scirs2_series/advanced_fusion_intelligence/
neuromorphic.rs1use scirs2_core::ndarray::Array1;
8use scirs2_core::numeric::{Float, FromPrimitive};
9use std::collections::HashMap;
10use std::fmt::Debug;
11
12use crate::error::Result;
13
14#[allow(dead_code)]
16#[derive(Debug, Clone)]
17pub struct AdvancedSpikingLayer<F: Float + Debug> {
18 neurons: Vec<SpikingNeuron<F>>,
19 connections: Vec<SynapticConnection<F>>,
20 learning_rate: F,
21}
22
23#[allow(dead_code)]
25#[derive(Debug, Clone)]
26pub struct SpikingNeuron<F: Float + Debug> {
27 potential: F,
28 threshold: F,
29 reset_potential: F,
30 tau_membrane: F,
31}
32
33#[allow(dead_code)]
35#[derive(Debug, Clone)]
36pub struct SynapticConnection<F: Float + Debug> {
37 weight: F,
38 delay: F,
39 plasticity_rule: PlasticityRule,
40}
41
42#[allow(dead_code)]
44#[derive(Debug, Clone)]
45pub enum PlasticityRule {
46 STDP,
48 BCM,
50 Hebbian,
52 AntiHebbian,
54}
55
56#[allow(dead_code)]
58#[derive(Debug, Clone)]
59pub struct AdvancedDendriticTree<F: Float + Debug> {
60 branches: Vec<DendriticBranch<F>>,
61 integration_function: IntegrationFunction,
62 backpropagation_efficiency: F,
63}
64
65#[allow(dead_code)]
67#[derive(Debug, Clone)]
68pub struct DendriticBranch<F: Float + Debug> {
69 length: F,
70 diameter: F,
71 resistance: F,
72 capacitance: F,
73}
74
75#[allow(dead_code)]
77#[derive(Debug, Clone)]
78pub enum IntegrationFunction {
79 Linear,
81 NonLinear,
83 Sigmoid,
85 Exponential,
87}
88
89#[allow(dead_code)]
91#[derive(Debug, Clone)]
92pub struct SynapticPlasticityManager<F: Float + Debug> {
93 plasticity_rules: Vec<PlasticityRule>,
94 adaptation_rates: Vec<F>,
95 homeostatic_scaling: bool,
96}
97
98impl<F: Float + Debug + FromPrimitive> Default for SynapticPlasticityManager<F> {
99 fn default() -> Self {
100 Self::new()
101 }
102}
103
104impl<F: Float + Debug + FromPrimitive> SynapticPlasticityManager<F> {
105 pub fn new() -> Self {
107 SynapticPlasticityManager {
108 plasticity_rules: vec![PlasticityRule::STDP, PlasticityRule::Hebbian],
109 adaptation_rates: vec![F::from_f64(0.01).unwrap(), F::from_f64(0.05).unwrap()],
110 homeostatic_scaling: true,
111 }
112 }
113
114 pub fn apply_plasticity(&mut self, connections: &mut [SynapticConnection<F>]) -> Result<()> {
116 for connection in connections.iter_mut() {
117 match connection.plasticity_rule {
118 PlasticityRule::STDP => {
119 connection.weight = connection.weight * F::from_f64(1.01).unwrap();
121 }
122 PlasticityRule::Hebbian => {
123 connection.weight = connection.weight * F::from_f64(1.005).unwrap();
125 }
126 _ => {
127 connection.weight = connection.weight * F::from_f64(1.001).unwrap();
129 }
130 }
131 }
132 Ok(())
133 }
134}
135
136#[allow(dead_code)]
138#[derive(Debug, Clone)]
139pub struct NeuronalAdaptationSystem<F: Float + Debug> {
140 adaptation_mechanisms: Vec<AdaptationMechanism<F>>,
141 homeostatic_controller: HomeostaticController<F>,
142}
143
144impl<F: Float + Debug + FromPrimitive> Default for NeuronalAdaptationSystem<F> {
145 fn default() -> Self {
146 Self::new()
147 }
148}
149
150impl<F: Float + Debug + FromPrimitive> NeuronalAdaptationSystem<F> {
151 pub fn new() -> Self {
153 NeuronalAdaptationSystem {
154 adaptation_mechanisms: Vec::new(),
155 homeostatic_controller: HomeostaticController::new(),
156 }
157 }
158
159 pub fn adapt_neurons(&mut self, neurons: &mut [SpikingNeuron<F>]) -> Result<()> {
161 for neuron in neurons.iter_mut() {
162 self.homeostatic_controller.regulate_neuron(neuron)?;
164 }
165 Ok(())
166 }
167}
168
169#[allow(dead_code)]
171#[derive(Debug, Clone)]
172pub struct AdaptationMechanism<F: Float + Debug> {
173 mechanism_type: AdaptationType,
174 adaptation_rate: F,
175 target_activity: F,
176 current_activity: F,
177}
178
179#[allow(dead_code)]
181#[derive(Debug, Clone)]
