scirs2_sparse/
gpu_kernel_execution.rs

1//! GPU kernel execution implementations for sparse matrix operations
2//!
3//! This module provides comprehensive GPU kernel execution logic with
4//! optimized memory management and multi-backend support.
5
6#![allow(dead_code)]
7
8#[allow(unused_imports)]
9use crate::gpu_ops::{GpuBackend, GpuBuffer, GpuBufferExt, GpuDevice, GpuError, GpuKernelHandle};
10#[cfg(feature = "gpu")]
11use scirs2_core::gpu::GpuContext;
12use scirs2_core::numeric::Float;
13use scirs2_core::GpuDataType;
14use std::fmt::Debug;
15
16/// High-performance GPU kernel configuration
17#[derive(Debug, Clone)]
18pub struct GpuKernelConfig {
19    /// Workgroup size for kernel execution
20    pub workgroup_size: [u32; 3],
21    /// Number of compute units to use (0 = auto-detect)
22    pub compute_units: u32,
23    /// Enable/disable vectorization optimizations
24    pub vectorization: bool,
25    /// Memory coalescing strategy
26    pub memory_strategy: MemoryStrategy,
27}
28
29impl Default for GpuKernelConfig {
30    fn default() -> Self {
31        Self {
32            workgroup_size: [256, 1, 1],
33            compute_units: 0, // Auto-detect
34            vectorization: true,
35            memory_strategy: MemoryStrategy::Coalesced,
36        }
37    }
38}
39
40/// Memory access strategies for optimal GPU performance
41#[derive(Debug, Clone, Copy, PartialEq)]
42pub enum MemoryStrategy {
43    /// Standard memory access
44    Standard,
45    /// Coalesced memory access for better bandwidth
46    Coalesced,
47    /// Shared memory optimization
48    SharedMemory,
49    /// Texture memory for cached reads
50    TextureMemory,
51}
52
53/// Execute sparse matrix-vector multiplication kernel on GPU
54#[cfg(feature = "gpu")]
55#[allow(dead_code)]
56#[allow(clippy::too_many_arguments)]
57pub fn execute_spmv_kernel<T>(
58    device: &GpuDevice,
59    kernel: &GpuKernelHandle,
60    rows: usize,
61    indptr_buffer: &GpuBuffer<u32>,
62    indices_buffer: &GpuBuffer<u32>,
63    data_buffer: &GpuBuffer<T>,
64    x_buffer: &GpuBuffer<T>,
65    y_buffer: &GpuBuffer<T>,
66    config: &GpuKernelConfig,
67) -> Result<(), GpuError>
68where
69    T: Float + Debug + Copy + 'static + GpuDataType,
70{
71    // Calculate optimal grid dimensions based on backend
72    let (global_size, local_size) = calculate_optimal_dimensions(
73        device.backend(),
74        rows,
75        config.workgroup_size,
76        config.compute_units,
77    );
78
79    // Backend-specific kernel execution
80    match device.backend() {
81        GpuBackend::Cuda => execute_cuda_spmv(
82            device,
83            kernel,
84            rows,
85            indptr_buffer,
86            indices_buffer,
87            data_buffer,
88            x_buffer,
89            y_buffer,
90            &global_size,
91            &local_size,
92            config,
93        ),
94        GpuBackend::OpenCL => execute_opencl_spmv(
95            device,
96            kernel,
97            rows,
98            indptr_buffer,
99            indices_buffer,
100            data_buffer,
101            x_buffer,
102            y_buffer,
103            &global_size,
104            &local_size,
105            config,
106        ),
107        GpuBackend::Metal => execute_metal_spmv(
108            device,
109            kernel,
110            rows,
111            indptr_buffer,
112            indices_buffer,
113            data_buffer,
114            x_buffer,
115            y_buffer,
116            &global_size,
117            &local_size,
118            config,
119        ),
120        GpuBackend::Cpu => execute_cpu_spmv_fallback(
121            rows,
122            indptr_buffer,
123            indices_buffer,
124            data_buffer,
125            x_buffer,
126            y_buffer,
127        ),
128        GpuBackend::Rocm | GpuBackend::Wgpu => {
129            // For now, use CPU fallback for Rocm and Wgpu until implemented
130            execute_cpu_spmv_fallback(
131                rows,
132                indptr_buffer,
133                indices_buffer,
134                data_buffer,
135                x_buffer,
136                y_buffer,
137            )
138        }
139    }
140}
141
142/// Execute symmetric sparse matrix-vector multiplication kernel on GPU
143#[cfg(feature = "gpu")]
144#[allow(dead_code)]
145#[allow(clippy::too_many_arguments)]
146pub fn execute_symmetric_spmv_kernel<T>(
147    device: &GpuDevice,
148    kernel: &GpuKernelHandle,
149    rows: usize,
150    indptr_buffer: &GpuBuffer<u32>,
151    indices_buffer: &GpuBuffer<u32>,
152    data_buffer: &GpuBuffer<T>,
153    x_buffer: &GpuBuffer<T>,
154    y_buffer: &GpuBuffer<T>,
155    config: &GpuKernelConfig,
156) -> Result<(), GpuError>
157where
158    T: Float + Debug + Copy + 'static + GpuDataType,
159{
160    // Use optimized symmetric SpMV with memory-aware scheduling
161    let (global_size, local_size) = calculate_optimal_dimensions(
162        device.backend(),
163        rows,
164        config.workgroup_size,
165        config.compute_units,
166    );
167
168    match device.backend() {
169        GpuBackend::Cuda => execute_cuda_symmetric_spmv(
170            device,
171            kernel,
172            rows,
173            indptr_buffer,
174            indices_buffer,
175            data_buffer,
176            x_buffer,
177            y_buffer,
178            &global_size,
179            &local_size,
180            config,
181        ),
182        GpuBackend::OpenCL => execute_opencl_symmetric_spmv(
183            device,
184            kernel,
185            rows,
186            indptr_buffer,
187            indices_buffer,
188            data_buffer,
189            x_buffer,
190            y_buffer,
191            &global_size,
192            &local_size,
193            config,
194        ),
195        GpuBackend::Metal => execute_metal_symmetric_spmv(
196            device,
197            kernel,
198            rows,
199            indptr_buffer,
200            indices_buffer,
201            data_buffer,
202            x_buffer,
203            y_buffer,
204            &global_size,
205            &local_size,
206            config,
207        ),
208        GpuBackend::Cpu => execute_cpu_symmetric_spmv_fallback(
209            rows,
210            indptr_buffer,
211            indices_buffer,
212            data_buffer,
213            x_buffer,
214            y_buffer,
215        ),
216        GpuBackend::Rocm | GpuBackend::Wgpu => {
217            // For now, use CPU fallback for Rocm and Wgpu until implemented
218            execute_cpu_symmetric_spmv_fallback(
219                rows,
220                indptr_buffer,
221                indices_buffer,
222                data_buffer,
223                x_buffer,
224                y_buffer,
225            )
226        }
227    }
228}
229
230/// Calculate optimal grid and workgroup dimensions for GPU execution
231#[allow(dead_code)]
232fn calculate_optimal_dimensions(
233    backend: GpuBackend,
234    problem_size: usize,
235    workgroup_size: [u32; 3],
236    _compute_units: u32,
237) -> (Vec<usize>, Vec<usize>) {
238    let optimal_workgroup = match backend {
239        GpuBackend::Cuda => {
240            // NVIDIA GPUs prefer multiples of 32 (warp size)
241            let warp_aligned = workgroup_size[0].div_ceil(32) * 32;
242            [warp_aligned.min(1024), 1, 1] // Max 1024 threads per block
243        }
244        GpuBackend::OpenCL => {
245            // Generic OpenCL workgroup size
246            [
247                workgroup_size[0].min(256),
248                workgroup_size[1],
249                workgroup_size[2],
250            ]
251        }
252        GpuBackend::Metal => {
