scirs2_sparse/
quantum_inspired_sparse.rs

1//! Quantum-Inspired Sparse Matrix Operations for Advanced Mode
2//!
3//! This module implements quantum-inspired algorithms for sparse matrix operations,
4//! leveraging principles from quantum computing to achieve enhanced performance
5//! and novel computational strategies.
6
7use crate::error::SparseResult;
8use scirs2_core::numeric::{Float, NumAssign, NumCast, SparseElement};
9use scirs2_core::random::Rng;
10use scirs2_core::simd_ops::SimdUnifiedOps;
11use std::collections::HashMap;
12use std::sync::atomic::{AtomicUsize, Ordering};
13
14/// Quantum-inspired sparse matrix optimization strategies
15#[derive(Debug, Clone, Copy)]
16pub enum QuantumStrategy {
17    /// Superposition-based parallel processing
18    Superposition,
19    /// Entanglement-inspired correlation optimization
20    Entanglement,
21    /// Quantum tunneling for escape from local optima
22    Tunneling,
23    /// Quantum annealing for global optimization
24    Annealing,
25}
26
27/// Quantum-inspired sparse matrix optimizer configuration
28#[derive(Debug, Clone)]
29pub struct QuantumSparseConfig {
30    /// Primary optimization strategy
31    pub strategy: QuantumStrategy,
32    /// Number of qubits to simulate (computational depth)
33    pub qubit_count: usize,
34    /// Coherence time for quantum operations
35    pub coherence_time: f64,
36    /// Decoherence rate
37    pub decoherence_rate: f64,
38    /// Temperature for quantum annealing
39    pub temperature: f64,
40    /// Enable quantum error correction
41    pub error_correction: bool,
42    /// Quantum error correction threshold
43    pub error_correction_threshold: f64,
44    /// Number of logical qubits for error correction
45    pub logical_qubits: usize,
46    /// Environmental noise model
47    pub noise_model: NoiseModel,
48    /// Coherence decay function type
49    pub coherence_model: CoherenceModel,
50}
51
52/// Quantum noise models for realistic simulation
53#[derive(Debug, Clone, Copy)]
54pub enum NoiseModel {
55    /// No noise (ideal quantum computer)
56    Ideal,
57    /// Amplitude damping noise
58    AmplitudeDamping,
59    /// Phase damping noise
60    PhaseDamping,
61    /// Depolarizing noise
62    Depolarizing,
63    /// Combined amplitude and phase noise
64    Combined,
65}
66
67/// Coherence decay models
68#[derive(Debug, Clone, Copy)]
69pub enum CoherenceModel {
70    /// Exponential decay (T1 relaxation)
71    Exponential,
72    /// Gaussian decay (T2* dephasing)
73    Gaussian,
74    /// Power law decay
75    PowerLaw,
76    /// Stretched exponential
77    StretchedExponential,
78}
79
80impl Default for QuantumSparseConfig {
81    fn default() -> Self {
82        Self {
83            strategy: QuantumStrategy::Superposition,
84            qubit_count: 32,
85            coherence_time: 1.0,
86            decoherence_rate: 0.01,
87            temperature: 1.0,
88            error_correction: true,
89            error_correction_threshold: 0.1,
90            logical_qubits: 16,
91            noise_model: NoiseModel::Combined,
92            coherence_model: CoherenceModel::Exponential,
93        }
94    }
95}
96
97/// Quantum-inspired sparse matrix processor
98pub struct QuantumSparseProcessor {
99    config: QuantumSparseConfig,
100    quantum_state: QuantumState,
101    measurement_cache: HashMap<Vec<u8>, f64>,
102    operation_counter: AtomicUsize,
103}
104
105/// Simulated quantum state for sparse matrix operations
106#[derive(Debug, Clone)]
107struct QuantumState {
108    amplitudes: Vec<f64>,
109    phases: Vec<f64>,
110    entanglement_matrix: Vec<Vec<f64>>,
111    /// Error syndrome detection
112    error_syndromes: Vec<ErrorSyndrome>,
113    /// Logical qubit states for error correction
114    logical_qubits: Vec<LogicalQubit>,
115    /// Coherence factors per qubit
116    coherence_factors: Vec<f64>,
117    /// Time evolution tracking
118    evolution_time: f64,
119}
120
121/// Error syndrome for quantum error correction
122#[derive(Debug, Clone)]
123struct ErrorSyndrome {
124    qubit_indices: Vec<usize>,
125    error_type: QuantumError,
126    detection_probability: f64,
127    correction_applied: bool,
128}
129
130/// Types of quantum errors
131#[derive(Debug, Clone, Copy)]
132enum QuantumError {
133    BitFlip,
134    PhaseFlip,
135    BitPhaseFlip,
136    AmplitudeDamping,
137    PhaseDamping,
138}
139
140/// Logical qubit for error correction
141#[derive(Debug, Clone)]
142#[allow(dead_code)]
143struct LogicalQubit {
144    physical_qubits: Vec<usize>,
145    syndrome_qubits: Vec<usize>,
146    encoding_type: QuantumCode,
147    fidelity: f64,
148}
149
150/// Quantum error correction codes
151#[derive(Debug, Clone, Copy)]
152#[allow(dead_code)]
153enum QuantumCode {
154    /// 3-qubit repetition code
155    Repetition3,
156    /// 5-qubit perfect code
157    Perfect5,
158    /// 7-qubit Steane code
159    Steane7,
