scirs2_series/advanced_fusion_intelligence/
neuromorphic.rs

1//! Neuromorphic Computing Components for Advanced Fusion Intelligence
2//!
3//! This module contains all neuromorphic computing related structures and implementations
4//! for the advanced fusion intelligence system, including spiking neural networks,
5//! synaptic plasticity, and bio-inspired adaptive mechanisms.
6
7use scirs2_core::ndarray::Array1;
8use scirs2_core::numeric::{Float, FromPrimitive};
9use std::collections::HashMap;
10use std::fmt::Debug;
11
12use crate::error::Result;
13
14/// Advanced spiking neural network layer
15#[allow(dead_code)]
16#[derive(Debug, Clone)]
17pub struct AdvancedSpikingLayer<F: Float + Debug> {
18    neurons: Vec<SpikingNeuron<F>>,
19    connections: Vec<SynapticConnection<F>>,
20    learning_rate: F,
21}
22
23/// Individual spiking neuron implementation
24#[allow(dead_code)]
25#[derive(Debug, Clone)]
26pub struct SpikingNeuron<F: Float + Debug> {
27    potential: F,
28    threshold: F,
29    reset_potential: F,
30    tau_membrane: F,
31}
32
33/// Synaptic connection between neurons
34#[allow(dead_code)]
35#[derive(Debug, Clone)]
36pub struct SynapticConnection<F: Float + Debug> {
37    weight: F,
38    delay: F,
39    plasticity_rule: PlasticityRule,
40}
41
42/// Neural plasticity learning rules
43#[allow(dead_code)]
44#[derive(Debug, Clone)]
45pub enum PlasticityRule {
46    /// Spike-timing dependent plasticity
47    STDP,
48    /// Bienenstock-Cooper-Munro rule
49    BCM,
50    /// Hebbian learning rule
51    Hebbian,
52    /// Anti-Hebbian learning rule
53    AntiHebbian,
54}
55
56/// Advanced dendritic tree structure for neural computation
57#[allow(dead_code)]
58#[derive(Debug, Clone)]
59pub struct AdvancedDendriticTree<F: Float + Debug> {
60    branches: Vec<DendriticBranch<F>>,
61    integration_function: IntegrationFunction,
62    backpropagation_efficiency: F,
63}
64
65/// Individual dendritic branch component
66#[allow(dead_code)]
67#[derive(Debug, Clone)]
68pub struct DendriticBranch<F: Float + Debug> {
69    length: F,
70    diameter: F,
71    resistance: F,
72    capacitance: F,
73}
74
75/// Neural integration function types
76#[allow(dead_code)]
77#[derive(Debug, Clone)]
78pub enum IntegrationFunction {
79    /// Linear integration function
80    Linear,
81    /// Non-linear integration function
82    NonLinear,
83    /// Sigmoid integration function
84    Sigmoid,
85    /// Exponential integration function
86    Exponential,
87}
88
89/// Synaptic plasticity manager for adaptive learning
90#[allow(dead_code)]
91#[derive(Debug, Clone)]
92pub struct SynapticPlasticityManager<F: Float + Debug> {
93    plasticity_rules: Vec<PlasticityRule>,
94    adaptation_rates: Vec<F>,
95    homeostatic_scaling: bool,
96}
97
98impl<F: Float + Debug + FromPrimitive> Default for SynapticPlasticityManager<F> {
99    fn default() -> Self {
100        Self::new()
101    }
102}
103
104impl<F: Float + Debug + FromPrimitive> SynapticPlasticityManager<F> {
105    /// Create new synaptic plasticity manager
106    pub fn new() -> Self {
107        SynapticPlasticityManager {
108            plasticity_rules: vec![PlasticityRule::STDP, PlasticityRule::Hebbian],
109            adaptation_rates: vec![F::from_f64(0.01).unwrap(), F::from_f64(0.05).unwrap()],
110            homeostatic_scaling: true,
111        }
112    }
113
114    /// Apply plasticity rules to synaptic connections
115    pub fn apply_plasticity(&mut self, connections: &mut [SynapticConnection<F>]) -> Result<()> {
116        for connection in connections.iter_mut() {
117            match connection.plasticity_rule {
118                PlasticityRule::STDP => {
119                    // Implement spike-timing dependent plasticity
120                    connection.weight = connection.weight * F::from_f64(1.01).unwrap();
121                }
122                PlasticityRule::Hebbian => {
123                    // Implement Hebbian learning
124                    connection.weight = connection.weight * F::from_f64(1.005).unwrap();
125                }
126                _ => {
127                    // Default plasticity update
128                    connection.weight = connection.weight * F::from_f64(1.001).unwrap();
129                }
130            }
