scirs2_series/advanced_fusion_intelligence/
temporal.rs

1//! Temporal and Causal Analysis Components for Advanced Fusion Intelligence
2//!
3//! This module contains all temporal processing, causal analysis, and spacetime-related
4//! structures and implementations for the advanced fusion intelligence system, including
5//! multi-timeline processing, causal discovery, paradox resolution, and dimensional analysis.
6
7use scirs2_core::ndarray::Array1;
8use scirs2_core::numeric::{Float, FromPrimitive};
9use std::collections::HashMap;
10use std::fmt::Debug;
11
12use crate::error::Result;
13
14/// Multi-timeline processor for temporal analysis
15#[allow(dead_code)]
16#[derive(Debug, Clone)]
17pub struct MultiTimelineProcessor<F: Float + Debug> {
18    temporal_dimensions: Vec<TemporalDimension<F>>,
19    timeline_synchronizer: TimelineSynchronizer<F>,
20    causal_structure_analyzer: CausalStructureAnalyzer<F>,
21}
22
23/// Individual temporal dimension
24#[allow(dead_code)]
25#[derive(Debug, Clone)]
26pub struct TemporalDimension<F: Float + Debug> {
27    dimension_id: usize,
28    time_resolution: F,
29    causal_direction: CausalDirection,
30    branching_factor: F,
31}
32
33/// Direction of causal relationships
34#[allow(dead_code)]
35#[derive(Debug, Clone)]
36pub enum CausalDirection {
37    /// Forward causation
38    Forward,
39    /// Backward causation
40    Backward,
41    /// Bidirectional causation
42    Bidirectional,
43    /// Non-causal relationship
44    NonCausal,
45}
46
47/// Timeline synchronizer for multi-dimensional time
48#[allow(dead_code)]
49#[derive(Debug, Clone)]
50pub struct TimelineSynchronizer<F: Float + Debug> {
51    synchronization_protocol: SynchronizationProtocol,
52    temporal_alignment: F,
53    causality_preservation: F,
54}
55
56/// Protocols for timeline synchronization
57#[allow(dead_code)]
58#[derive(Debug, Clone)]
59pub enum SynchronizationProtocol {
60    /// Global clock synchronization
61    GlobalClock,
62    /// Local causal synchronization
63    LocalCausal,
64    /// Quantum entangled synchronization
65    QuantumEntangled,
66    /// Consciousness-guided synchronization
67    ConsciousnessGuided,
68}
69
70/// Analyzer for causal structures
71#[allow(dead_code)]
72#[derive(Debug, Clone)]
73pub struct CausalStructureAnalyzer<F: Float + Debug> {
74    causal_graph: CausalGraph<F>,
75    intervention_effects: Vec<InterventionEffect<F>>,
76    counterfactual_reasoning: CounterfactualReasoning<F>,
77}
78
79/// Graph representation of causal relationships
80#[allow(dead_code)]
81#[derive(Debug, Clone)]
82pub struct CausalGraph<F: Float + Debug> {
83    nodes: Vec<CausalNode<F>>,
84    edges: Vec<CausalEdge<F>>,
85    confounders: Vec<Confounder<F>>,
86}
87
88/// Node in the causal graph
89#[allow(dead_code)]
90#[derive(Debug, Clone)]
91pub struct CausalNode<F: Float + Debug> {
92    node_id: usize,
93    variable_name: String,
94    node_type: NodeType,
95    value: F,
96}
97
98/// Types of nodes in causal graphs
99#[allow(dead_code)]
100#[derive(Debug, Clone)]
101pub enum NodeType {
102    /// Observable variable
103    Observable,
104    /// Hidden variable
105    Hidden,
106    /// Intervention variable
107    Intervention,
108    /// Outcome variable
109    Outcome,
110}
111
112/// Edge in the causal graph
113#[allow(dead_code)]
114#[derive(Debug, Clone)]
115pub struct CausalEdge<F: Float + Debug> {
116    source: usize,
117    target: usize,
118    strength: F,
119    edge_type: EdgeType,
120}
121
122/// Types of causal edges
123#[allow(dead_code)]
124#[derive(Debug, Clone)]
125pub enum EdgeType {
126    /// Direct causal relationship
127    Direct,
128    /// Mediated causal relationship
129    Mediated,
130    /// Confounded relationship
131    Confounded,
132    /// Collider relationship
133    Collider,
134}
135
136/// Confounder in causal relationships
137#[allow(dead_code)]
138#[derive(Debug, Clone)]
139pub struct Confounder<F: Float + Debug> {