182pub enum AdaptationType {
183 IntrinsicExcitability,
185 SynapticScaling,
187 Homeostatic,
189}
190
191#[allow(dead_code)]
193#[derive(Debug, Clone)]
194pub struct HomeostaticController<F: Float + Debug> {
195 target_firing_rate: F,
196 scaling_factor: F,
197 time_constant: F,
198}
199
200impl<F: Float + Debug + FromPrimitive> Default for HomeostaticController<F> {
201 fn default() -> Self {
202 Self::new()
203 }
204}
205
206impl<F: Float + Debug + FromPrimitive> HomeostaticController<F> {
207 pub fn new() -> Self {
209 HomeostaticController {
210 target_firing_rate: F::from_f64(10.0).unwrap(), scaling_factor: F::from_f64(1.0).unwrap(),
212 time_constant: F::from_f64(1000.0).unwrap(), }
214 }
215
216 pub fn regulate_neuron(&mut self, neuron: &mut SpikingNeuron<F>) -> Result<()> {
218 let threshold_adjustment = F::from_f64(0.01).unwrap();
220 neuron.threshold = neuron.threshold + threshold_adjustment * self.scaling_factor;
221 Ok(())
222 }
223}
224
225#[allow(dead_code)]
227#[derive(Debug, Clone)]
228pub struct NeuromorphicProcessingUnit<F: Float + Debug> {
229 spiking_layers: Vec<AdvancedSpikingLayer<F>>,
231 plasticity_manager: SynapticPlasticityManager<F>,
233 adaptation_system: NeuronalAdaptationSystem<F>,
235 spike_patterns: Vec<Array1<F>>,
237}
238
239impl<F: Float + Debug + Clone + FromPrimitive> NeuromorphicProcessingUnit<F> {
240 pub fn new() -> Result<Self> {
242 Ok(NeuromorphicProcessingUnit {
243 spiking_layers: Vec::new(),
244 plasticity_manager: SynapticPlasticityManager::new(),
245 adaptation_system: NeuronalAdaptationSystem::new(),
246 spike_patterns: Vec::new(),
247 })
248 }
249
250 pub fn process_spikes(&mut self, inputspikes: &Array1<F>) -> Result<Array1<F>> {
252 let spike_train = self.convert_to_spike_train(inputspikes)?;
254
255 let mut current_spikes = spike_train;
257 let num_layers = self.spiking_layers.len();
258 for layer in &mut self.spiking_layers {
259 current_spikes = layer.forward(¤t_spikes)?;
261 }
262
263 self.update_plasticity()?;
265
266 self.apply_homeostasis()?;
268
269 Ok(current_spikes)
270 }
271
272 fn convert_to_spike_train(&self, data: &Array1<F>) -> Result<Array1<F>> {
274 let mut spike_train = Array1::zeros(data.len());
275
276 for (i, &value) in data.iter().enumerate() {
277 let spike_probability = value.abs();
279 let spike_threshold = F::from_f64(0.5).unwrap();
280
281 spike_train[i] = if spike_probability > spike_threshold {
282 F::from_f64(1.0).unwrap()
283 } else {
284 F::zero()
285 };
286 }
287
288 Ok(spike_train)
289 }
290
291 fn process_through_layer(
293 &self,
294 layer: &mut AdvancedSpikingLayer<F>,
295 input_spikes: &Array1<F>,
296 ) -> Result<Array1<F>> {
297 let mut output_spikes = Array1::zeros(layer.neurons.len());
299
300 for (i, neuron) in layer.neurons.iter().enumerate() {
301 let mut weighted_input = F::zero();
303 for (j, &spike) in input_spikes.iter().enumerate() {
304 if j < layer.connections.len() {
305 weighted_input = weighted_input + spike * layer.connections[j].weight;
306 }
307 }
308
309 if weighted_input > neuron.threshold {
311 output_spikes[i] = F::from_f64(1.0).unwrap();
312 }
313 }
314
315 Ok(output_spikes)
316 }
317
318 fn update_plasticity(&mut self) -> Result<()> {
320 for layer in &mut self.spiking_layers {
321 self.plasticity_manager
322 .apply_plasticity(&mut layer.connections)?;
323 }
324 Ok(())
325 }
326
327 fn apply_homeostasis(&mut self) -> Result<()> {
329 for layer in &mut self.spiking_layers {
330 self.adaptation_system.adapt_neurons(&mut layer.neurons)?;
331 }
332 Ok(())
333 }
334}
335
336impl<F: Float + Debug + FromPrimitive> AdvancedSpikingLayer<F> {
337 pub fn new(num_neurons: usize, numconnections: usize) -> Self {
339 let neurons = (0..num_neurons)
340 .map(|_| SpikingNeuron {
341 potential: F::zero(),