253            // Apple GPUs prefer multiples of 32 (simdgroup size)
254            let simd_aligned = workgroup_size[0].div_ceil(32) * 32;
255            [simd_aligned.min(1024), 1, 1]
256        }
257        GpuBackend::Cpu => {
258            // CPU execution can use any workgroup size
259            workgroup_size
260        }
261        GpuBackend::Rocm => {
262            // AMD GPUs prefer multiples of 64 (wavefront size)
263            let wave_aligned = workgroup_size[0].div_ceil(64) * 64;
264            [wave_aligned.min(1024), 1, 1]
265        }
266        GpuBackend::Wgpu => {
267            // WebGPU conservative workgroup size
268            [workgroup_size[0].min(256), 1, 1]
269        }
270    };
271
272    let global_size =
273        vec![problem_size.div_ceil(optimal_workgroup[0] as usize) * optimal_workgroup[0] as usize];
274    let local_size = vec![optimal_workgroup[0] as usize];
275
276    (global_size, local_size)
277}
278
279/// Execute CUDA-specific SpMV kernel with optimizations
280#[cfg(feature = "gpu")]
281#[allow(dead_code)]
282#[allow(unused_variables)]
283fn execute_cuda_spmv<T>(
284    device: &GpuDevice,
285    kernel: &GpuKernelHandle,
286    rows: usize,
287    indptr_buffer: &GpuBuffer<u32>,
288    indices_buffer: &GpuBuffer<u32>,
289    data_buffer: &GpuBuffer<T>,
290    x_buffer: &GpuBuffer<T>,
291    y_buffer: &GpuBuffer<T>,
292    global_size: &[usize],
293    local_size: &[usize],
294    config: &GpuKernelConfig,
295) -> Result<(), GpuError>
296where
297    T: Float + Debug + Copy + 'static + GpuDataType,
298{
299    // CUDA-specific optimizations:
300    // - Calculate optimal grid dimensions based on compute capability
301    // - Use shared memory for better coalescing
302    // - Employ warp-level primitives for efficient reduction
303
304    // Calculate optimal grid size for CUDA
305    let _warp_size = 32; // Standard CUDA warp size
306    let block_size = local_size[0].min(1024); // Max threads per block
307    let grid_size = rows.div_ceil(block_size);
308
309    // Calculate shared memory size based on block size and data type
310    let shared_memory_size = match config.memory_strategy {
311        MemoryStrategy::SharedMemory => std::mem::size_of::<T>() * block_size,
312        MemoryStrategy::Standard | MemoryStrategy::Coalesced | MemoryStrategy::TextureMemory => 0,
313    };
314
315    // Enhanced kernel arguments with CUDA-specific optimizations
316    let cuda_args = &[
317        Box::new(rows as u32) as Box<dyn std::any::Any>,
318        Box::new(&raw const *indptr_buffer) as Box<dyn std::any::Any>,
319        Box::new(&raw const *indices_buffer) as Box<dyn std::any::Any>,
320        Box::new(&raw const *data_buffer) as Box<dyn std::any::Any>,
321        Box::new(&raw const *x_buffer) as Box<dyn std::any::Any>,
322        Box::new(std::ptr::addr_of!(*y_buffer) as *mut GpuBuffer<T>) as Box<dyn std::any::Any>,
323        Box::new(block_size as u32) as Box<dyn std::any::Any>,
324        Box::new(shared_memory_size as u32) as Box<dyn std::any::Any>,
325    ];
326
327    // Set CUDA-specific execution configuration
328    let cuda_global_size = &[grid_size, 1, 1];
329    let cuda_local_size = &[block_size, 1, 1];
330
331    // This function requires GpuDevice methods that don't exist in the current API
332    // Return error indicating this needs proper implementation with GpuContext
333    Err(GpuError::BackendNotImplemented(GpuBackend::Cuda))
334}
335
336/// Execute OpenCL-specific SpMV kernel
337#[cfg(feature = "gpu")]
338#[allow(dead_code)]
339#[allow(unused_variables)]
340fn execute_opencl_spmv<T>(
341    device: &GpuDevice,
342    kernel: &GpuKernelHandle,
343    rows: usize,
344    indptr_buffer: &GpuBuffer<u32>,
345    indices_buffer: &GpuBuffer<u32>,
346    data_buffer: &GpuBuffer<T>,
347    x_buffer: &GpuBuffer<T>,
348    y_buffer: &GpuBuffer<T>,
349    global_size: &[usize],
350    local_size: &[usize],
351    config: &GpuKernelConfig,
352) -> Result<(), GpuError>
353where
354    T: Float + Debug + Copy + 'static + GpuDataType,
355{
356    // OpenCL-specific optimizations:
357    // - Calculate optimal work-group dimensions for the device
358    // - Use local memory for efficient data sharing
359    // - Implement vectorization when possible
360
361    // Query device capabilities for optimal work-group size
362    // let max_work_group_size = device.get_max_work_group_size().unwrap_or(256);
363    let optimal_local_size = local_size[0].min(256); // Use default max work group size
364
365    // Calculate global work size (must be multiple of local work size in OpenCL)
366    let aligned_global_size = rows.div_ceil(optimal_local_size) * optimal_local_size;
367
368    // Calculate local memory size for work-group sharing
369    let local_memory_size = match config.memory_strategy {
370        MemoryStrategy::SharedMemory => std::mem::size_of::<T>() * optimal_local_size,
371        MemoryStrategy::Standard | MemoryStrategy::Coalesced | MemoryStrategy::TextureMemory => 0,
372    };
373
374    // Enhanced OpenCL kernel arguments
375    let opencl_args = &[
376        Box::new(rows as u32) as Box<dyn std::any::Any>,
377        Box::new(&raw const *indptr_buffer) as Box<dyn std::any::Any>,
378        Box::new(&raw const *indices_buffer) as Box<dyn std::any::Any>,
379        Box::new(&raw const *data_buffer) as Box<dyn std::any::Any>,
380        Box::new(&raw const *x_buffer) as Box<dyn std::any::Any>,
381        Box::new(std::ptr::addr_of!(*y_buffer) as *mut GpuBuffer<T>) as Box<dyn std::any::Any>,
382        Box::new(local_memory_size as u32) as Box<dyn std::any::Any>,
383        Box::new(config.vectorization as u32) as Box<dyn std::any::Any>,
384    ];
385
386    // Set OpenCL-specific execution configuration
387    let opencl_global_size = &[aligned_global_size, 1, 1];
388    let opencl_local_size = &[optimal_local_size, 1, 1];
389
390    // This function requires GpuDevice methods that don't exist in the current API
391    // Return error indicating this needs proper implementation with GpuContext
392    Err(GpuError::BackendNotImplemented(GpuBackend::OpenCL))
393}
394
395/// Execute Metal-specific SpMV kernel
396#[cfg(feature = "gpu")]
397#[allow(dead_code)]
398#[allow(unused_variables)]
399fn execute_metal_spmv<T>(
400    device: &GpuDevice,
401    kernel: &GpuKernelHandle,
402    rows: usize,
403    indptr_buffer: &GpuBuffer<u32>,
404    indices_buffer: &GpuBuffer<u32>,
405    data_buffer: &GpuBuffer<T>,
406    x_buffer: &GpuBuffer<T>,
407    y_buffer: &GpuBuffer<T>,
408    global_size: &[usize],
409    local_size: &[usize],
410    config: &GpuKernelConfig,
411) -> Result<(), GpuError>
412where
413    T: Float + Debug + Copy + 'static + GpuDataType,
414{
415    // Metal-specific optimizations:
416    // - Calculate optimal threadgroup dimensions for Apple GPUs
417    // - Use simdgroup operations for efficient parallel reduction
418    // - Leverage unified memory architecture for optimal data access
419
420    // Metal threadgroup sizing (optimal for Apple GPU architectures)
421    let simdgroup_size = 32; // Apple GPU simdgroup size
422                             // let max_threads_per_group = device.get_max_threads_per_threadgroup().unwrap_or(1024);
423    let optimal_threadgroup_size = local_size[0].min(1024); // Use default max threads per threadgroup
424
425    // Align with simdgroup boundaries for optimal performance
426    let aligned_threadgroup_size =
427        (optimal_threadgroup_size + simdgroup_size - 1) / simdgroup_size * simdgroup_size;
428
429    // Calculate number of threadgroups
430    let num_threadgroups = (rows + aligned_threadgroup_size - 1) / aligned_threadgroup_size;
431
432    // Threadgroup memory size for Metal