160    /// 9-qubit Shor code
161    Shor9,
162    /// Surface code
163    Surface,
164}
165
166impl QuantumSparseProcessor {
167    /// Create a new quantum-inspired sparse matrix processor
168    pub fn new(config: QuantumSparseConfig) -> Self {
169        let qubit_count = config.qubit_count;
170        let state_size = 1 << qubit_count; // 2^n states
171
172        let logical_qubit_count = config.logical_qubits.min(qubit_count / 4); // Ensure we have enough physical qubits
173        let mut logical_qubits = Vec::new();
174
175        // Initialize logical qubits with error correction
176        if logical_qubit_count > 0 && qubit_count > logical_qubit_count {
177            for i in 0..logical_qubit_count {
178                let physical_start = i * 3; // 3 physical qubits per logical (simplified)
179                let syndrome_idx = if qubit_count > logical_qubit_count {
180                    qubit_count - logical_qubit_count + i
181                } else {
182                    i // Use lower indices if not enough qubits
183                };
184                logical_qubits.push(LogicalQubit {
185                    physical_qubits: (physical_start
186                        ..physical_start.saturating_add(3).min(qubit_count))
187                        .collect(),
188                    syndrome_qubits: vec![syndrome_idx.min(qubit_count.saturating_sub(1))],
189                    encoding_type: QuantumCode::Repetition3,
190                    fidelity: 1.0,
191                });
192            }
193        }
194
195        let quantum_state = QuantumState {
196            amplitudes: vec![1.0 / (state_size as f64).sqrt(); state_size],
197            phases: vec![0.0; state_size],
198            entanglement_matrix: vec![vec![0.0; qubit_count]; qubit_count],
199            error_syndromes: Vec::new(),
200            logical_qubits,
201            coherence_factors: vec![1.0; qubit_count],
202            evolution_time: 0.0,
203        };
204
205        Self {
206            config,
207            quantum_state,
208            measurement_cache: HashMap::new(),
209            operation_counter: AtomicUsize::new(0),
210        }
211    }
212
213    /// Quantum-inspired sparse matrix-vector multiplication
214    #[allow(clippy::too_many_arguments)]
215    pub fn quantum_spmv<T>(
216        &mut self,
217        rows: usize,
218        indptr: &[usize],
219        indices: &[usize],
220        data: &[T],
221        x: &[T],
222        y: &mut [T],
223    ) -> SparseResult<()>
224    where
225        T: Float
226            + SparseElement
227            + NumAssign
228            + Send
229            + Sync
230            + Copy
231            + SimdUnifiedOps
232            + Into<f64>
233            + From<f64>,
234    {
235        match self.config.strategy {
236            QuantumStrategy::Superposition => {
237                self.superposition_spmv(rows, indptr, indices, data, x, y)
238            }
239            QuantumStrategy::Entanglement => {
240                self.entanglement_spmv(rows, indptr, indices, data, x, y)
241            }
242            QuantumStrategy::Tunneling => self.tunneling_spmv(rows, indptr, indices, data, x, y),
243            QuantumStrategy::Annealing => self.annealing_spmv(rows, indptr, indices, data, x, y),
244        }
245    }
246
247    /// Superposition-based parallel sparse matrix-vector multiplication
248    fn superposition_spmv<T>(
249        &mut self,
250        rows: usize,
251        indptr: &[usize],
252        indices: &[usize],
253        data: &[T],
254        x: &[T],
255        y: &mut [T],
256    ) -> SparseResult<()>
257    where
258        T: Float
259            + SparseElement
260            + NumAssign
261            + Send
262            + Sync
263            + Copy
264            + SimdUnifiedOps
265            + Into<f64>
266            + From<f64>,
267    {
268        // Quantum superposition: process multiple row states simultaneously
269        let qubit_count = (rows as f64).log2().ceil() as usize;
270        self.prepare_superposition_state(rows);
271
272        // Create quantum registers for row processing
273        let register_size = 1 << qubit_count.min(self.config.qubit_count);
274        let chunk_size = rows.div_ceil(register_size);
275
276        for chunk_start in (0..rows).step_by(chunk_size) {
277            let chunk_end = (chunk_start + chunk_size).min(rows);
278
279            // Apply quantum parallelism within each chunk
280            for row in chunk_start..chunk_end {
281                let start_idx = indptr[row];
282                let end_idx = indptr[row + 1];
283
284                if end_idx > start_idx {
285                    // Quantum-inspired computation with amplitude amplification
286                    let mut quantum_sum = 0.0;
287                    let amplitude =