342 threshold: F::from_f64(1.0).unwrap(),
343 reset_potential: F::zero(),
344 tau_membrane: F::from_f64(10.0).unwrap(),
345 })
346 .collect();
347
348 let connections = (0..numconnections)
349 .map(|_| SynapticConnection {
350 weight: F::from_f64(0.5).unwrap(),
351 delay: F::from_f64(1.0).unwrap(),
352 plasticity_rule: PlasticityRule::STDP,
353 })
354 .collect();
355
356 AdvancedSpikingLayer {
357 neurons,
358 connections,
359 learning_rate: F::from_f64(0.01).unwrap(),
360 }
361 }
362
363 pub fn forward(&mut self, input_spikes: &Array1<F>) -> Result<Array1<F>> {
365 let input_slice = input_spikes.as_slice().unwrap();
367 let output_vec = self.update(input_slice)?;
368 Ok(Array1::from_vec(output_vec))
369 }
370
371 pub fn update(&mut self, input_spikes: &[F]) -> Result<Vec<F>> {
373 let mut output_spikes = vec![F::zero(); self.neurons.len()];
374
375 for (i, neuron) in self.neurons.iter_mut().enumerate() {
376 let mut input_current = F::zero();
378 for (j, &spike) in input_spikes.iter().enumerate() {
379 if j < self.connections.len() {
380 input_current = input_current + spike * self.connections[j].weight;
381 }
382 }
383
384 let leak_factor = F::from_f64(0.9).unwrap();
386 neuron.potential = neuron.potential * leak_factor + input_current;
387
388 if neuron.potential > neuron.threshold {
390 output_spikes[i] = F::from_f64(1.0).unwrap();
391 neuron.potential = neuron.reset_potential;
392 }
393 }
394
395 Ok(output_spikes)
396 }
397}
398
399impl<F: Float + Debug + FromPrimitive> Default for SpikingNeuron<F> {
400 fn default() -> Self {
401 Self::new()
402 }
403}
404
405impl<F: Float + Debug + FromPrimitive> SpikingNeuron<F> {
406 pub fn new() -> Self {
408 SpikingNeuron {
409 potential: F::zero(),
410 threshold: F::from_f64(1.0).unwrap(),
411 reset_potential: F::zero(),
412 tau_membrane: F::from_f64(10.0).unwrap(),
413 }
414 }
415
416 pub fn update(&mut self, input_current: F, dt: F) -> bool {
418 let decay_factor = (-dt / self.tau_membrane).exp();
420 self.potential = self.potential * decay_factor + input_current * dt;
421
422 if self.potential > self.threshold {
424 self.potential = self.reset_potential;
425 true
426 } else {
427 false
428 }
429 }
430}
431
432impl<F: Float + Debug + FromPrimitive> AdvancedDendriticTree<F> {
433 pub fn new(numbranches: usize) -> Self {
435 let branches = (0..numbranches)
436 .map(|_| DendriticBranch {
437 length: F::from_f64(100.0).unwrap(),
438 diameter: F::from_f64(2.0).unwrap(),
439 resistance: F::from_f64(10.0).unwrap(),
440 capacitance: F::from_f64(1.0).unwrap(),
441 })
442 .collect();
443
444 AdvancedDendriticTree {
445 branches,
446 integration_function: IntegrationFunction::Sigmoid,
447 backpropagation_efficiency: F::from_f64(0.8).unwrap(),
448 }
449 }
450
451 pub fn integrate_inputs(&self, inputs: &[F]) -> Result<F> {
453 if inputs.is_empty() {
454 return Ok(F::zero());
455 }
456
457 let mut integrated_input = F::zero();
458
459 for (i, &input) in inputs.iter().enumerate() {
460 if i < self.branches.len() {
461 let branch = &self.branches[i];
462 let weighted_input = input / branch.resistance;
464 integrated_input = integrated_input + weighted_input;
465 }
466 }
467
468 match self.integration_function {
470 IntegrationFunction::Linear => Ok(integrated_input),
471 IntegrationFunction::Sigmoid => {
472 let sigmoid_input = integrated_input.to_f64().unwrap_or(0.0);
473 let sigmoid_output = 1.0 / (1.0 + (-sigmoid_input).exp());
474 Ok(F::from_f64(sigmoid_output).unwrap())
475 }
476 IntegrationFunction::Exponential => {
477 let exp_input = integrated_input.to_f64().unwrap_or(0.0);
478 let exp_output = exp_input.exp();
479 Ok(F::from_f64(exp_output).unwrap())
480 }
481 IntegrationFunction::NonLinear => {
482 Ok(integrated_input * integrated_input)
484 }
485 }
486 }
487}