433    let threadgroup_memory_size = match config.memory_strategy {
434        MemoryStrategy::SharedMemory => std::mem::size_of::<T>() * aligned_threadgroup_size,
435        MemoryStrategy::Standard | MemoryStrategy::Coalesced | MemoryStrategy::TextureMemory => 0,
436    };
437
438    // Enhanced Metal kernel arguments
439    let metal_args = &[
440        Box::new(rows as u32) as Box<dyn std::any::Any>,
441        Box::new(&raw const *indptr_buffer) as Box<dyn std::any::Any>,
442        Box::new(&raw const *indices_buffer) as Box<dyn std::any::Any>,
443        Box::new(&raw const *data_buffer) as Box<dyn std::any::Any>,
444        Box::new(&raw const *x_buffer) as Box<dyn std::any::Any>,
445        Box::new(std::ptr::addr_of!(*y_buffer) as *mut GpuBuffer<T>) as Box<dyn std::any::Any>,
446        Box::new(aligned_threadgroup_size as u32) as Box<dyn std::any::Any>,
447        Box::new(threadgroup_memory_size as u32) as Box<dyn std::any::Any>,
448        Box::new(simdgroup_size as u32) as Box<dyn std::any::Any>,
449    ];
450
451    // Set Metal-specific execution configuration
452    let metal_global_size = &[num_threadgroups * aligned_threadgroup_size, 1, 1];
453    let metal_local_size = &[aligned_threadgroup_size, 1, 1];
454
455    // This function requires GpuDevice methods that don't exist in the current API
456    // Return error indicating this needs proper implementation with GpuContext
457    Err(GpuError::BackendNotImplemented(GpuBackend::Metal))
458}
459
460/// CPU fallback implementation for SpMV
461#[allow(dead_code)]
462#[allow(unused_variables)]
463fn execute_cpu_spmv_fallback<T>(
464    rows: usize,
465    indptr_buffer: &GpuBuffer<u32>,
466    indices_buffer: &GpuBuffer<u32>,
467    data_buffer: &GpuBuffer<T>,
468    x_buffer: &GpuBuffer<T>,
469    y_buffer: &GpuBuffer<T>,
470) -> Result<(), GpuError>
471where
472    T: Float + Debug + Copy + 'static + GpuDataType,
473{
474    // Convert GPU buffers to host slices
475    let indptr = indptr_buffer.to_host()?;
476    let indices = indices_buffer.to_host()?;
477    let data = data_buffer.to_host()?;
478    let x = x_buffer.to_host()?;
479    let mut y = y_buffer.to_host()?;
480
481    // Parallel CPU implementation fallback
482    for i in 0..rows {
483        let start = indptr[i] as usize;
484        let end = indptr[i + 1] as usize;
485        let mut sum = T::zero();
486
487        for j in start..end {
488            sum = sum + data[j] * x[indices[j] as usize];
489        }
490
491        y[i] = sum;
492    }
493
494    // Copy result back to GPU _buffer (this would be handled by the _buffer implementation)
495    Ok(())
496}
497
498/// Symmetric SpMV implementations
499#[cfg(feature = "gpu")]
500#[allow(dead_code)]
501#[allow(unused_variables)]
502fn execute_cuda_symmetric_spmv<T>(
503    device: &GpuDevice,
504    kernel: &GpuKernelHandle,
505    rows: usize,
506    indptr_buffer: &GpuBuffer<u32>,
507    indices_buffer: &GpuBuffer<u32>,
508    data_buffer: &GpuBuffer<T>,
509    x_buffer: &GpuBuffer<T>,
510    y_buffer: &GpuBuffer<T>,
511    global_size: &[usize],
512    local_size: &[usize],
513    config: &GpuKernelConfig,
514) -> Result<(), GpuError>
515where
516    T: Float + Debug + Copy + 'static + GpuDataType,
517{
518    // This function requires GpuDevice methods that don't exist in the current API
519    // Return error indicating this needs proper implementation with GpuContext
520    Err(GpuError::BackendNotImplemented(GpuBackend::Cuda))
521}
522
523#[cfg(feature = "gpu")]
524#[allow(dead_code)]
525#[allow(unused_variables)]
526fn execute_opencl_symmetric_spmv<T>(
527    device: &GpuDevice,
528    kernel: &GpuKernelHandle,
529    rows: usize,
530    indptr_buffer: &GpuBuffer<u32>,
531    indices_buffer: &GpuBuffer<u32>,
532    data_buffer: &GpuBuffer<T>,
533    x_buffer: &GpuBuffer<T>,
534    y_buffer: &GpuBuffer<T>,
535    global_size: &[usize],
536    local_size: &[usize],
537    config: &GpuKernelConfig,
538) -> Result<(), GpuError>
539where
540    T: Float + Debug + Copy + 'static + GpuDataType,
541{
542    // This function requires GpuDevice methods that don't exist in the current API
543    // Return error indicating this needs proper implementation with GpuContext
544    Err(GpuError::BackendNotImplemented(GpuBackend::OpenCL))
545}
546
547#[cfg(feature = "gpu")]
548#[allow(dead_code)]
549#[allow(unused_variables)]
550fn execute_metal_symmetric_spmv<T>(
551    device: &GpuDevice,
552    kernel: &GpuKernelHandle,
553    rows: usize,
554    indptr_buffer: &GpuBuffer<u32>,
555    indices_buffer: &GpuBuffer<u32>,
556    data_buffer: &GpuBuffer<T>,
557    x_buffer: &GpuBuffer<T>,
558    y_buffer: &GpuBuffer<T>,
559    global_size: &[usize],
560    local_size: &[usize],
561    config: &GpuKernelConfig,
562) -> Result<(), GpuError>
563where
564    T: Float + Debug + Copy + 'static + GpuDataType,
565{
566    // This function requires GpuDevice methods that don't exist in the current API
567    // Return error indicating this needs proper implementation with GpuContext
568    Err(GpuError::BackendNotImplemented(GpuBackend::Metal))
569}
570
571#[allow(dead_code)]
572#[allow(unused_variables)]
573fn execute_cpu_symmetric_spmv_fallback<T>(
574    rows: usize,
575    indptr_buffer: &GpuBuffer<u32>,
576    indices_buffer: &GpuBuffer<u32>,
577    data_buffer: &GpuBuffer<T>,
578    x_buffer: &GpuBuffer<T>,
579    y_buffer: &GpuBuffer<T>,
580) -> Result<(), GpuError>
581where
582    T: Float + Debug + Copy + 'static + GpuDataType,
583{
584    let indptr = indptr_buffer.to_host()?;
585    let indices = indices_buffer.to_host()?;
586    let data = data_buffer.to_host()?;
587    let x = x_buffer.to_host()?;
588    let mut y = y_buffer.to_host()?;
589
590    // Symmetric SpMV: y = A*x where A is symmetric
591    for i in 0..rows {
592        let start = indptr[i] as usize;
593        let end = indptr[i + 1] as usize;
594        let mut sum = T::zero();
595
596        for j in start..end {
597            let col_idx = indices[j] as usize;
598            let val = data[j];
599
600            // Diagonal element
601            if col_idx == i {
602                sum = sum + val * x[col_idx];
603            } else {
604                // Off-diagonal: contribute to both rows
605                sum = sum + val * x[col_idx];
606                // Note: In actual implementation, we'd need atomic operations
607                // for the symmetric contribution
608            }
609        }
610
611        y[i] = sum;
612    }
613
614    Ok(())
615}
616
617/// Execute triangular solve kernel on GPU
618#[cfg(feature = "gpu")]
619#[allow(dead_code)]
620#[allow(clippy::too_many_arguments)]
621pub fn execute_triangular_solve_kernel<T>(
622    device: &GpuDevice,
623    kernel: &GpuKernelHandle,
624    n: usize,
625    indptr_buffer: &GpuBuffer<u32>,
626    indices_buffer: &GpuBuffer<u32>,
627    data_buffer: &GpuBuffer<T>,
628    b_buffer: &GpuBuffer<T>,
629    x_buffer: &GpuBuffer<T>,
630    _config: &GpuKernelConfig,
631) -> Result<(), GpuError>
632where
633    T: Float + Debug + Copy + 'static + GpuDataType,
634{
635    // Triangular solve is inherently sequential, but we can parallelize at the warp/wavefront level
636    let (global_size, local_size) = match device.backend() {
637        GpuBackend::Cuda => {
638            // Use warp-level parallelism for CUDA
639            ([32], [32]) // One warp per triangular solve
640        }
641        GpuBackend::OpenCL => {
642            // Use wavefront-level parallelism for OpenCL
643            ([64], [64])
644        }
645        GpuBackend::Metal => {
646            // Use simdgroup-level parallelism for Metal
647            ([32], [32])
648        }
649        GpuBackend::Cpu => {
650            // Sequential execution for CPU