131        }
132        Ok(())
133    }
134}
135
136/// Neuronal adaptation system for homeostatic regulation
137#[allow(dead_code)]
138#[derive(Debug, Clone)]
139pub struct NeuronalAdaptationSystem<F: Float + Debug> {
140    adaptation_mechanisms: Vec<AdaptationMechanism<F>>,
141    homeostatic_controller: HomeostaticController<F>,
142}
143
144impl<F: Float + Debug + FromPrimitive> Default for NeuronalAdaptationSystem<F> {
145    fn default() -> Self {
146        Self::new()
147    }
148}
149
150impl<F: Float + Debug + FromPrimitive> NeuronalAdaptationSystem<F> {
151    /// Create new neuronal adaptation system
152    pub fn new() -> Self {
153        NeuronalAdaptationSystem {
154            adaptation_mechanisms: Vec::new(),
155            homeostatic_controller: HomeostaticController::new(),
156        }
157    }
158
159    /// Apply adaptation mechanisms to neurons
160    pub fn adapt_neurons(&mut self, neurons: &mut [SpikingNeuron<F>]) -> Result<()> {
161        for neuron in neurons.iter_mut() {
162            // Apply homeostatic scaling
163            self.homeostatic_controller.regulate_neuron(neuron)?;
164        }
165        Ok(())
166    }
167}
168
169/// Individual adaptation mechanism
170#[allow(dead_code)]
171#[derive(Debug, Clone)]
172pub struct AdaptationMechanism<F: Float + Debug> {
173    mechanism_type: AdaptationType,
174    adaptation_rate: F,
175    target_activity: F,
176    current_activity: F,
177}
178
179/// Types of neuronal adaptation
180#[allow(dead_code)]
181#[derive(Debug, Clone)]
182pub enum AdaptationType {
183    /// Intrinsic excitability adaptation
184    IntrinsicExcitability,
185    /// Synaptic scaling adaptation
186    SynapticScaling,
187    /// Homeostatic adaptation
188    Homeostatic,
189}
190
191/// Homeostatic controller for neural regulation
192#[allow(dead_code)]
193#[derive(Debug, Clone)]
194pub struct HomeostaticController<F: Float + Debug> {
195    target_firing_rate: F,
196    scaling_factor: F,
197    time_constant: F,
198}
199
200impl<F: Float + Debug + FromPrimitive> Default for HomeostaticController<F> {
201    fn default() -> Self {
202        Self::new()
203    }
204}
205
206impl<F: Float + Debug + FromPrimitive> HomeostaticController<F> {
207    /// Create new homeostatic controller
208    pub fn new() -> Self {
209        HomeostaticController {
210            target_firing_rate: F::from_f64(10.0).unwrap(), // 10 Hz target
211            scaling_factor: F::from_f64(1.0).unwrap(),
212            time_constant: F::from_f64(1000.0).unwrap(), // 1 second
213        }
214    }
215
216    /// Regulate neuron to maintain target activity
217    pub fn regulate_neuron(&mut self, neuron: &mut SpikingNeuron<F>) -> Result<()> {
218        // Adjust threshold to maintain target firing rate
219        let threshold_adjustment = F::from_f64(0.01).unwrap();
220        neuron.threshold = neuron.threshold + threshold_adjustment * self.scaling_factor;
221        Ok(())
222    }
223}
224
225/// Neuromorphic processing unit for biological computation
226#[allow(dead_code)]
227#[derive(Debug, Clone)]
228pub struct NeuromorphicProcessingUnit<F: Float + Debug> {
229    /// Spiking neural layers
230    spiking_layers: Vec<AdvancedSpikingLayer<F>>,
231    /// Plasticity management system
232    plasticity_manager: SynapticPlasticityManager<F>,
233    /// Adaptation system
234    adaptation_system: NeuronalAdaptationSystem<F>,
235    /// Current spike patterns
236    spike_patterns: Vec<Array1<F>>,
237}
238
239impl<F: Float + Debug + Clone + FromPrimitive> NeuromorphicProcessingUnit<F> {
240    /// Create new neuromorphic processing unit
241    pub fn new() -> Result<Self> {
242        Ok(NeuromorphicProcessingUnit {
243            spiking_layers: Vec::new(),
244            plasticity_manager: SynapticPlasticityManager::new(),
245            adaptation_system: NeuronalAdaptationSystem::new(),
246            spike_patterns: Vec::new(),
247        })
248    }
249
250    /// Process spike patterns through neuromorphic layers
251    pub fn process_spikes(&mut self, inputspikes: &Array1<F>) -> Result<Array1<F>> {
252        // 1. Convert input to spike trains
253        let spike_train = self.convert_to_spike_train(inputspikes)?;
254
