scirs2_series/advanced_training_modules/
neural_ode.rs

1//! Neural Ordinary Differential Equations for continuous-time modeling
2//!
3//! This module implements Neural ODEs which model continuous-time dynamics
4//! using neural networks to define the derivative function in an ODE.
5
6use scirs2_core::ndarray::{Array1, Array2};
7use scirs2_core::numeric::{Float, FromPrimitive};
8use std::fmt::Debug;
9
10use crate::error::Result;
11
12/// Neural Ordinary Differential Equation (NODE) implementation
13#[derive(Debug)]
14pub struct NeuralODE<F: Float + Debug + scirs2_core::ndarray::ScalarOperand> {
15    /// Network parameters
16    parameters: Array2<F>,
17    /// Integration time steps
18    time_steps: Array1<F>,
19    /// ODE solver configuration
20    solver_config: ODESolverConfig<F>,
21    /// Network dimensions
22    input_dim: usize,
23    hidden_dim: usize,
24}
25
26/// Configuration for ODE solver
27#[derive(Debug, Clone)]
28pub struct ODESolverConfig<F: Float + Debug> {
29    /// Integration method
30    method: IntegrationMethod,
31    /// Step size
32    #[allow(dead_code)]
33    step_size: F,
34    /// Tolerance for adaptive methods
35    #[allow(dead_code)]
36    tolerance: F,
37}
38
39/// Integration methods for ODE solving
40#[derive(Debug, Clone)]
41pub enum IntegrationMethod {
42    /// Forward Euler method
43    Euler,
44    /// Fourth-order Runge-Kutta
45    RungeKutta4,
46    /// Adaptive Runge-Kutta-Fehlberg
47    RKF45,
48}
49
50impl<F: Float + Debug + Clone + FromPrimitive + scirs2_core::ndarray::ScalarOperand> NeuralODE<F> {
51    /// Create new Neural ODE
52    pub fn new(
53        input_dim: usize,
54        hidden_dim: usize,
55        time_steps: Array1<F>,
56        solver_config: ODESolverConfig<F>,
57    ) -> Self {
58        // Initialize network parameters
59        let total_params = input_dim * hidden_dim + hidden_dim * input_dim + 2 * hidden_dim;
60        let scale = F::from(2.0).unwrap() / F::from(input_dim).unwrap();
61        let std_dev = scale.sqrt();
62
63        let mut parameters = Array2::zeros((1, total_params));
64        for i in 0..total_params {
65            let val = ((i * 23) % 1000) as f64 / 1000.0 - 0.5;
66            parameters[[0, i]] = F::from(val).unwrap() * std_dev;
67        }
68
69        Self {
70            parameters,
71            time_steps,
72            solver_config,
73            input_dim,
74            hidden_dim,
75        }
76    }
77
78    /// Forward pass through Neural ODE
79    pub fn forward(&self, initial_state: &Array1<F>) -> Result<Array2<F>> {
80        let num_times = self.time_steps.len();
81        let mut trajectory = Array2::zeros((num_times, self.input_dim));
82
83        // Set initial condition
84        for i in 0..self.input_dim {
85            trajectory[[0, i]] = initial_state[i];
86        }
87
88        // Integrate ODE
89        for t in 1..num_times {
90            let dt = self.time_steps[t] - self.time_steps[t - 1];
91            let current_state = trajectory.row(t - 1).to_owned();
92
93            let next_state = match self.solver_config.method {
94                IntegrationMethod::Euler => self.euler_step(&current_state, dt)?,
95                IntegrationMethod::RungeKutta4 => self.rk4_step(&current_state, dt)?,
96                IntegrationMethod::RKF45 => self.rkf45_step(&current_state, dt)?,
97            };
98
99            for i in 0..self.input_dim {
100                trajectory[[t, i]] = next_state[i];
101            }
102        }
103
104        Ok(trajectory)
105    }
106
107    /// Neural network defining the ODE dynamics
108    fn neural_network(&self, state: &Array1<F>) -> Result<Array1<F>> {
109        let (w1, b1, w2, b2) = self.extract_ode_weights();
110
111        // First layer
112        let mut hidden = Array1::zeros(self.hidden_dim);
113        for i in 0..self.hidden_dim {
114            let mut sum = b1[i];
115            for j in 0..self.input_dim {
116                sum = sum + w1[[i, j]] * state[j];
117            }
118            hidden[i] = self.tanh(sum);
119        }
120
121        // Second layer
122        let mut output = Array1::zeros(self.input_dim);
123        for i in 0..self.input_dim {
124            let mut sum = b2[i];
125            for j in 0..self.hidden_dim {