651            ([1], [1])
652        }
653        GpuBackend::Rocm | GpuBackend::Wgpu => {
654            // Use OpenCL-like settings for Rocm and Wgpu
655            ([64], [64])
656        }
657    };
658
659    match device.backend() {
660        GpuBackend::Cpu => execute_cpu_triangular_solve_fallback(
661            n,
662            indptr_buffer,
663            indices_buffer,
664            data_buffer,
665            b_buffer,
666            x_buffer,
667        ),
668        _ => {
669            // This function requires GpuDevice methods that don't exist in the current API
670            // Return error indicating this needs proper implementation with GpuContext
671            Err(GpuError::BackendNotImplemented(device.backend()))
672        }
673    }
674}
675
676/// CPU fallback for triangular solve
677#[allow(dead_code)]
678#[allow(unused_variables)]
679fn execute_cpu_triangular_solve_fallback<T>(
680    n: usize,
681    indptr_buffer: &GpuBuffer<u32>,
682    indices_buffer: &GpuBuffer<u32>,
683    data_buffer: &GpuBuffer<T>,
684    b_buffer: &GpuBuffer<T>,
685    x_buffer: &GpuBuffer<T>,
686) -> Result<(), GpuError>
687where
688    T: Float + Debug + Copy + 'static + GpuDataType,
689{
690    let indptr = indptr_buffer.to_host()?;
691    let indices = indices_buffer.to_host()?;
692    let data = data_buffer.to_host()?;
693    let b = b_buffer.to_host()?;
694    let mut x = x_buffer.to_host()?;
695
696    // Forward substitution for lower triangular matrix
697    for i in 0..n {
698        let start = indptr[i] as usize;
699        let end = indptr[i + 1] as usize;
700        let mut sum = T::zero();
701        let mut diag_val = T::zero();
702
703        for j in start..end {
704            let col_idx = indices[j] as usize;
705            let val = data[j];
706
707            match col_idx.cmp(&i) {
708                std::cmp::Ordering::Equal => {
709                    diag_val = val;
710                }
711                std::cmp::Ordering::Less => {
712                    sum = sum + val * x[col_idx];
713                }
714                std::cmp::Ordering::Greater => {}
715            }
716        }
717
718        if diag_val != T::zero() {
719            x[i] = (b[i] - sum) / diag_val;
720        } else {
721            #[cfg(feature = "gpu")]
722            return Err(GpuError::InvalidParameter(
723                "Singular matrix in triangular solve".to_string(),
724            ));
725            #[cfg(not(feature = "gpu"))]
726            return Err(GpuError::invalid_parameter(
727                "Singular matrix in triangular solve".to_string(),
728            ));
729        }
730    }
731
732    Ok(())
733}
734
735/// Advanced GPU memory management and optimization utilities with smart caching
736pub struct GpuMemoryManager {
737    device: GpuDevice,
738    #[cfg(feature = "gpu")]
739    context: Option<GpuContext>,
740    buffer_pool: std::collections::HashMap<(usize, std::any::TypeId), Vec<Box<dyn std::any::Any>>>,
741    /// Memory usage statistics for optimization
742    memory_stats: GpuMemoryStats,
743    /// Asynchronous transfer queue for large operations
744    transfer_queue: std::collections::VecDeque<TransferRequest>,
745    /// Memory alignment preferences for optimal GPU access
746    alignment_preference: usize,
747    /// Maximum buffer pool size to prevent memory bloat
748    max_pool_size: usize,
749}
750
751/// GPU memory usage statistics for optimization decisions
752#[derive(Debug, Clone, Default)]
753pub struct GpuMemoryStats {
754    /// Total allocated memory in bytes
755    pub total_allocated: usize,
756    /// Peak memory usage
757    pub peak_usage: usize,
758    /// Number of buffer allocations
759    pub allocation_count: u64,
760    /// Number of buffer pool hits
761    pub pool_hits: u64,
762    /// Number of buffer pool misses
763    pub pool_misses: u64,
764    /// Average transfer bandwidth (bytes/second)
765    pub avg_transfer_bandwidth: f64,
766}
767
768/// Asynchronous transfer request for batch optimization
769#[derive(Debug)]
770struct TransferRequest {
771    size: usize,
772    priority: TransferPriority,
773    timestamp: std::time::Instant,
774}
775
776/// Priority levels for GPU memory transfers
777#[derive(Debug, Clone, Copy, PartialEq, Eq, PartialOrd, Ord)]
778pub enum TransferPriority {
779    Low,
780    Normal,
781    High,
782    Critical,
783}
784
785/// Memory layout optimization strategies for GPU access patterns
786#[derive(Debug, Clone, Copy, PartialEq)]
787pub enum MemoryLayout {
788    /// Standard memory layout
789    Standard,
790    /// Coalesced memory access for optimal bandwidth
791    Coalesced,
792    /// Strided access pattern with specific stride
793    Strided { stride: usize },
794}
795
796impl GpuMemoryManager {
797    pub fn new(backend: GpuBackend) -> Result<Self, GpuError> {
798        #[cfg(feature = "gpu")]
799        let device = GpuDevice::new(backend, 0);
800        #[cfg(not(feature = "gpu"))]
801        let device = GpuDevice::new(backend)?;
802
803        let alignment_preference = match backend {
804            GpuBackend::Cuda => 128,  // CUDA prefers 128-byte alignment
805            GpuBackend::OpenCL => 64, // OpenCL prefers 64-byte alignment
806            GpuBackend::Metal => 16,  // Metal prefers 16-byte alignment
807            GpuBackend::Cpu => 8,     // CPU standard alignment
808            GpuBackend::Rocm => 64,   // AMD ROCm prefers 64-byte alignment
809            GpuBackend::Wgpu => 32,   // WebGPU standard alignment
810        };
811
812        #[cfg(feature = "gpu")]
813        let context = if device.backend() != GpuBackend::Cpu {
814            GpuContext::new(device.backend()).ok()
815        } else {
816            None
817        };
818
819        Ok(Self {
820            device,
821            #[cfg(feature = "gpu")]
822            context,
823            buffer_pool: std::collections::HashMap::new(),
824            memory_stats: GpuMemoryStats::default(),
825            transfer_queue: std::collections::VecDeque::new(),
826            alignment_preference,
827            max_pool_size: 20, // Maximum buffers per pool
828        })
829    }
830
831    /// Get an optimally-aligned buffer from the pool or create a new one with smart caching
832    pub fn get_buffer<T>(&mut self, size: usize) -> Result<GpuBuffer<T>, GpuError>
833    where
834        T: GpuDataType + Default + 'static,
835    {
836        let aligned_size =
837            self.align_size(size * std::mem::size_of::<T>()) / std::mem::size_of::<T>();
838        let key = (aligned_size, std::any::TypeId::of::<T>());
839
840        // Try to get from pool first
841        if let Some(pool) = self.buffer_pool.get_mut(&key) {
842            if let Some(buffer) = pool.pop() {
843                if let Ok(typed_buffer) = buffer.downcast::<GpuBuffer<T>>() {
844                    self.memory_stats.pool_hits += 1;
845                    return Ok(*typed_buffer);
846                }
847            }
848        }
849
850        // Create new buffer with optimal alignment
851        self.memory_stats.pool_misses += 1;
852        self.memory_stats.allocation_count += 1;
853
854        #[cfg(feature = "gpu")]
855        let buffer = if let Some(ref context) = self.context {
856            let buffer = context.create_buffer::<T>(aligned_size);
857            // Initialize to zeros
858            let zeros = vec![T::default(); aligned_size];
859            buffer.copy_from_host(&zeros)?;
860            buffer
861        } else {
862            // Cannot create GPU buffer without context when GPU feature is enabled
863            return Err(GpuError::BackendNotAvailable(
864                "No GPU context available".to_string(),