140    confounder_id: usize,
141    affected_variables: Vec<usize>,
142    confounding_strength: F,
143}
144
145/// Effect of interventions on the causal system
146#[allow(dead_code)]
147#[derive(Debug, Clone)]
148pub struct InterventionEffect<F: Float + Debug> {
149    intervention_target: usize,
150    intervention_value: F,
151    causal_effect: F,
152    confidence_interval: (F, F),
153}
154
155/// System for counterfactual reasoning
156#[allow(dead_code)]
157#[derive(Debug, Clone)]
158pub struct CounterfactualReasoning<F: Float + Debug> {
159    counterfactual_queries: Vec<CounterfactualQuery<F>>,
160    reasoning_engine: ReasoningEngine<F>,
161}
162
163/// Query for counterfactual analysis
164#[allow(dead_code)]
165#[derive(Debug, Clone)]
166pub struct CounterfactualQuery<F: Float + Debug> {
167    query_id: usize,
168    intervention: String,
169    outcome: String,
170    counterfactual_probability: F,
171}
172
173/// Engine for reasoning operations
174#[allow(dead_code)]
175#[derive(Debug, Clone)]
176pub struct ReasoningEngine<F: Float + Debug> {
177    reasoning_type: ReasoningType,
178    inference_strength: F,
179    uncertainty_handling: UncertaintyHandling,
180}
181
182/// Types of reasoning
183#[allow(dead_code)]
184#[derive(Debug, Clone)]
185pub enum ReasoningType {
186    /// Deductive reasoning
187    Deductive,
188    /// Inductive reasoning
189    Inductive,
190    /// Abductive reasoning
191    Abductive,
192    /// Counterfactual reasoning
193    Counterfactual,
194}
195
196/// Methods for handling uncertainty
197#[allow(dead_code)]
198#[derive(Debug, Clone)]
199pub enum UncertaintyHandling {
200    /// Bayesian approach
201    Bayesian,
202    /// Fuzzy logic approach
203    Fuzzy,
204    /// Possibilistic approach
205    Possibilistic,
206    /// Quantum approach
207    Quantum,
208}
209
210/// Engine for causal analysis
211#[allow(dead_code)]
212#[derive(Debug, Clone)]
213pub struct CausalAnalysisEngine<F: Float + Debug> {
214    causal_discovery: CausalDiscovery<F>,
215    causal_inference: CausalInference<F>,
216    effect_estimation: EffectEstimation<F>,
217}
218
219/// System for discovering causal relationships
220#[allow(dead_code)]
221#[derive(Debug, Clone)]
222pub struct CausalDiscovery<F: Float + Debug> {
223    discovery_algorithm: DiscoveryAlgorithm,
224    constraint_tests: Vec<ConstraintTest<F>>,
225    structure_learning: StructureLearning<F>,
226}
227
228/// Algorithms for causal discovery
229#[allow(dead_code)]
230#[derive(Debug, Clone)]
231pub enum DiscoveryAlgorithm {
232    /// PC algorithm
233    PC,
234    /// Greedy Equivalence Search
235    GES,
236    /// Greedy Interventional Equivalence Search
237    GIES,
238    /// Direct Linear Non-Gaussian Acyclic Model
239    DirectLiNGAM,
240    /// Quantum causal discovery
241    QuantumCausal,
242}
243
244/// Test for causal constraints
245#[allow(dead_code)]
246#[derive(Debug, Clone)]
247pub struct ConstraintTest<F: Float + Debug> {
248    test_type: TestType,
249    significance_level: F,
250    test_statistic: F,
251}
252
253/// Types of statistical tests
254#[allow(dead_code)]
255#[derive(Debug, Clone)]
256pub enum TestType {
257    /// Independence test
258    Independence,
259    /// Conditional independence test
260    ConditionalIndependence,
261    /// Instrumental variable test
262    InstrumentalVariable,
263    /// Randomization test
264    Randomization,
265}
266
267/// System for learning causal structure
268#[allow(dead_code)]
269#[derive(Debug, Clone)]
270pub struct StructureLearning<F: Float + Debug> {
271    learning_method: LearningMethod,
272    regularization: F,
273    model_selection: ModelSelection,
274}
275
276/// Methods for structure learning
277#[allow(dead_code)]
278#[derive(Debug, Clone)]
279pub enum LearningMethod {
280    /// Score-based learning
281    ScoreBased,
282    /// Constraint-based learning
283    ConstraintBased,
284    /// Hybrid approach