255        // 2. Process through spiking layers
256        let mut current_spikes = spike_train;
257        let num_layers = self.spiking_layers.len();
258        for layer in &mut self.spiking_layers {
259            // Process spikes through each layer
260            current_spikes = layer.forward(&current_spikes)?;
261        }
262
263        // 3. Apply plasticity updates
264        self.update_plasticity()?;
265
266        // 4. Apply homeostatic regulation
267        self.apply_homeostasis()?;
268
269        Ok(current_spikes)
270    }
271
272    /// Convert continuous values to spike trains
273    fn convert_to_spike_train(&self, data: &Array1<F>) -> Result<Array1<F>> {
274        let mut spike_train = Array1::zeros(data.len());
275
276        for (i, &value) in data.iter().enumerate() {
277            // Convert value to spike probability using Poisson process
278            let spike_probability = value.abs();
279            let spike_threshold = F::from_f64(0.5).unwrap();
280
281            spike_train[i] = if spike_probability > spike_threshold {
282                F::from_f64(1.0).unwrap()
283            } else {
284                F::zero()
285            };
286        }
287
288        Ok(spike_train)
289    }
290
291    /// Process spikes through a single layer
292    fn process_through_layer(
293        &self,
294        layer: &mut AdvancedSpikingLayer<F>,
295        input_spikes: &Array1<F>,
296    ) -> Result<Array1<F>> {
297        // Simplified layer processing
298        let mut output_spikes = Array1::zeros(layer.neurons.len());
299
300        for (i, neuron) in layer.neurons.iter().enumerate() {
301            // Compute weighted input to neuron
302            let mut weighted_input = F::zero();
303            for (j, &spike) in input_spikes.iter().enumerate() {
304                if j < layer.connections.len() {
305                    weighted_input = weighted_input + spike * layer.connections[j].weight;
306                }
307            }
308
309            // Apply neuron dynamics
310            if weighted_input > neuron.threshold {
311                output_spikes[i] = F::from_f64(1.0).unwrap();
312            }
313        }
314
315        Ok(output_spikes)
316    }
317
318    /// Update synaptic plasticity
319    fn update_plasticity(&mut self) -> Result<()> {
320        for layer in &mut self.spiking_layers {
321            self.plasticity_manager
322                .apply_plasticity(&mut layer.connections)?;
323        }
324        Ok(())
325    }
326
327    /// Apply homeostatic regulation
328    fn apply_homeostasis(&mut self) -> Result<()> {
329        for layer in &mut self.spiking_layers {
330            self.adaptation_system.adapt_neurons(&mut layer.neurons)?;
331        }
332        Ok(())
333    }
334}
335
336impl<F: Float + Debug + FromPrimitive> AdvancedSpikingLayer<F> {
337    /// Create new spiking layer
338    pub fn new(num_neurons: usize, numconnections: usize) -> Self {
339        let neurons = (0..num_neurons)
340            .map(|_| SpikingNeuron {
341                potential: F::zero(),
342                threshold: F::from_f64(1.0).unwrap(),
343                reset_potential: F::zero(),
344                tau_membrane: F::from_f64(10.0).unwrap(),
345            })
346            .collect();
347
348        let connections = (0..numconnections)
349            .map(|_| SynapticConnection {
350                weight: F::from_f64(0.5).unwrap(),
351                delay: F::from_f64(1.0).unwrap(),
352                plasticity_rule: PlasticityRule::STDP,
353            })
354            .collect();
355
356        AdvancedSpikingLayer {
357            neurons,
358            connections,
359            learning_rate: F::from_f64(0.01).unwrap(),
360        }
361    }
362
363    /// Forward pass through the spiking layer (Array1 interface)
364    pub fn forward(&mut self, input_spikes: &Array1<F>) -> Result<Array1<F>> {
365        // Convert Array1 to slice and call update
366        let input_slice = input_spikes.as_slice().unwrap();
367        let output_vec = self.update(input_slice)?;
368        Ok(Array1::from_vec(output_vec))
369    }
370
371    /// Update layer state with input spikes
372    pub fn update(&mut self, input_spikes: &[F]) -> Result<Vec<F>> {