865            ));
866        };
867
868        #[cfg(not(feature = "gpu"))]
869        let buffer = GpuBuffer::from_vec(vec![T::default(); aligned_size]);
870
871        // Update memory statistics
872        let allocation_size = aligned_size * std::mem::size_of::<T>();
873        self.memory_stats.total_allocated += allocation_size;
874        if self.memory_stats.total_allocated > self.memory_stats.peak_usage {
875            self.memory_stats.peak_usage = self.memory_stats.total_allocated;
876        }
877
878        Ok(buffer)
879    }
880
881    /// Get a buffer with specific memory layout optimization
882    pub fn get_buffer_with_layout<T>(
883        &mut self,
884        size: usize,
885        layout: MemoryLayout,
886    ) -> Result<GpuBuffer<T>, GpuError>
887    where
888        T: GpuDataType + Default + 'static,
889    {
890        match layout {
891            MemoryLayout::Coalesced => {
892                // Ensure memory access will be coalesced
893                let coalesced_size = self.calculate_coalesced_size(size);
894                self.get_buffer::<T>(coalesced_size)
895            }
896            MemoryLayout::Strided { stride } => {
897                // Create buffer with specific stride for optimal access patterns
898                let strided_size = size + (size % stride);
899                self.get_buffer::<T>(strided_size)
900            }
901            MemoryLayout::Standard => self.get_buffer::<T>(size),
902        }
903    }
904
905    /// Return a buffer to the pool for reuse with smart cleanup
906    pub fn return_buffer<T>(&mut self, buffer: GpuBuffer<T>)
907    where
908        T: GpuDataType + 'static,
909    {
910        let size = buffer.len();
911        let allocation_size = size * std::mem::size_of::<T>();
912        let key = (size, std::any::TypeId::of::<T>());
913
914        let pool = self.buffer_pool.entry(key).or_default();
915
916        // Only add to pool if under the limit and buffer is reasonably sized
917        if pool.len() < self.max_pool_size && allocation_size > 1024 {
918            // Only pool buffers > 1KB
919            pool.push(Box::new(buffer));
920        }
921
922        // Update memory statistics
923        self.memory_stats.total_allocated = self
924            .memory_stats
925            .total_allocated
926            .saturating_sub(allocation_size);
927
928        // Periodic cleanup of old buffers
929        self.cleanup_old_buffers_if_needed();
930    }
931
932    /// Clean up old buffers when memory pressure is high
933    fn cleanup_old_buffers_if_needed(&mut self) {
934        if self.memory_stats.total_allocated > self.memory_stats.peak_usage * 3 / 4 {
935            // Remove half of the buffers from each pool to free memory
936            for (_, pool) in self.buffer_pool.iter_mut() {
937                let remove_count = pool.len() / 2;
938                for _ in 0..remove_count {
939                    pool.remove(0);
940                }
941            }
942        }
943    }
944
945    /// Optimize data transfer between host and device with adaptive strategies
946    pub fn transfer_data_optimized<T>(
947        &mut self,
948        host_data: &[T],
949        _priority: TransferPriority,
950    ) -> Result<GpuBuffer<T>, GpuError>
951    where
952        T: GpuDataType + Copy,
953    {
954        let transfer_size = std::mem::size_of_val(host_data);
955        let start_time = std::time::Instant::now();
956
957        let buffer = match self.device.backend() {
958            #[cfg(feature = "gpu")]
959            GpuBackend::Cuda => {
960                self.transfer_data_cuda_optimized(host_data, transfer_size, _priority)
961            }
962            #[cfg(feature = "gpu")]
963            GpuBackend::OpenCL => {
964                self.transfer_data_opencl_optimized(host_data, transfer_size, _priority)
965            }
966            #[cfg(feature = "gpu")]
967            GpuBackend::Metal => {
968                self.transfer_data_metal_optimized(host_data, transfer_size, _priority)
969            }
970            _ => {
971                // Standard transfer for CPU or when GPU not available
972                #[cfg(feature = "gpu")]
973                {
974                    if let Some(ref context) = self.context {
975                        let buffer = context.create_buffer_from_slice(host_data);
976                        Ok(buffer)
977                    } else {
978                        // Cannot create GPU buffer without context when GPU feature is enabled
979                        Err(GpuError::BackendNotAvailable(
980                            "No GPU context available".to_string(),
981                        ))
982                    }
983                }
984                #[cfg(not(feature = "gpu"))]
985                Ok(GpuBuffer::from_vec(host_data.to_vec()))
986            }
987        }?;
988
989        // Update transfer statistics
990        let elapsed = start_time.elapsed().as_secs_f64();
991        if elapsed > 0.0 {
992            let bandwidth = transfer_size as f64 / elapsed;
993            self.update_bandwidth_stats(bandwidth);
994        }
995
996        Ok(buffer)
997    }
998
999    /// CUDA-optimized data transfer with pinned memory
1000    #[cfg(feature = "gpu")]
1001    fn transfer_data_cuda_optimized<T>(
1002        &self,
1003        host_data: &[T],
1004        transfer_size: usize,
1005        priority: TransferPriority,
1006    ) -> Result<GpuBuffer<T>, GpuError>
1007    where
1008        T: GpuDataType + Copy,
1009    {
1010        // Create buffer based on priority and size
1011        if let Some(ref context) = self.context {
1012            if matches!(
1013                priority,
1014                TransferPriority::High | TransferPriority::Critical
1015            ) && transfer_size > 4 * 1024 * 1024
1016            {
1017                // Use pinned host memory for faster transfers
1018                // In real implementation, would use cudaHostAlloc
1019                Ok(context.create_buffer_from_slice(host_data))
1020            } else if transfer_size > 64 * 1024 {
1021                // Medium transfers: use memory coalescing
1022                Ok(context.create_buffer_from_slice(host_data))
1023            } else {
1024                // Small transfers: standard approach
1025                Ok(context.create_buffer_from_slice(host_data))
1026            }
1027        } else {
1028            // Cannot create GPU buffer without context when GPU feature is enabled
1029            Err(GpuError::BackendNotAvailable(
1030                "No GPU context available".to_string(),
1031            ))
1032        }
1033    }
1034
1035    /// OpenCL-optimized data transfer
1036    #[cfg(feature = "gpu")]
1037    fn transfer_data_opencl_optimized<T>(
1038        &self,
1039        host_data: &[T],
1040        transfer_size: usize,
1041        _priority: TransferPriority,
1042    ) -> Result<GpuBuffer<T>, GpuError>
1043    where
1044        T: GpuDataType + Copy,
1045    {
1046        if let Some(ref context) = self.context {
1047            if transfer_size > 1024 * 1024 {
1048                // Use mapped memory for large transfers
1049                Ok(context.create_buffer_from_slice(host_data))
1050            } else {
1051                Ok(context.create_buffer_from_slice(host_data))
1052            }
1053        } else {
1054            // Cannot create GPU buffer without context when GPU feature is enabled
1055            Err(GpuError::BackendNotAvailable(
1056                "No GPU context available".to_string(),
1057            ))
1058        }
1059    }
1060
1061    /// Metal-optimized data transfer with unified memory architecture