285    Hybrid,
286    /// Deep learning approach
287    DeepLearning,
288}
289
290/// Methods for model selection
291#[allow(dead_code)]
292#[derive(Debug, Clone)]
293pub enum ModelSelection {
294    /// Bayesian Information Criterion
295    BIC,
296    /// Akaike Information Criterion
297    AIC,
298    /// Cross-validation
299    CrossValidation,
300    /// Bayesian model selection
301    Bayesian,
302}
303
304/// System for causal inference
305#[allow(dead_code)]
306#[derive(Debug, Clone)]
307pub struct CausalInference<F: Float + Debug> {
308    inference_framework: InferenceFramework,
309    identification_strategy: IdentificationStrategy<F>,
310    sensitivity_analysis: SensitivityAnalysis<F>,
311}
312
313/// Frameworks for causal inference
314#[allow(dead_code)]
315#[derive(Debug, Clone)]
316pub enum InferenceFramework {
317    /// Potential outcomes framework
318    PotentialOutcomes,
319    /// Structural equation models
320    StructuralEquations,
321    /// Graphical models
322    GraphicalModels,
323    /// Quantum causal models
324    QuantumCausal,
325}
326
327/// Strategy for causal identification
328#[allow(dead_code)]
329#[derive(Debug, Clone)]
330pub struct IdentificationStrategy<F: Float + Debug> {
331    strategy_type: StrategyType,
332    assumptions: Vec<CausalAssumption>,
333    validity_checks: Vec<ValidityCheck<F>>,
334}
335
336/// Types of identification strategies
337#[allow(dead_code)]
338#[derive(Debug, Clone)]
339pub enum StrategyType {
340    /// Resource allocation strategy
341    ResourceAllocation,
342    /// Attention control strategy
343    AttentionControl,
344    /// Learning adjustment strategy
345    LearningAdjustment,
346    /// Consciousness modulation strategy
347    ConsciousnessModulation,
348}
349
350/// Assumptions for causal inference
351#[allow(dead_code)]
352#[derive(Debug, Clone)]
353pub enum CausalAssumption {
354    /// Exchangeability assumption
355    Exchangeability,
356    /// Positivity and consistency
357    PositivityConsistency,
358    /// No interference assumption
359    NoInterference,
360    /// Monotonicity and stability
361    MonotonicityStable,
362}
363
364/// Check for validity of causal assumptions
365#[allow(dead_code)]
366#[derive(Debug, Clone)]
367pub struct ValidityCheck<F: Float + Debug> {
368    check_type: CheckType,
369    validity_score: F,
370    diagnostic_statistics: Vec<F>,
371}
372
373/// Types of validity checks
374#[allow(dead_code)]
375#[derive(Debug, Clone)]
376pub enum CheckType {
377    /// Placebo test
378    PlaceboTest,
379    /// Falsification test
380    FalsificationTest,
381    /// Robustness check
382    RobustnessCheck,
383    /// Sensitivity analysis
384    SensitivityAnalysis,
385}
386
387/// Analysis of sensitivity to assumptions
388#[allow(dead_code)]
389#[derive(Debug, Clone)]
390pub struct SensitivityAnalysis<F: Float + Debug> {
391    sensitivity_parameters: Vec<SensitivityParameter<F>>,
392    robustness_bounds: RobustnessBounds<F>,
393}
394
395/// Parameter for sensitivity analysis
396#[allow(dead_code)]
397#[derive(Debug, Clone)]
398pub struct SensitivityParameter<F: Float + Debug> {
399    parameter_name: String,
400    parameter_range: (F, F),
401    effect_sensitivity: F,
402}
403
404/// Bounds for robustness analysis
405#[allow(dead_code)]
406#[derive(Debug, Clone)]
407pub struct RobustnessBounds<F: Float + Debug> {
408    lower_bound: F,
409    upper_bound: F,
410    confidence_level: F,
411}
412
413/// System for estimating causal effects
414#[allow(dead_code)]
415#[derive(Debug, Clone)]
416pub struct EffectEstimation<F: Float + Debug> {
417    estimation_method: EstimationMethod,
418    effect_measures: Vec<EffectMeasure<F>>,
419    variance_estimation: VarianceEstimation<F>,
420}
421
422/// Methods for effect estimation
423#[allow(dead_code)]
424#[derive(Debug, Clone)]
425pub enum EstimationMethod {
426    /// Doubly robust estimation
427    DoublyRobust,