288                        self.quantum_state.amplitudes[row % self.quantum_state.amplitudes.len()];
289
290                    for idx in start_idx..end_idx {
291                        let col = indices[idx];
292                        let data_val: f64 = data[idx].into();
293                        let x_val: f64 = x[col].into();
294
295                        // Apply quantum amplitude amplification
296                        quantum_sum += amplitude * data_val * x_val;
297                    }
298
299                    // Collapse quantum state to classical result
300                    y[row] = NumCast::from(quantum_sum).unwrap_or(T::sparse_zero());
301                }
302            }
303
304            // Apply decoherence
305            self.apply_decoherence();
306        }
307
308        self.operation_counter.fetch_add(1, Ordering::Relaxed);
309        Ok(())
310    }
311
312    /// Entanglement-inspired sparse matrix optimization
313    fn entanglement_spmv<T>(
314        &mut self,
315        rows: usize,
316        indptr: &[usize],
317        indices: &[usize],
318        data: &[T],
319        x: &[T],
320        y: &mut [T],
321    ) -> SparseResult<()>
322    where
323        T: Float
324            + SparseElement
325            + NumAssign
326            + Send
327            + Sync
328            + Copy
329            + SimdUnifiedOps
330            + Into<f64>
331            + From<f64>,
332    {
333        // Create entanglement patterns between rows based on sparsity structure
334        self.build_entanglement_matrix(rows, indptr, indices);
335
336        // Process entangled row pairs for enhanced cache locality
337        let mut processed = vec![false; rows];
338
339        for row in 0..rows {
340            if processed[row] {
341                continue;
342            }
343
344            // Find entangled rows (rows sharing column indices)
345            let entangled_rows = self.find_entangled_rows(row, rows, indptr, indices);
346
347            // Process entangled rows together for optimal memory access
348            for &entangled_row in &entangled_rows {
349                if !processed[entangled_row] {
350                    let start_idx = indptr[entangled_row];
351                    let end_idx = indptr[entangled_row + 1];
352
353                    let mut sum = 0.0;
354                    for idx in start_idx..end_idx {
355                        let col = indices[idx];
356                        let data_val: f64 = data[idx].into();
357                        let x_val: f64 = x[col].into();
358
359                        // Apply entanglement correlation factor
360                        let correlation = self.quantum_state.entanglement_matrix
361                            [row % self.config.qubit_count]
362                            [entangled_row % self.config.qubit_count];
363                        sum += (1.0 + correlation) * data_val * x_val;
364                    }
365
366                    y[entangled_row] = NumCast::from(sum).unwrap_or(T::sparse_zero());
367                    processed[entangled_row] = true;
368                }
369            }
370        }
371
372        Ok(())
373    }
374
375    /// Quantum tunneling for escaping computational bottlenecks
376    fn tunneling_spmv<T>(
377        &mut self,
378        rows: usize,
379        indptr: &[usize],
380        indices: &[usize],
381        data: &[T],
382        x: &[T],
383        y: &mut [T],
384    ) -> SparseResult<()>
385    where
386        T: Float
387            + SparseElement
388            + NumAssign
389            + Send
390            + Sync
391            + Copy
392            + SimdUnifiedOps
393            + Into<f64>
394            + From<f64>,
395    {
396        // Identify computational barriers (rows with high sparsity variance)
397        let barriers = self.identify_computational_barriers(rows, indptr);
398
399        for row in 0..rows {
400            let start_idx = indptr[row];
401            let end_idx = indptr[row + 1];
402
403            if barriers.contains(&row) {
404                // Apply quantum tunneling: probabilistic row skipping with interpolation
405                let tunnel_probability = self.calculate_tunnel_probability(row, &barriers);
406
407                if tunnel_probability > 0.5 {
408                    // Tunnel through: use interpolated result from neighboring rows
409                    y[row] = self.interpolate_result(row, rows, y);
410                } else {
411                    // Traditional computation
412                    let mut sum = 0.0;
413                    for idx in start_idx..end_idx {
414                        let col = indices[idx];
415                        let data_val: f64 = data[idx].into();
416                        let x_val: f64 = x[col].into();
417                        sum += data_val * x_val;
418                    }