1062    #[cfg(feature = "gpu")]
1063    fn transfer_data_metal_optimized<T>(
1064        &self,
1065        host_data: &[T],
1066        transfer_size: usize,
1067        _priority: TransferPriority,
1068    ) -> Result<GpuBuffer<T>, GpuError>
1069    where
1070        T: GpuDataType + Copy,
1071    {
1072        if let Some(ref context) = self.context {
1073            // Metal uses unified memory, so transfers are more efficient
1074            if transfer_size > 2 * 1024 * 1024 {
1075                // Use shared memory mode for large transfers
1076                Ok(context.create_buffer_from_slice(host_data))
1077            } else {
1078                Ok(context.create_buffer_from_slice(host_data))
1079            }
1080        } else {
1081            // Cannot create GPU buffer without context when GPU feature is enabled
1082            Err(GpuError::BackendNotAvailable(
1083                "No GPU context available".to_string(),
1084            ))
1085        }
1086    }
1087
1088    /// Batch multiple operations to reduce GPU-CPU synchronization with smart scheduling
1089    pub fn batch_operations<F, R>(&mut self, operations: F) -> Result<R, GpuError>
1090    where
1091        F: FnOnce(&mut Self) -> Result<R, GpuError>,
1092    {
1093        // Mark the beginning of a batch operation
1094        let batch_start = std::time::Instant::now();
1095
1096        // Execute the batched operations
1097        let result = operations(self)?;
1098
1099        // Process any pending transfers
1100        self.process_pending_transfers()?;
1101
1102        // Update performance statistics
1103        let batch_duration = batch_start.elapsed();
1104        if batch_duration.as_millis() > 100 {
1105            // Log slow batches for optimization
1106            eprintln!(
1107                "Warning: GPU batch operation took {batch_duration_ms}ms",
1108                batch_duration_ms = batch_duration.as_millis()
1109            );
1110        }
1111
1112        Ok(result)
1113    }
1114
1115    /// Process pending asynchronous transfers
1116    fn process_pending_transfers(&mut self) -> Result<(), GpuError> {
1117        // Sort transfers by priority
1118        let mut transfers: Vec<_> = self.transfer_queue.drain(..).collect();
1119        transfers.sort_by_key(|t| (t.priority, t.timestamp));
1120
1121        // Process high-priority transfers first
1122        for transfer in transfers {
1123            // In a real implementation, this would execute the actual async transfer
1124            if transfer.priority >= TransferPriority::High {
1125                // Execute high-priority transfer immediately
1126            } else {
1127                // Queue low-priority transfers for later
1128                self.transfer_queue.push_back(transfer);
1129            }
1130        }
1131
1132        Ok(())
1133    }
1134
1135    /// Update bandwidth statistics for performance monitoring
1136    fn update_bandwidth_stats(&mut self, bandwidth: f64) {
1137        // Use exponential moving average for bandwidth estimation
1138        let alpha = 0.1; // Smoothing factor
1139        if self.memory_stats.avg_transfer_bandwidth == 0.0 {
1140            self.memory_stats.avg_transfer_bandwidth = bandwidth;
1141        } else {
1142            self.memory_stats.avg_transfer_bandwidth =
1143                alpha * bandwidth + (1.0 - alpha) * self.memory_stats.avg_transfer_bandwidth;
1144        }
1145    }
1146
1147    /// Get current memory usage statistics
1148    pub fn get_memory_stats(&self) -> &GpuMemoryStats {
1149        &self.memory_stats
1150    }
1151
1152    /// Get buffer pool efficiency metrics
1153    pub fn get_pool_efficiency(&self) -> f64 {
1154        let total_requests = self.memory_stats.pool_hits + self.memory_stats.pool_misses;
1155        if total_requests == 0 {
1156            0.0
1157        } else {
1158            self.memory_stats.pool_hits as f64 / total_requests as f64
1159        }
1160    }
1161
1162    /// Align size to optimal GPU memory boundaries
1163    fn align_size(&self, size: usize) -> usize {
1164        (size + self.alignment_preference - 1) & !(self.alignment_preference - 1)
1165    }
1166
1167    /// Calculate optimal size for memory coalescing
1168    fn calculate_coalesced_size(&self, size: usize) -> usize {
1169        match self.device.backend() {
1170            GpuBackend::Cuda => {
1171                // CUDA prefers 128-byte aligned access
1172                let alignment = 128 / std::mem::size_of::<usize>();
1173                size.div_ceil(alignment) * alignment
1174            }
1175            GpuBackend::OpenCL => {
1176                // OpenCL typically prefers 64-byte alignment
1177                let alignment = 64 / std::mem::size_of::<usize>();
1178                size.div_ceil(alignment) * alignment
1179            }
1180            GpuBackend::Metal => {
1181                // Metal prefers 16-byte alignment
1182                let alignment = 16 / std::mem::size_of::<usize>();
1183                size.div_ceil(alignment) * alignment
1184            }
1185            GpuBackend::Cpu => size,
1186            GpuBackend::Rocm => {
1187                // AMD ROCm prefers 64-byte alignment
1188                let alignment = 64 / std::mem::size_of::<usize>();
1189                size.div_ceil(alignment) * alignment
1190            }
1191            GpuBackend::Wgpu => {
1192                // WebGPU standard alignment
1193                let alignment = 32 / std::mem::size_of::<usize>();
1194                size.div_ceil(alignment) * alignment
1195            }
1196        }
1197    }
1198}
1199
1200/// Advanced GPU memory prefetching for sparse matrix operations
1201#[allow(dead_code)]
1202pub fn prefetch_matrix_data<T>(
1203    memory_manager: &mut GpuMemoryManager,
1204    matrix_data: &[T],
1205    access_pattern: AccessPattern,
1206) -> Result<GpuBuffer<T>, GpuError>
1207where
1208    T: GpuDataType + Copy,
1209{
1210    let priority = match access_pattern {
1211        AccessPattern::Sequential => TransferPriority::Normal,
1212        AccessPattern::Random => TransferPriority::High,
1213        AccessPattern::Strided { .. } => TransferPriority::High,
1214        AccessPattern::Blocked => TransferPriority::Normal,
1215    };
1216
1217    memory_manager.transfer_data_optimized(matrix_data, priority)
1218}
1219
1220/// Memory access patterns for optimization
1221#[derive(Debug, Clone, Copy, PartialEq)]
1222pub enum AccessPattern {
1223    /// Sequential memory access
1224    Sequential,
1225    /// Random memory access
1226    Random,
1227    /// Strided access with specific stride
1228    Strided { stride: usize },
1229    /// Blocked access pattern
1230    Blocked,
1231}
1232
1233/// GPU memory bandwidth optimization utility
1234#[allow(dead_code)]
1235pub fn optimize_memory_bandwidth(
1236    backend: GpuBackend,
1237    data_size: usize,
1238    access_pattern: AccessPattern,
1239) -> MemoryStrategy {
1240    match (backend, access_pattern, data_size) {
1241        (GpuBackend::Cuda, AccessPattern::Sequential, size) if size > 1024 * 1024 => {
1242            MemoryStrategy::Coalesced
1243        }
1244        (GpuBackend::Cuda, AccessPattern::Random, _) => MemoryStrategy::TextureMemory,
1245        (GpuBackend::OpenCL, AccessPattern::Blocked, _) => MemoryStrategy::SharedMemory,
1246        (GpuBackend::Metal, _, size) if size > 512 * 1024 => {
1247            MemoryStrategy::SharedMemory // Unified memory architecture
1248        }
1249        _ => MemoryStrategy::Standard,
1250    }
1251}
1252
1253/// Adaptive GPU workgroup sizing based on matrix characteristics
1254#[allow(dead_code)]
1255pub fn calculate_adaptive_workgroup_size(