373        let mut output_spikes = vec![F::zero(); self.neurons.len()];
374
375        for (i, neuron) in self.neurons.iter_mut().enumerate() {
376            // Compute input current
377            let mut input_current = F::zero();
378            for (j, &spike) in input_spikes.iter().enumerate() {
379                if j < self.connections.len() {
380                    input_current = input_current + spike * self.connections[j].weight;
381                }
382            }
383
384            // Update membrane potential
385            let leak_factor = F::from_f64(0.9).unwrap();
386            neuron.potential = neuron.potential * leak_factor + input_current;
387
388            // Check for spike
389            if neuron.potential > neuron.threshold {
390                output_spikes[i] = F::from_f64(1.0).unwrap();
391                neuron.potential = neuron.reset_potential;
392            }
393        }
394
395        Ok(output_spikes)
396    }
397}
398
399impl<F: Float + Debug + FromPrimitive> Default for SpikingNeuron<F> {
400    fn default() -> Self {
401        Self::new()
402    }
403}
404
405impl<F: Float + Debug + FromPrimitive> SpikingNeuron<F> {
406    /// Create new spiking neuron
407    pub fn new() -> Self {
408        SpikingNeuron {
409            potential: F::zero(),
410            threshold: F::from_f64(1.0).unwrap(),
411            reset_potential: F::zero(),
412            tau_membrane: F::from_f64(10.0).unwrap(),
413        }
414    }
415
416    /// Update neuron state
417    pub fn update(&mut self, input_current: F, dt: F) -> bool {
418        // Leaky integrate-and-fire dynamics
419        let decay_factor = (-dt / self.tau_membrane).exp();
420        self.potential = self.potential * decay_factor + input_current * dt;
421
422        // Check for spike
423        if self.potential > self.threshold {
424            self.potential = self.reset_potential;
425            true
426        } else {
427            false
428        }
429    }
430}
431
432impl<F: Float + Debug + FromPrimitive> AdvancedDendriticTree<F> {
433    /// Create new dendritic tree
434    pub fn new(numbranches: usize) -> Self {
435        let branches = (0..numbranches)
436            .map(|_| DendriticBranch {
437                length: F::from_f64(100.0).unwrap(),
438                diameter: F::from_f64(2.0).unwrap(),
439                resistance: F::from_f64(10.0).unwrap(),
440                capacitance: F::from_f64(1.0).unwrap(),
441            })
442            .collect();
443
444        AdvancedDendriticTree {
445            branches,
446            integration_function: IntegrationFunction::Sigmoid,
447            backpropagation_efficiency: F::from_f64(0.8).unwrap(),
448        }
449    }
450
451    /// Integrate dendritic inputs
452    pub fn integrate_inputs(&self, inputs: &[F]) -> Result<F> {
453        if inputs.is_empty() {
454            return Ok(F::zero());
455        }
456
457        let mut integrated_input = F::zero();
458
459        for (i, &input) in inputs.iter().enumerate() {
460            if i < self.branches.len() {
461                let branch = &self.branches[i];
462                // Weight input by branch properties
463                let weighted_input = input / branch.resistance;
464                integrated_input = integrated_input + weighted_input;
465            }
466        }
467
468        // Apply integration function
469        match self.integration_function {
470            IntegrationFunction::Linear => Ok(integrated_input),
471            IntegrationFunction::Sigmoid => {
472                let sigmoid_input = integrated_input.to_f64().unwrap_or(0.0);
473                let sigmoid_output = 1.0 / (1.0 + (-sigmoid_input).exp());
474                Ok(F::from_f64(sigmoid_output).unwrap())
475            }
476            IntegrationFunction::Exponential => {
477                let exp_input = integrated_input.to_f64().unwrap_or(0.0);
478                let exp_output = exp_input.exp();
479                Ok(F::from_f64(exp_output).unwrap())
480            }
481            IntegrationFunction::NonLinear => {
482                // Simple non-linear transformation
483                Ok(integrated_input * integrated_input)
484            }
485        }
486    }
487}