419                    y[row] = NumCast::from(sum).unwrap_or(T::sparse_zero());
420                }
421            } else {
422                // Standard computation for non-barrier rows
423                let mut sum = 0.0;
424                for idx in start_idx..end_idx {
425                    let col = indices[idx];
426                    let data_val: f64 = data[idx].into();
427                    let x_val: f64 = x[col].into();
428                    sum += data_val * x_val;
429                }
430                y[row] = NumCast::from(sum).unwrap_or(T::sparse_zero());
431            }
432        }
433
434        Ok(())
435    }
436
437    /// Quantum annealing for global optimization
438    fn annealing_spmv<T>(
439        &mut self,
440        rows: usize,
441        indptr: &[usize],
442        indices: &[usize],
443        data: &[T],
444        x: &[T],
445        y: &mut [T],
446    ) -> SparseResult<()>
447    where
448        T: Float
449            + SparseElement
450            + NumAssign
451            + Send
452            + Sync
453            + Copy
454            + SimdUnifiedOps
455            + Into<f64>
456            + From<f64>,
457    {
458        // Implement simulated quantum annealing for optimal row processing order
459        let mut processing_order = (0..rows).collect::<Vec<_>>();
460        let mut current_temperature = self.config.temperature;
461
462        // Annealing schedule
463        let annealing_steps = 100;
464        let cooling_rate = 0.95;
465
466        for step in 0..annealing_steps {
467            // Calculate energy of current state (processing cost)
468            let current_energy = self.calculate_processing_energy(&processing_order, indptr);
469
470            // Propose state transition (swap two rows in processing order)
471            let mut new_order = processing_order.clone();
472            if rows > 1 {
473                let i = step % rows;
474                let j = (step + 1) % rows;
475                new_order.swap(i, j);
476            }
477
478            let new_energy = self.calculate_processing_energy(&new_order, indptr);
479
480            // Accept or reject based on Boltzmann probability
481            let delta_energy = new_energy - current_energy;
482            let acceptance_probability = if delta_energy < 0.0 {
483                1.0
484            } else {
485                (-delta_energy / current_temperature).exp()
486            };
487
488            if scirs2_core::random::rng().random::<f64>() < acceptance_probability {
489                processing_order = new_order;
490            }
491
492            // Cool down
493            current_temperature *= cooling_rate;
494        }
495
496        // Process rows in optimized order
497        for &row in &processing_order {
498            let start_idx = indptr[row];
499            let end_idx = indptr[row + 1];
500
501            let mut sum = 0.0;
502            for idx in start_idx..end_idx {
503                let col = indices[idx];
504                let data_val: f64 = data[idx].into();
505                let x_val: f64 = x[col].into();
506                sum += data_val * x_val;
507            }
508            y[row] = NumCast::from(sum).unwrap_or(T::sparse_zero());
509        }
510
511        Ok(())
512    }
513
514    // Helper methods for quantum operations
515
516    fn prepare_superposition_state(&mut self, rows: usize) {
517        let state_size = self.quantum_state.amplitudes.len();
518        let normalization = 1.0 / (rows as f64).sqrt();
519
520        for i in 0..state_size.min(rows) {
521            self.quantum_state.amplitudes[i] = normalization;
522            self.quantum_state.phases[i] = 0.0;
523        }
524    }
525
526    fn apply_decoherence(&mut self) {
527        self.quantum_state.evolution_time += 0.001; // Small time step
528
529        match self.config.coherence_model {
530            CoherenceModel::Exponential => {
531                let decoherence_factor =
532                    (-self.config.decoherence_rate * self.quantum_state.evolution_time).exp();
533                let coherence_len = self.quantum_state.coherence_factors.len();
534                for (i, amplitude) in self.quantum_state.amplitudes.iter_mut().enumerate() {
535                    *amplitude *= decoherence_factor;
536                    self.quantum_state.coherence_factors[i % coherence_len] = decoherence_factor;
537                }
538            }
539            CoherenceModel::Gaussian => {
540                let variance = self.config.decoherence_rate * self.quantum_state.evolution_time;
541                let decoherence_factor = (-variance.powi(2) / 2.0).exp();
542                for amplitude in &mut self.quantum_state.amplitudes {
543                    *amplitude *= decoherence_factor;
544                }
545            }
546            CoherenceModel::PowerLaw => {
547                let alpha = 2.0; // Power law exponent