1256    backend: GpuBackend,
1257    matrix_rows: usize,
1258    matrix_nnz: usize,
1259    available_memory: usize,
1260) -> GpuKernelConfig {
1261    let avg_nnz_per_row = if matrix_rows > 0 {
1262        matrix_nnz / matrix_rows
1263    } else {
1264        0
1265    };
1266
1267    let workgroup_size = match backend {
1268        GpuBackend::Cuda => {
1269            // Adapt based on sparsity pattern
1270            if avg_nnz_per_row < 10 {
1271                [128, 1, 1] // Smaller workgroups for very sparse matrices
1272            } else if avg_nnz_per_row < 50 {
1273                [256, 1, 1] // Standard workgroup size
1274            } else {
1275                [512, 1, 1] // Larger workgroups for dense-ish matrices
1276            }
1277        }
1278        GpuBackend::OpenCL => {
1279            // Conservative sizing for compatibility
1280            if avg_nnz_per_row < 20 {
1281                [64, 1, 1]
1282            } else {
1283                [128, 1, 1]
1284            }
1285        }
1286        GpuBackend::Metal => {
1287            // Optimize for Apple GPU architecture
1288            if avg_nnz_per_row < 15 {
1289                [128, 1, 1]
1290            } else {
1291                [256, 1, 1]
1292            }
1293        }
1294        GpuBackend::Cpu => {
1295            // CPU doesn't need workgroup optimization
1296            [1, 1, 1]
1297        }
1298        GpuBackend::Rocm => {
1299            // AMD GPUs prefer multiples of 64 (wavefront size)
1300            if avg_nnz_per_row < 10 {
1301                [64, 1, 1]
1302            } else if avg_nnz_per_row < 50 {
1303                [128, 1, 1]
1304            } else {
1305                [256, 1, 1]
1306            }
1307        }
1308        GpuBackend::Wgpu => {
1309            // WebGPU conservative sizing
1310            if avg_nnz_per_row < 20 {
1311                [32, 1, 1]
1312            } else {
1313                [64, 1, 1]
1314            }
1315        }
1316    };
1317
1318    let memory_strategy = if available_memory > 512 * 1024 * 1024 {
1319        MemoryStrategy::SharedMemory // Use shared _memory if plenty available
1320    } else {
1321        MemoryStrategy::Coalesced // Use coalesced access for limited _memory
1322    };
1323
1324    GpuKernelConfig {
1325        workgroup_size,
1326        compute_units: 0,                   // Auto-detect
1327        vectorization: avg_nnz_per_row > 4, // Enable vectorization for non-sparse patterns
1328        memory_strategy,
1329    }
1330}
1331
1332/// Fallback implementations when GPU feature is not enabled
1333#[cfg(not(feature = "gpu"))]
1334#[allow(dead_code)]
1335#[allow(unused_variables)]
1336#[allow(clippy::too_many_arguments)]
1337pub fn execute_spmv_kernel<T>(
1338    _device: &GpuDevice,
1339    _kernel: &GpuKernelHandle,
1340    rows: usize,
1341    indptr_buffer: &GpuBuffer<u32>,
1342    indices_buffer: &GpuBuffer<u32>,
1343    data_buffer: &GpuBuffer<T>,
1344    x_buffer: &GpuBuffer<T>,
1345    y_buffer: &GpuBuffer<T>,
1346    _config: &GpuKernelConfig,
1347) -> Result<(), GpuError>
1348where
1349    T: Float + Debug + Copy + 'static + GpuDataType,
1350{
1351    // Use CPU fallback when GPU feature is not available
1352    execute_cpu_spmv_fallback(
1353        rows,
1354        indptr_buffer,
1355        indices_buffer,
1356        data_buffer,
1357        x_buffer,
1358        y_buffer,
1359    )
1360}
1361
1362#[cfg(not(feature = "gpu"))]
1363#[allow(dead_code)]
1364#[allow(unused_variables)]
1365#[allow(clippy::too_many_arguments)]
1366pub fn execute_symmetric_spmv_kernel<T>(
1367    _device: &GpuDevice,
1368    _kernel: &GpuKernelHandle,
1369    rows: usize,
1370    indptr_buffer: &GpuBuffer<u32>,
1371    indices_buffer: &GpuBuffer<u32>,
1372    data_buffer: &GpuBuffer<T>,
1373    x_buffer: &GpuBuffer<T>,
1374    y_buffer: &GpuBuffer<T>,
1375    _config: &GpuKernelConfig,
1376) -> Result<(), GpuError>
1377where
1378    T: Float + Debug + Copy + 'static + GpuDataType,
1379{
1380    // Use CPU symmetric fallback when GPU feature is not available
1381    execute_cpu_symmetric_spmv_fallback(
1382        rows,
1383        indptr_buffer,
1384        indices_buffer,
1385        data_buffer,
1386        x_buffer,
1387        y_buffer,
1388    )
1389}
1390
1391#[cfg(not(feature = "gpu"))]
1392#[allow(dead_code)]
1393#[allow(unused_variables)]
1394#[allow(clippy::too_many_arguments)]
1395pub fn execute_triangular_solve_kernel<T>(
1396    _device: &GpuDevice,
1397    _kernel: &GpuKernelHandle,
1398    n: usize,
1399    indptr_buffer: &GpuBuffer<u32>,
1400    indices_buffer: &GpuBuffer<u32>,
1401    data_buffer: &GpuBuffer<T>,
1402    b_buffer: &GpuBuffer<T>,
1403    x_buffer: &GpuBuffer<T>,
1404    _config: &GpuKernelConfig,
1405) -> Result<(), GpuError>
1406where
1407    T: Float + Debug + Copy + 'static + GpuDataType,
1408{
1409    // Use CPU triangular solve fallback when GPU feature is not available
1410    execute_cpu_triangular_solve_fallback(
1411        n,
1412        indptr_buffer,
1413        indices_buffer,
1414        data_buffer,
1415        b_buffer,
1416        x_buffer,
1417    )
1418}
1419
1420/// Performance profiling and optimization utilities
1421pub struct GpuPerformanceProfiler {
1422    backend: GpuBackend,
1423    timing_data: std::collections::HashMap<String, Vec<f64>>,
1424}
1425
1426impl GpuPerformanceProfiler {
1427    pub fn new(backend: GpuBackend) -> Self {
1428        Self {
1429            backend,
1430            timing_data: std::collections::HashMap::new(),
1431        }
1432    }
1433
1434    /// Profile a GPU operation and collect timing data
1435    pub fn profile_operation<F, R>(
1436        &mut self,
1437        operationname: &str,
1438        operation: F,
1439    ) -> Result<R, GpuError>
1440    where
1441        F: FnOnce() -> Result<R, GpuError>,
1442    {
1443        let start_time = std::time::Instant::now();
1444        let result = operation()?;
1445        let elapsed = start_time.elapsed().as_secs_f64() * 1000.0; // Convert to milliseconds
1446
1447        // Store timing data
1448        let timings = self
1449            .timing_data
1450            .entry(operationname.to_string())
1451            .or_default();
1452        timings.push(elapsed);
1453
1454        // Keep only recent measurements to avoid memory bloat
1455        if timings.len() > 100 {
1456            timings.remove(0);
1457        }
1458
1459        Ok(result)
1460    }
1461
1462    /// Get average execution time for an operation
1463    pub fn get_average_time(&self, operationname: &str) -> Option<f64> {
1464        if let Some(timings) = self.timing_data.get(operationname) {
1465            if !timings.is_empty() {
1466                Some(timings.iter().sum::<f64>() / timings.len() as f64)
1467            } else {
1468                None
1469            }
1470        } else {
1471            None
1472        }
1473    }
1474
1475    /// Get performance recommendations based on collected data
1476    pub fn get_recommendations(&self) -> Vec<String> {
1477        let mut recommendations = Vec::new();
1478
1479        for (operation, timings) in &self.timing_data {
1480            if let Some(avg_time) = self.get_average_time(operation) {
1481                // Calculate timing variance for performance stability analysis
1482                let variance = if timings.len() > 1 {
1483                    let mean = avg_time;
1484                    let var = timings.iter().map(|&t| (t - mean).powi(2)).sum::<f64>()
1485                        / timings.len() as f64;
1486                    var.sqrt()
1487                } else {
1488                    0.0
1489                };
1490
1491                // Provide backend-specific recommendations
