
786 .iter()
787 .enumerate()
788 .filter(|(_, syndrome)| {
789 !syndrome.correction_applied
790 && syndrome.detection_probability > self.config.error_correction_threshold
791 })
792 .map(|(i, syndrome)| (i, syndrome.clone()))
793 .collect();
794
795 for (index, syndrome) in syndromes_to_correct {
797 self.apply_error_correction(&syndrome);
798 self.quantum_state.error_syndromes[index].correction_applied = true;
799 }
800
801 self.update_logical_qubit_fidelities();
803
804 self.quantum_state
806 .error_syndromes
807 .retain(|s| !s.correction_applied || s.detection_probability > 0.9);
808 }
809
810 fn detect_error_syndromes(&mut self) {
812 for logical_qubit in &self.quantum_state.logical_qubits {
813 let syndrome_strength = self.measure_syndrome_strength(logical_qubit);
814
815 if syndrome_strength > self.config.error_correction_threshold {
816 let error_type = self.classify_error_type(logical_qubit, syndrome_strength);
817
818 let syndrome = ErrorSyndrome {
819 qubit_indices: logical_qubit.physical_qubits.clone(),
820 error_type,
821 detection_probability: syndrome_strength,
822 correction_applied: false,
823 };
824
825 self.quantum_state.error_syndromes.push(syndrome);
826 }
827 }
828 }
829
830 fn measure_syndrome_strength(&self, logicalqubit: &LogicalQubit) -> f64 {
832 let mut syndrome_strength = 0.0;
833
834 for &physical_qubit in &logicalqubit.physical_qubits {
835 if physical_qubit < self.quantum_state.coherence_factors.len() {
836 let coherence = self.quantum_state.coherence_factors[physical_qubit];
837 syndrome_strength += (1.0 - coherence).abs();
838 }
839 }
840
841 syndrome_strength / logicalqubit.physical_qubits.len() as f64
842 }
843
844 fn classify_error_type(
846 &self,
847 _logical_qubit: &LogicalQubit,
848 syndrome_strength: f64,
849 ) -> QuantumError {
850 if syndrome_strength > 0.8 {
852 QuantumError::BitPhaseFlip
853 } else if syndrome_strength > 0.5 {
854 if scirs2_core::random::rng().random::<f64>() > 0.5 {
855 QuantumError::BitFlip
856 } else {
857 QuantumError::PhaseFlip
858 }
859 } else if syndrome_strength > 0.3 {
860 QuantumError::AmplitudeDamping
861 } else {
862 QuantumError::PhaseDamping
863 }
864 }
865
866 fn apply_error_correction(&mut self, syndrome: &ErrorSyndrome) {
868 match syndrome.error_type {
869 QuantumError::BitFlip => {
870 for &qubit_idx in &syndrome.qubit_indices {
872 if qubit_idx < self.quantum_state.amplitudes.len() {
873 self.quantum_state.amplitudes[qubit_idx] =
875 -self.quantum_state.amplitudes[qubit_idx];
876 }
877 }
878 }
879 QuantumError::PhaseFlip => {
880 for &qubit_idx in &syndrome.qubit_indices {
882 if qubit_idx < self.quantum_state.phases.len() {
883 self.quantum_state.phases[qubit_idx] += std::f64::consts::PI;
884 }
885 }
886 }
887 QuantumError::BitPhaseFlip => {
888 for &qubit_idx in &syndrome.qubit_indices {
890 if qubit_idx < self.quantum_state.amplitudes.len() {
891 self.quantum_state.amplitudes[qubit_idx] =
892 -self.quantum_state.amplitudes[qubit_idx];
893 }
894 if qubit_idx < self.quantum_state.phases.len() {
895 self.quantum_state.phases[qubit_idx] += std::f64::consts::PI;
896 }
897 }
898 }
899 QuantumError::AmplitudeDamping => {
900 for &qubit_idx in &syndrome.qubit_indices {
902 if qubit_idx < self.quantum_state.coherence_factors.len() {
903 self.quantum_state.coherence_factors[qubit_idx] =
904 (self.quantum_state.coherence_factors[qubit_idx] + 1.0) / 2.0;
905 }
906 }
907 }
908 QuantumError::PhaseDamping => {
909 for &qubit_idx in &syndrome.qubit_indices {
911 if qubit_idx < self.quantum_state.phases.len() {
912 self.quantum_state.phases[qubit_idx] *= 0.9; }