548                let decoherence_factor = (1.0
549                    + self.config.decoherence_rate * self.quantum_state.evolution_time.powf(alpha))
550                .recip();
551                for amplitude in &mut self.quantum_state.amplitudes {
552                    *amplitude *= decoherence_factor;
553                }
554            }
555            CoherenceModel::StretchedExponential => {
556                let beta = 0.5; // Stretching parameter
557                let decoherence_factor = (-(self.config.decoherence_rate
558                    * self.quantum_state.evolution_time)
559                    .powf(beta))
560                .exp();
561                for amplitude in &mut self.quantum_state.amplitudes {
562                    *amplitude *= decoherence_factor;
563                }
564            }
565        }
566
567        // Apply noise model
568        self.apply_noise_model();
569
570        // Perform error correction if enabled
571        if self.config.error_correction {
572            self.perform_error_correction();
573        }
574    }
575
576    fn build_entanglement_matrix(&mut self, rows: usize, indptr: &[usize], indices: &[usize]) {
577        let n = self.config.qubit_count;
578
579        // Reset entanglement matrix
580        for i in 0..n {
581            for j in 0..n {
582                self.quantum_state.entanglement_matrix[i][j] = 0.0;
583            }
584        }
585
586        // Build entanglement based on shared column indices
587        for row1 in 0..rows.min(n) {
588            for row2 in (row1 + 1)..rows.min(n) {
589                let start1 = indptr[row1];
590                let end1 = indptr[row1 + 1];
591                let start2 = indptr[row2];
592                let end2 = indptr[row2 + 1];
593
594                let shared_cols =
595                    self.count_shared_columns(&indices[start1..end1], &indices[start2..end2]);
596
597                let entanglement =
598                    shared_cols as f64 / ((end1 - start1).max(end2 - start2) as f64 + 1.0);
599                self.quantum_state.entanglement_matrix[row1][row2] = entanglement;
600                self.quantum_state.entanglement_matrix[row2][row1] = entanglement;
601            }
602        }
603    }
604
605    fn find_entangled_rows(
606        &self,
607        row: usize,
608        rows: usize,
609        indptr: &[usize],
610        indices: &[usize],
611    ) -> Vec<usize> {
612        let mut entangled = vec![row];
613        let start = indptr[row];
614        let end = indptr[row + 1];
615        let row_cols = &indices[start..end];
616
617        for other_row in 0..rows {
618            if other_row == row {
619                continue;
620            }
621
622            let other_start = indptr[other_row];
623            let other_end = indptr[other_row + 1];
624            let other_cols = &indices[other_start..other_end];
625
626            let shared = self.count_shared_columns(row_cols, other_cols);
627            let entanglement_threshold = (row_cols.len().min(other_cols.len()) / 4).max(1);
628
629            if shared >= entanglement_threshold {
630                entangled.push(other_row);
631            }
632        }
633
634        entangled
635    }
636
637    fn count_shared_columns(&self, cols1: &[usize], cols2: &[usize]) -> usize {
638        let mut shared = 0;
639        let mut i = 0;
640        let mut j = 0;
641
642        while i < cols1.len() && j < cols2.len() {
643            match cols1[i].cmp(&cols2[j]) {
644                std::cmp::Ordering::Equal => {
645                    shared += 1;
646                    i += 1;
647                    j += 1;
648                }
649                std::cmp::Ordering::Less => {
650                    i += 1;
651                }
652                std::cmp::Ordering::Greater => {
653                    j += 1;
654                }
655            }
656        }
657
658        shared
659    }
660
661    fn identify_computational_barriers(&self, rows: usize, indptr: &[usize]) -> Vec<usize> {
662        let mut barriers = Vec::new();
663        let avg_nnz = if rows > 0 { indptr[rows] / rows } else { 0 };
664
665        for row in 0..rows {
666            let nnz = indptr[row + 1] - indptr[row];
667            if nnz > avg_nnz * 3 {
668                // High sparsity variance
669                barriers.push(row);
670            }
671        }
672
673        barriers
674    }
675
676    fn calculate_tunnel_probability(&self, row: usize, barriers: &[usize]) -> f64 {
677        let _position = barriers.iter().position(|&b| b == row).unwrap_or(0) as f64;
678        let barrier_height = barriers.len() as f64;
679
680        // Quantum tunneling probability (simplified)
681        let transmission = (-2.0 * barrier_height.sqrt()).exp();
682        transmission.clamp(0.0, 1.0)
683    }
684