126                sum = sum + w2[[i, j]] * hidden[j];
127            }
128            output[i] = sum;
129        }
130
131        Ok(output)
132    }
133
134    /// Extract ODE network weights
135    fn extract_ode_weights(&self) -> (Array2<F>, Array1<F>, Array2<F>, Array1<F>) {
136        let param_vec = self.parameters.row(0);
137        let mut idx = 0;
138
139        // First layer weights
140        let mut w1 = Array2::zeros((self.hidden_dim, self.input_dim));
141        for i in 0..self.hidden_dim {
142            for j in 0..self.input_dim {
143                w1[[i, j]] = param_vec[idx];
144                idx += 1;
145            }
146        }
147
148        // First layer bias
149        let mut b1 = Array1::zeros(self.hidden_dim);
150        for i in 0..self.hidden_dim {
151            b1[i] = param_vec[idx];
152            idx += 1;
153        }
154
155        // Second layer weights
156        let mut w2 = Array2::zeros((self.input_dim, self.hidden_dim));
157        for i in 0..self.input_dim {
158            for j in 0..self.hidden_dim {
159                w2[[i, j]] = param_vec[idx];
160                idx += 1;
161            }
162        }
163
164        // Second layer bias
165        let mut b2 = Array1::zeros(self.input_dim);
166        for i in 0..self.input_dim {
167            b2[i] = param_vec[idx];
168            idx += 1;
169        }
170
171        (w1, b1, w2, b2)
172    }
173
174    /// Euler integration step
175    fn euler_step(&self, state: &Array1<F>, dt: F) -> Result<Array1<F>> {
176        let derivative = self.neural_network(state)?;
177        let mut next_state = Array1::zeros(self.input_dim);
178
179        for i in 0..self.input_dim {
180            next_state[i] = state[i] + dt * derivative[i];
181        }
182
183        Ok(next_state)
184    }
185
186    /// Fourth-order Runge-Kutta integration step
187    fn rk4_step(&self, state: &Array1<F>, dt: F) -> Result<Array1<F>> {
188        let k1 = self.neural_network(state)?;
189
190        let mut temp_state = Array1::zeros(self.input_dim);
191        for i in 0..self.input_dim {
192            temp_state[i] = state[i] + dt * k1[i] / F::from(2.0).unwrap();
193        }
194        let k2 = self.neural_network(&temp_state)?;
195
196        for i in 0..self.input_dim {
197            temp_state[i] = state[i] + dt * k2[i] / F::from(2.0).unwrap();
198        }
199        let k3 = self.neural_network(&temp_state)?;
200
201        for i in 0..self.input_dim {
202            temp_state[i] = state[i] + dt * k3[i];
203        }
204        let k4 = self.neural_network(&temp_state)?;
205
206        let mut next_state = Array1::zeros(self.input_dim);
207        for i in 0..self.input_dim {
208            next_state[i] = state[i]
209                + dt * (k1[i]
210                    + F::from(2.0).unwrap() * k2[i]
211                    + F::from(2.0).unwrap() * k3[i]
212                    + k4[i])
213                    / F::from(6.0).unwrap();
214        }
215
216        Ok(next_state)
217    }
218
219    /// Runge-Kutta-Fehlberg integration step (simplified)
220    fn rkf45_step(&self, state: &Array1<F>, dt: F) -> Result<Array1<F>> {
221        // Simplified RKF45 - uses RK4 for now
222        self.rk4_step(state, dt)
223    }
224
225    /// Hyperbolic tangent activation
226    fn tanh(&self, x: F) -> F {
227        x.tanh()
228    }
229}
230
231impl<F: Float + Debug> ODESolverConfig<F> {
232    /// Create new ODE solver configuration
233    pub fn new(method: IntegrationMethod, step_size: F, tolerance: F) -> Self {
234        Self {
235            method,
236            step_size,
237            tolerance,
238        }
239    }
240
241    /// Create default Euler configuration
242    pub fn euler(step_size: F) -> Self {
243        Self::new(IntegrationMethod::Euler, step_size, F::from(1e-6).unwrap())
244    }
245
246    /// Create default RK4 configuration
247    pub fn runge_kutta4(step_size: F) -> Self {
248        Self::new(
249            IntegrationMethod::RungeKutta4,
250            step_size,
251            F::from(1e-6).unwrap(),
252        )
253    }
254
255    /// Create default RKF45 configuration
256    pub fn rkf45(step_size: F, tolerance: F) -> Self {
257        Self::new(IntegrationMethod::RKF45, step_size, tolerance)
258    }
259}