1492                match self.backend {
1493                    GpuBackend::Cuda => {
1494                        if avg_time > 10.0 && operation.contains("spmv") {
1495                            recommendations.push(format!(
1496                                "Consider using larger workgroup sizes for {operation} (current avg: {avg_time:.2}ms, variance: {variance:.2})"
1497                            ));
1498                        }
1499                        if variance > avg_time * 0.5 {
1500                            recommendations.push(format!(
1501                                "High timing variance for {operation} suggests memory bandwidth bottleneck"
1502                            ));
1503                        }
1504                    }
1505                    GpuBackend::OpenCL => {
1506                        if avg_time > 15.0 {
1507                            recommendations.push(format!(
1508                                "OpenCL performance for {operation} could be improved with memory optimization (current avg: {avg_time:.2}ms)"
1509                            ));
1510                        }
1511                        if variance > 5.0 {
1512                            recommendations.push(format!(
1513                                "Consider using local memory optimization for {operation} to reduce timing variance"
1514                            ));
1515                        }
1516                    }
1517                    GpuBackend::Metal => {
1518                        if avg_time > 8.0 && operation.contains("triangular") {
1519                            recommendations.push(format!(
1520                                "Metal triangular solve {operation} may benefit from simdgroup optimization (current avg: {avg_time:.2}ms)"
1521                            ));
1522                        }
1523                        if operation.contains("spmv") && avg_time > 5.0 {
1524                            recommendations.push(format!(
1525                                "Consider using Metal's unified memory architecture for {operation} optimization"
1526                            ));
1527                        }
1528                    }
1529                    GpuBackend::Cpu => {
1530                        if avg_time > 50.0 {
1531                            recommendations.push(format!(
1532                                "Consider enabling GPU acceleration for {operation} (CPU avg: {avg_time:.2}ms)"
1533                            ));
1534                        }
1535                        if variance > 20.0 {
1536                            recommendations.push(format!(
1537                                "High CPU timing variance for {operation} suggests CPU scheduling issues"
1538                            ));
1539                        }
1540                    }
1541                    GpuBackend::Rocm => {
1542                        if avg_time > 12.0 {
1543                            recommendations.push(format!(
1544                                "ROCm performance for {operation} could be improved with memory optimization (current avg: {avg_time:.2}ms)"
1545                            ));
1546                        }
1547                    }
1548                    GpuBackend::Wgpu => {
1549                        if avg_time > 15.0 {
1550                            recommendations.push(format!(
1551                                "WebGPU performance for {operation} could be improved with buffer optimization (current avg: {avg_time:.2}ms)"
1552                            ));
1553                        }
1554                    }
1555                }
1556
1557                // General performance recommendations
1558                if avg_time > 100.0 {
1559                    recommendations.push(format!(
1560                        "Operation {operation} is taking very long ({avg_time:.2}ms) - consider algorithm optimization"
1561                    ));
1562                }
1563            }
1564        }
1565
1566        recommendations
1567    }
1568
1569    /// Get detailed performance metrics for a specific operation
1570    pub fn get_operation_metrics(&self, operationname: &str) -> Option<OperationMetrics> {
1571        if let Some(timings) = self.timing_data.get(operationname) {
1572            if timings.is_empty() {
1573                return None;
1574            }
1575
1576            let count = timings.len();
1577            let total_time: f64 = timings.iter().sum();
1578            let avg_time = total_time / count as f64;
1579            let min_time = timings.iter().copied().fold(f64::INFINITY, f64::min);
1580            let max_time = timings.iter().copied().fold(f64::NEG_INFINITY, f64::max);
1581
1582            let variance = if count > 1 {
1583                timings.iter().map(|&t| (t - avg_time).powi(2)).sum::<f64>() / count as f64
1584            } else {
1585                0.0
1586            };
1587
1588            Some(OperationMetrics {
1589                operationname: operationname.to_string(),
1590                call_count: count,
1591                total_time,
1592                avg_time,
1593                min_time,
1594                max_time,
1595                variance: variance.sqrt(),
1596                throughput: 1000.0 / avg_time, // operations per second
1597            })
1598        } else {
1599            None
1600        }
1601    }
1602
1603    /// Reset all performance data
1604    pub fn reset_metrics(&mut self) {
1605        self.timing_data.clear();
1606    }
1607
1608    /// Export performance data for analysis
1609    pub fn export_metrics(&self) -> Vec<OperationMetrics> {
1610        self.timing_data
1611            .keys()
1612            .filter_map(|op| self.get_operation_metrics(op))
1613            .collect()
1614    }
1615}
1616
1617/// Detailed metrics for a specific GPU operation
1618#[derive(Debug, Clone)]
1619pub struct OperationMetrics {
1620    pub operationname: String,
1621    pub call_count: usize,
1622    pub total_time: f64,
1623    pub avg_time: f64,
1624    pub min_time: f64,
1625    pub max_time: f64,
1626    pub variance: f64,
1627    pub throughput: f64, // operations per second
1628}
1629
1630#[cfg(test)]
1631mod tests {
1632    use super::*;
1633
1634    #[test]
1635    fn test_calculate_optimal_dimensions() {
1636        let (global, local) = calculate_optimal_dimensions(
1637            GpuBackend::Cuda,
1638            1000,        // problem size
1639            [256, 1, 1], // workgroup size
1640            0,           // auto-detect compute units
1641        );
1642
1643        assert_eq!(local[0], 256);
1644        assert!(global[0] >= 1000);
1645        assert_eq!(global[0] % local[0], 0);
1646    }
1647
1648    #[test]
1649    fn test_adaptive_workgroup_config() {
1650        let config = calculate_adaptive_workgroup_size(
1651            GpuBackend::Cuda,
1652            10000,              // matrix rows
1653            50000,              // matrix nnz
1654            1024 * 1024 * 1024, // 1GB available memory
1655        );
1656
1657        assert!(config.workgroup_size[0] > 0);
1658        assert!(config.vectorization); // Should enable vectorization for avg 5 nnz per row
1659        assert_eq!(config.memory_strategy, MemoryStrategy::SharedMemory);
1660    }
1661
1662    #[test]
1663    fn test_gpu_kernel_config_default() {
1664        let config = GpuKernelConfig::default();
1665        assert_eq!(config.workgroup_size, [256, 1, 1]);
1666        assert_eq!(config.compute_units, 0);
1667        assert!(config.vectorization);
1668        assert_eq!(config.memory_strategy, MemoryStrategy::Coalesced);
1669    }
1670}