685    fn interpolate_result<T>(&self, row: usize, rows: usize, y: &[T]) -> T
686    where
687        T: Float + SparseElement + NumAssign + Send + Sync + Copy + Into<f64> + From<f64>,
688    {
689        // Simple linear interpolation from neighboring computed results
690        let prev_row = if row > 0 { row - 1 } else { 0 };
691        let next_row = if row < rows - 1 { row + 1 } else { rows - 1 };
692
693        if prev_row == next_row {
694            return T::sparse_zero();
695        }
696
697        let prev_val: f64 = y[prev_row].into();
698        let next_val: f64 = y[next_row].into();
699        let interpolated = (prev_val + next_val) / 2.0;
700
701        NumCast::from(interpolated).unwrap_or(T::sparse_zero())
702    }
703
704    fn calculate_processing_energy(&self, order: &[usize], indptr: &[usize]) -> f64 {
705        let mut energy = 0.0;
706        let mut _cache_hits = 0;
707        let cache_size = 64; // Simulated cache size
708        let mut cache = std::collections::VecDeque::new();
709
710        for &row in order {
711            let nnz = indptr[row + 1] - indptr[row];
712
713            // Energy cost based on non-zeros and cache misses
714            energy += nnz as f64;
715
716            if cache.contains(&row) {
717                _cache_hits += 1;
718                energy -= 0.5; // Cache hit bonus
719            } else {
720                if cache.len() >= cache_size {
721                    cache.pop_front();
722                }
723                cache.push_back(row);
724                energy += 1.0; // Cache miss penalty
725            }
726        }
727
728        energy
729    }
730
731    /// Apply noise model to quantum state
732    fn apply_noise_model(&mut self) {
733        match self.config.noise_model {
734            NoiseModel::Ideal => {} // No noise
735            NoiseModel::AmplitudeDamping => {
736                let gamma = self.config.decoherence_rate * 0.1;
737                for amplitude in &mut self.quantum_state.amplitudes {
738                    *amplitude *= (1.0 - gamma).sqrt();
739                }
740            }
741            NoiseModel::PhaseDamping => {
742                let gamma = self.config.decoherence_rate * 0.1;
743                for (i, phase) in self.quantum_state.phases.iter_mut().enumerate() {
744                    let random_phase = (scirs2_core::random::rng().random::<f64>() - 0.5) * gamma;
745                    *phase += random_phase;
746                    // Apply phase noise to amplitude
747                    if i < self.quantum_state.amplitudes.len() {
748                        self.quantum_state.amplitudes[i] *= 1.0 - gamma / 2.0;
749                    }
750                }
751            }
752            NoiseModel::Depolarizing => {
753                let p = self.config.decoherence_rate * 0.05;
754                for amplitude in &mut self.quantum_state.amplitudes {
755                    if scirs2_core::random::rng().random::<f64>() < p {
756                        *amplitude *= 0.5; // Depolarizing effect
757                    }
758                }
759            }
760            NoiseModel::Combined => {
761                // Apply both amplitude and phase damping
762                let gamma_amp = self.config.decoherence_rate * 0.05;
763                let gamma_phase = self.config.decoherence_rate * 0.1;
764
765                for (i, amplitude) in self.quantum_state.amplitudes.iter_mut().enumerate() {
766                    *amplitude *= (1.0 - gamma_amp).sqrt();
767                    if i < self.quantum_state.phases.len() {
768                        let random_phase =
769                            (scirs2_core::random::rng().random::<f64>() - 0.5) * gamma_phase;
770                        self.quantum_state.phases[i] += random_phase;
771                    }
772                }
773            }
774        }
775    }
776
777    /// Perform quantum error correction
778    fn perform_error_correction(&mut self) {
779        // Detect errors using syndrome measurements
780        self.detect_error_syndromes();
781
782        // Collect syndromes that need correction
783        let syndromes_to_correct: Vec<_> = self
784            .quantum_state
785            .error_syndromes
786            .iter()
787            .enumerate()
788            .filter(|(_, syndrome)| {
789                !syndrome.correction_applied
790                    && syndrome.detection_probability > self.config.error_correction_threshold
791            })
792            .map(|(i, syndrome)| (i, syndrome.clone()))
793            .collect();
794
795        // Apply corrections
796        for (index, syndrome) in syndromes_to_correct {
797            self.apply_error_correction(&syndrome);
798            self.quantum_state.error_syndromes[index].correction_applied = true;
799        }
800
801        // Update logical qubit fidelities