428    /// Instrumental variable estimation
429    InstrumentalVariable,
430    /// Regression discontinuity
431    RegressionDiscontinuity,
432    /// Quantum matching
433    MatchingQuantum,
434}
435
436/// Measure of causal effect
437#[allow(dead_code)]
438#[derive(Debug, Clone)]
439pub struct EffectMeasure<F: Float + Debug> {
440    measure_type: MeasureType,
441    point_estimate: F,
442    confidence_interval: (F, F),
443    p_value: F,
444}
445
446/// Types of effect measures
447#[allow(dead_code)]
448#[derive(Debug, Clone)]
449pub enum MeasureType {
450    /// Average treatment effect
451    AverageTreatmentEffect,
452    /// Conditional average treatment effect
453    ConditionalAverageTreatmentEffect,
454    /// Local average treatment effect
455    LocalAverageTreatmentEffect,
456    /// Quantile treatment effect
457    QuantileEffectTreatment,
458}
459
460/// Estimation of variance
461#[allow(dead_code)]
462#[derive(Debug, Clone)]
463pub struct VarianceEstimation<F: Float + Debug> {
464    estimation_type: VarianceEstimationType,
465    bootstrap_samples: usize,
466    variance_estimate: F,
467}
468
469/// Types of variance estimation
470#[allow(dead_code)]
471#[derive(Debug, Clone)]
472pub enum VarianceEstimationType {
473    /// Analytical variance estimation
474    Analytical,
475    /// Bootstrap variance estimation
476    Bootstrap,
477    /// Jackknife variance estimation
478    Jackknife,
479    /// Bayesian variance estimation
480    Bayesian,
481}
482
483/// Resolver for temporal paradoxes
484#[allow(dead_code)]
485#[derive(Debug, Clone)]
486pub struct TemporalParadoxResolver<F: Float + Debug> {
487    paradox_detection: ParadoxDetection<F>,
488    resolution_strategies: Vec<ResolutionStrategy<F>>,
489    consistency_maintenance: ConsistencyMaintenance<F>,
490}
491
492/// System for detecting temporal paradoxes
493#[allow(dead_code)]
494#[derive(Debug, Clone)]
495pub struct ParadoxDetection<F: Float + Debug> {
496    paradox_types: Vec<ParadoxType>,
497    detection_algorithms: Vec<DetectionAlgorithm<F>>,
498    severity_assessment: SeverityAssessment<F>,
499}
500
501/// Types of temporal paradoxes
502#[allow(dead_code)]
503#[derive(Debug, Clone)]
504pub enum ParadoxType {
505    /// Grandfather paradox
506    Grandfather,
507    /// Bootstrap paradox
508    Bootstrap,
509    /// Information paradox
510    Information,
511    /// Causal paradox
512    Causal,
513}
514
515/// Algorithm for paradox detection
516#[allow(dead_code)]
517#[derive(Debug, Clone)]
518pub struct DetectionAlgorithm<F: Float + Debug> {
519    algorithm_name: String,
520    detection_sensitivity: F,
521    false_positive_rate: F,
522}
523
524/// Assessment of paradox severity
525#[allow(dead_code)]
526#[derive(Debug, Clone)]
527pub struct SeverityAssessment<F: Float + Debug> {
528    severity_metrics: Vec<SeverityMetric<F>>,
529    impact_analysis: ImpactAnalysis<F>,
530}
531
532/// Metric for assessing severity
533#[allow(dead_code)]
534#[derive(Debug, Clone)]
535pub struct SeverityMetric<F: Float + Debug> {
536    metric_name: String,
537    severity_score: F,
538    confidence: F,
539}
540
541/// Analysis of paradox impact
542#[allow(dead_code)]
543#[derive(Debug, Clone)]
544pub struct ImpactAnalysis<F: Float + Debug> {
545    temporal_impact: F,
546    causal_impact: F,
547    information_impact: F,
548}
549
550/// Strategy for resolving paradoxes
551#[allow(dead_code)]
552#[derive(Debug, Clone)]
553pub struct ResolutionStrategy<F: Float + Debug> {
554    strategy_name: String,
555    resolution_method: ResolutionMethod,
556    success_probability: F,
557    computational_cost: F,
558}
559
560/// Methods for paradox resolution
561#[allow(dead_code)]
562#[derive(Debug, Clone)]
563pub enum ResolutionMethod {
564    /// Novikov self-consistency principle
565    NovikOffPrinciple,
566    /// Many-worlds interpretation
567    ManyWorlds,
568    /// Self-consistency approach
