Module transformations

Module transformations 

Source
Expand description

Time series transformations for preprocessing and analysis

This module provides comprehensive transformation methods including:

  • Stationarity transformations (Box-Cox, differencing, detrending)
  • Normalization and scaling methods
  • Stationarity tests (ADF, KPSS)
  • Dimensionality reduction techniques

Structs§

BoxCoxTransform
Box-Cox transformation parameters
DifferencingTransform
Differencing transformation parameters
NormalizationParams
Normalization parameters
StationarityTest
Stationarity test results

Enums§

NormalizationMethod
Normalization method
StationarityTestType
Type of stationarity test

Functions§

adf_test
Augmented Dickey-Fuller test for stationarity
box_cox_transform
Apply Box-Cox transformation to time series
difference_transform
Apply differencing transformation to make time series stationary
integrate_transform
Integrate (reverse difference) a time series
inverse_box_cox_transform
Inverse Box-Cox transformation
inverse_normalize_transform
Inverse normalization transformation
kpss_test
KPSS test for stationarity
normalize_transform
Normalize time series using specified method