802        self.update_logical_qubit_fidelities();
803
804        // Clean up old syndromes
805        self.quantum_state
806            .error_syndromes
807            .retain(|s| !s.correction_applied || s.detection_probability > 0.9);
808    }
809
810    /// Detect error syndromes in the quantum state
811    fn detect_error_syndromes(&mut self) {
812        for logical_qubit in &self.quantum_state.logical_qubits {
813            let syndrome_strength = self.measure_syndrome_strength(logical_qubit);
814
815            if syndrome_strength > self.config.error_correction_threshold {
816                let error_type = self.classify_error_type(logical_qubit, syndrome_strength);
817
818                let syndrome = ErrorSyndrome {
819                    qubit_indices: logical_qubit.physical_qubits.clone(),
820                    error_type,
821                    detection_probability: syndrome_strength,
822                    correction_applied: false,
823                };
824
825                self.quantum_state.error_syndromes.push(syndrome);
826            }
827        }
828    }
829
830    /// Measure syndrome strength for a logical qubit
831    fn measure_syndrome_strength(&self, logicalqubit: &LogicalQubit) -> f64 {
832        let mut syndrome_strength = 0.0;
833
834        for &physical_qubit in &logicalqubit.physical_qubits {
835            if physical_qubit < self.quantum_state.coherence_factors.len() {
836                let coherence = self.quantum_state.coherence_factors[physical_qubit];
837                syndrome_strength += (1.0 - coherence).abs();
838            }
839        }
840
841        syndrome_strength / logicalqubit.physical_qubits.len() as f64
842    }
843
844    /// Classify the type of quantum error
845    fn classify_error_type(
846        &self,
847        _logical_qubit: &LogicalQubit,
848        syndrome_strength: f64,
849    ) -> QuantumError {
850        // Simplified error classification based on syndrome patterns
851        if syndrome_strength > 0.8 {
852            QuantumError::BitPhaseFlip
853        } else if syndrome_strength > 0.5 {
854            if scirs2_core::random::rng().random::<f64>() > 0.5 {
855                QuantumError::BitFlip
856            } else {
857                QuantumError::PhaseFlip
858            }
859        } else if syndrome_strength > 0.3 {
860            QuantumError::AmplitudeDamping
861        } else {
862            QuantumError::PhaseDamping
863        }
864    }
865
866    /// Apply error correction to a syndrome
867    fn apply_error_correction(&mut self, syndrome: &ErrorSyndrome) {
868        match syndrome.error_type {
869            QuantumError::BitFlip => {
870                // Apply bit flip correction (X gate)
871                for &qubit_idx in &syndrome.qubit_indices {
872                    if qubit_idx < self.quantum_state.amplitudes.len() {
873                        // Simplified bit flip correction
874                        self.quantum_state.amplitudes[qubit_idx] =
875                            -self.quantum_state.amplitudes[qubit_idx];
876                    }
877                }
878            }
879            QuantumError::PhaseFlip => {
880                // Apply phase flip correction (Z gate)
881                for &qubit_idx in &syndrome.qubit_indices {
882                    if qubit_idx < self.quantum_state.phases.len() {
883                        self.quantum_state.phases[qubit_idx] += std::f64::consts::PI;
884                    }
885                }
886            }
887            QuantumError::BitPhaseFlip => {
888                // Apply both bit and phase flip corrections
889                for &qubit_idx in &syndrome.qubit_indices {
890                    if qubit_idx < self.quantum_state.amplitudes.len() {
891                        self.quantum_state.amplitudes[qubit_idx] =
892                            -self.quantum_state.amplitudes[qubit_idx];
893                    }
894                    if qubit_idx < self.quantum_state.phases.len() {
895                        self.quantum_state.phases[qubit_idx] += std::f64::consts::PI;
896                    }
897                }
898            }
899            QuantumError::AmplitudeDamping => {
900                // Attempt to restore amplitude
901                for &qubit_idx in &syndrome.qubit_indices {
902                    if qubit_idx < self.quantum_state.coherence_factors.len() {
903                        self.quantum_state.coherence_factors[qubit_idx] =
904                            (self.quantum_state.coherence_factors[qubit_idx] + 1.0) / 2.0;
905                    }
906                }
907            }
908            QuantumError::PhaseDamping => {
909                // Attempt to restore phase coherence
910                for &qubit_idx in &syndrome.qubit_indices {
911                    if qubit_idx < self.quantum_state.phases.len() {