569    SelfConsistency,
570    /// Quantum superposition approach
571    QuantumSuperposition,
572}
573
574/// System for maintaining consistency
575#[allow(dead_code)]
576#[derive(Debug, Clone)]
577pub struct ConsistencyMaintenance<F: Float + Debug> {
578    consistency_checks: Vec<ConsistencyCheck<F>>,
579    repair_mechanisms: Vec<RepairMechanism<F>>,
580}
581
582/// Check for temporal consistency
583#[allow(dead_code)]
584#[derive(Debug, Clone)]
585pub struct ConsistencyCheck<F: Float + Debug> {
586    check_name: String,
587    consistency_level: F,
588    violation_tolerance: F,
589}
590
591/// Mechanism for repairing inconsistencies
592#[allow(dead_code)]
593#[derive(Debug, Clone)]
594pub struct RepairMechanism<F: Float + Debug> {
595    mechanism_name: String,
596    repair_strength: F,
597    side_effects: F,
598}
599
600/// Mapper for spacetime analysis
601#[allow(dead_code)]
602#[derive(Debug, Clone)]
603pub struct SpacetimeMapper<F: Float + Debug> {
604    spacetime_model: SpacetimeModel<F>,
605    dimensional_analysis: DimensionalAnalysis<F>,
606    metric_tensor: MetricTensor<F>,
607}
608
609/// Model of spacetime structure
610#[allow(dead_code)]
611#[derive(Debug, Clone)]
612pub struct SpacetimeModel<F: Float + Debug> {
613    dimensions: usize,
614    curvature: F,
615    topology: TopologyType,
616    metric_signature: Vec<i8>,
617}
618
619/// Types of spacetime topology
620#[allow(dead_code)]
621#[derive(Debug, Clone)]
622pub enum TopologyType {
623    /// Euclidean topology
624    Euclidean,
625    /// Minkowski spacetime
626    Minkowski,
627    /// Riemannian manifold
628    Riemannian,
629    /// Quantum Lorentzian spacetime
630    LorentzianQuantum,
631}
632
633/// Analysis of dimensional structure
634#[allow(dead_code)]
635#[derive(Debug, Clone)]
636pub struct DimensionalAnalysis<F: Float + Debug> {
637    spatial_dimensions: usize,
638    temporal_dimensions: usize,
639    compactified_dimensions: usize,
640    extra_dimensions: Vec<ExtraDimension<F>>,
641}
642
643/// Extra dimension beyond standard spacetime
644#[allow(dead_code)]
645#[derive(Debug, Clone)]
646pub struct ExtraDimension<F: Float + Debug> {
647    dimension_type: DimensionType,
648    compactification_scale: F,
649    accessibility: F,
650}
651
652/// Types of dimensions
653#[allow(dead_code)]
654#[derive(Debug, Clone)]
655pub enum DimensionType {
656    /// Spatial dimension
657    Spatial,
658    /// Temporal dimension
659    Temporal,
660    /// Quantum dimension
661    Quantum,
662    /// Information dimension
663    Information,
664}
665
666/// Metric tensor for spacetime geometry
667#[allow(dead_code)]
668#[derive(Debug, Clone)]
669pub struct MetricTensor<F: Float + Debug> {
670    tensor_components: Vec<Vec<F>>,
671    determinant: F,
672    signature: Vec<i8>,
673    curvature_scalar: F,
674}
675
676impl<F: Float + Debug + Clone + FromPrimitive> MultiTimelineProcessor<F> {
677    /// Create new multi-timeline processor
678    pub fn new(num_dimensions: usize) -> Self {
679        let mut temporal_dimensions = Vec::new();
680
681        for i in 0..num_dimensions {
682            let dimension = TemporalDimension {
683                dimension_id: i,
684                time_resolution: F::from_f64(0.001).unwrap(), // 1ms resolution
685                causal_direction: CausalDirection::Forward,
686                branching_factor: F::from_f64(1.0).unwrap(),
687            };
688            temporal_dimensions.push(dimension);
689        }
690
691        MultiTimelineProcessor {
692            temporal_dimensions,
693            timeline_synchronizer: TimelineSynchronizer::new(),
694            causal_structure_analyzer: CausalStructureAnalyzer::new(),
695        }
696    }
697
698    /// Process temporal data across multiple timelines
699    pub fn process_temporal_data(&mut self, temporal_data: &[Array1<F>]) -> Result<Array1<F>> {
700        if temporal_data.is_empty() {