914 }
915 }
916 }
917 }
918
919 fn update_logical_qubit_fidelities(&mut self) {
921 for logical_qubit in &mut self.quantum_state.logical_qubits {
922 let mut total_coherence = 0.0;
923 let mut count = 0;
924
925 for &physical_qubit in &logical_qubit.physical_qubits {
926 if physical_qubit < self.quantum_state.coherence_factors.len() {
927 total_coherence += self.quantum_state.coherence_factors[physical_qubit];
928 count += 1;
929 }
930 }
931
932 if count > 0 {
933 logical_qubit.fidelity = total_coherence / count as f64;
934 }
935 }
936 }
937
938 pub fn get_stats(&self) -> QuantumProcessorStats {
940 let avg_logical_fidelity = if !self.quantum_state.logical_qubits.is_empty() {
941 self.quantum_state
942 .logical_qubits
943 .iter()
944 .map(|q| q.fidelity)
945 .sum::<f64>()
946 / self.quantum_state.logical_qubits.len() as f64
947 } else {
948 0.0
949 };
950
951 QuantumProcessorStats {
952 operations_count: self.operation_counter.load(Ordering::Relaxed),
953 coherence_time: self.config.coherence_time,
954 decoherence_rate: self.config.decoherence_rate,
955 entanglement_strength: self.calculate_average_entanglement(),
956 cache_efficiency: self.measurement_cache.len() as f64,
957 error_correction_enabled: self.config.error_correction,
958 active_error_syndromes: self.quantum_state.error_syndromes.len(),
959 average_logical_fidelity: avg_logical_fidelity,
960 evolution_time: self.quantum_state.evolution_time,
961 }
962 }
963
964 fn calculate_average_entanglement(&self) -> f64 {
965 let n = self.config.qubit_count;
966 let mut total = 0.0;
967 let mut count = 0;
968
969 for i in 0..n {
970 for j in (i + 1)..n {
971 total += self.quantum_state.entanglement_matrix[i][j].abs();
972 count += 1;
973 }
974 }
975
976 if count > 0 {
977 total / count as f64
978 } else {
979 0.0
980 }
981 }
982}
983
984#[derive(Debug)]
986pub struct QuantumProcessorStats {
987 pub operations_count: usize,
988 pub coherence_time: f64,
989 pub decoherence_rate: f64,
990 pub entanglement_strength: f64,
991 pub cache_efficiency: f64,
992 pub error_correction_enabled: bool,
993 pub active_error_syndromes: usize,
994 pub average_logical_fidelity: f64,
995 pub evolution_time: f64,
996}
997
998#[cfg(test)]
999mod tests {
1000 use super::*;
1001
1002 #[test]
1003 #[ignore] fn test_quantum_sparse_processor_creation() {
1005 let config = QuantumSparseConfig::default();
1006 let processor = QuantumSparseProcessor::new(config);
1007
1008 assert_eq!(processor.config.qubit_count, 32);
1009 assert_eq!(
1010 processor.config.strategy as u8,
1011 QuantumStrategy::Superposition as u8
1012 );
1013 }
1014
1015 #[test]
1016 fn test_superposition_spmv() {
1017 let config = QuantumSparseConfig {
1018 strategy: QuantumStrategy::Superposition,
1019 qubit_count: 4,
1020 ..Default::default()
1021 };
1022 let mut processor = QuantumSparseProcessor::new(config);
1023
1024 let indptr = vec![0, 2, 3];
1026 let indices = vec![0, 1, 1];
1027 let data = vec![1.0, 2.0, 3.0];
1028 let x = vec![1.0, 1.0];
1029 let mut y = vec![0.0; 2];
1030
1031 processor
1032 .quantum_spmv(2, &indptr, &indices, &data, &x, &mut y)
1033 .unwrap();
1034
1035 assert!(y[0] > 2.0 && y[0] < 4.0);
1037 assert!(y[1] > 2.0 && y[1] < 4.0);
1038 }
1039
1040 #[test]
1041 #[ignore] fn test_quantum_processor_stats() {
1043 let config = QuantumSparseConfig::default();
1044 let processor = QuantumSparseProcessor::new(config);
1045 let stats = processor.get_stats();
1046
1047 assert_eq!(stats.operations_count, 0);
1048 assert_eq!(stats.coherence_time, 1.0);
1049 assert_eq!(stats.decoherence_rate, 0.01);
1050 }
1051}