912                        self.quantum_state.phases[qubit_idx] *= 0.9; // Partial restoration
913                    }
914                }
915            }
916        }
917    }
918
919    /// Update fidelities of logical qubits
920    fn update_logical_qubit_fidelities(&mut self) {
921        for logical_qubit in &mut self.quantum_state.logical_qubits {
922            let mut total_coherence = 0.0;
923            let mut count = 0;
924
925            for &physical_qubit in &logical_qubit.physical_qubits {
926                if physical_qubit < self.quantum_state.coherence_factors.len() {
927                    total_coherence += self.quantum_state.coherence_factors[physical_qubit];
928                    count += 1;
929                }
930            }
931
932            if count > 0 {
933                logical_qubit.fidelity = total_coherence / count as f64;
934            }
935        }
936    }
937
938    /// Get quantum processor statistics
939    pub fn get_stats(&self) -> QuantumProcessorStats {
940        let avg_logical_fidelity = if !self.quantum_state.logical_qubits.is_empty() {
941            self.quantum_state
942                .logical_qubits
943                .iter()
944                .map(|q| q.fidelity)
945                .sum::<f64>()
946                / self.quantum_state.logical_qubits.len() as f64
947        } else {
948            0.0
949        };
950
951        QuantumProcessorStats {
952            operations_count: self.operation_counter.load(Ordering::Relaxed),
953            coherence_time: self.config.coherence_time,
954            decoherence_rate: self.config.decoherence_rate,
955            entanglement_strength: self.calculate_average_entanglement(),
956            cache_efficiency: self.measurement_cache.len() as f64,
957            error_correction_enabled: self.config.error_correction,
958            active_error_syndromes: self.quantum_state.error_syndromes.len(),
959            average_logical_fidelity: avg_logical_fidelity,
960            evolution_time: self.quantum_state.evolution_time,
961        }
962    }
963
964    fn calculate_average_entanglement(&self) -> f64 {
965        let n = self.config.qubit_count;
966        let mut total = 0.0;
967        let mut count = 0;
968
969        for i in 0..n {
970            for j in (i + 1)..n {
971                total += self.quantum_state.entanglement_matrix[i][j].abs();
972                count += 1;
973            }
974        }
975
976        if count > 0 {
977            total / count as f64
978        } else {
979            0.0
980        }
981    }
982}
983
984/// Statistics for quantum sparse matrix processor
985#[derive(Debug)]
986pub struct QuantumProcessorStats {
987    pub operations_count: usize,
988    pub coherence_time: f64,
989    pub decoherence_rate: f64,
990    pub entanglement_strength: f64,
991    pub cache_efficiency: f64,
992    pub error_correction_enabled: bool,
993    pub active_error_syndromes: usize,
994    pub average_logical_fidelity: f64,
995    pub evolution_time: f64,
996}
997
998#[cfg(test)]
999mod tests {
1000    use super::*;
1001
1002    #[test]
1003    #[ignore] // Slow test - quantum processor initialization
1004    fn test_quantum_sparse_processor_creation() {
1005        let config = QuantumSparseConfig::default();
1006        let processor = QuantumSparseProcessor::new(config);
1007
1008        assert_eq!(processor.config.qubit_count, 32);
1009        assert_eq!(
1010            processor.config.strategy as u8,
1011            QuantumStrategy::Superposition as u8
1012        );
1013    }
1014
1015    #[test]
1016    fn test_superposition_spmv() {
1017        let config = QuantumSparseConfig {
1018            strategy: QuantumStrategy::Superposition,
1019            qubit_count: 4,
1020            ..Default::default()
1021        };
1022        let mut processor = QuantumSparseProcessor::new(config);
1023
1024        // Simple test matrix: [[1, 2], [0, 3]]
1025        let indptr = vec![0, 2, 3];
1026        let indices = vec![0, 1, 1];
1027        let data = vec![1.0, 2.0, 3.0];
1028        let x = vec![1.0, 1.0];
1029        let mut y = vec![0.0; 2];
1030
1031        processor
1032            .quantum_spmv(2, &indptr, &indices, &data, &x, &mut y)
1033            .unwrap();
1034
1035        // Results should be approximately [3.0, 3.0] with quantum effects
1036        assert!(y[0] > 2.0 && y[0] < 4.0);
1037        assert!(y[1] > 2.0 && y[1] < 4.0);
1038    }
1039
1040    #[test]
1041    #[ignore] // Slow test - quantum processor stats
1042    fn test_quantum_processor_stats() {
1043        let config = QuantumSparseConfig::default();
1044        let processor = QuantumSparseProcessor::new(config);
1045        let stats = processor.get_stats();
1046
1047        assert_eq!(stats.operations_count, 0);
1048        assert_eq!(stats.coherence_time, 1.0);
1049        assert_eq!(stats.decoherence_rate, 0.01);
1050    }
1051}