701            return Ok(Array1::zeros(0));
702        }
703
704        // Synchronize timelines
705        let synchronized_data = self
706            .timeline_synchronizer
707            .synchronize_timelines(temporal_data)?;
708
709        // Analyze causal structure
710        let causal_analysis = self
711            .causal_structure_analyzer
712            .analyze_causality(&synchronized_data)?;
713
714        // Integrate temporal dimensions
715        let integrated_result = self.integrate_temporal_dimensions(&causal_analysis)?;
716
717        Ok(integrated_result)
718    }
719
720    /// Integrate data across temporal dimensions
721    fn integrate_temporal_dimensions(&self, data: &Array1<F>) -> Result<Array1<F>> {
722        let mut integrated = data.clone();
723
724        // Apply temporal dimension processing
725        for dimension in &self.temporal_dimensions {
726            integrated = dimension.process_temporal_data(&integrated)?;
727        }
728
729        Ok(integrated)
730    }
731
732    /// Detect temporal anomalies
733    pub fn detect_temporal_anomalies(&self, data: &Array1<F>) -> Result<Vec<F>> {
734        let mut anomalies = Vec::new();
735
736        for (i, &value) in data.iter().enumerate() {
737            // Simple anomaly detection based on statistical deviation
738            let expected_value = F::from_f64(0.5).unwrap(); // Placeholder
739            let deviation = (value - expected_value).abs();
740            let threshold = F::from_f64(2.0).unwrap();
741
742            if deviation > threshold {
743                anomalies.push(F::from_usize(i).unwrap());
744            }
745        }
746
747        Ok(anomalies)
748    }
749}
750
751impl<F: Float + Debug + Clone + FromPrimitive> TemporalDimension<F> {
752    /// Process data through this temporal dimension
753    pub fn process_temporal_data(&self, data: &Array1<F>) -> Result<Array1<F>> {
754        let mut processed = data.clone();
755
756        // Apply causal direction filtering
757        match self.causal_direction {
758            CausalDirection::Forward => {
759                // Forward temporal processing
760                for i in 1..processed.len() {
761                    processed[i] = processed[i] + processed[i - 1] * F::from_f64(0.1).unwrap();
762                }
763            }
764            CausalDirection::Backward => {
765                // Backward temporal processing
766                for i in (0..processed.len() - 1).rev() {
767                    processed[i] = processed[i] + processed[i + 1] * F::from_f64(0.1).unwrap();
768                }
769            }
770            CausalDirection::Bidirectional => {
771                // Bidirectional processing
772                let forward = self.process_forward(&processed)?;
773                let backward = self.process_backward(&processed)?;
774                for i in 0..processed.len() {
775                    processed[i] = (forward[i] + backward[i]) / F::from_f64(2.0).unwrap();
776                }
777            }
778            CausalDirection::NonCausal => {
779                // No temporal coupling
780            }
781        }
782
783        Ok(processed)
784    }
785
786    /// Process data in forward direction
787    fn process_forward(&self, data: &Array1<F>) -> Result<Array1<F>> {
788        let mut forward = data.clone();
789        for i in 1..forward.len() {
790            forward[i] = forward[i] + forward[i - 1] * F::from_f64(0.05).unwrap();
791        }
792        Ok(forward)
793    }
794
795    /// Process data in backward direction
796    fn process_backward(&self, data: &Array1<F>) -> Result<Array1<F>> {
797        let mut backward = data.clone();
798        for i in (0..backward.len() - 1).rev() {
799            backward[i] = backward[i] + backward[i + 1] * F::from_f64(0.05).unwrap();
800        }
801        Ok(backward)
802    }
803}
804
805impl<F: Float + Debug + Clone + FromPrimitive> Default for TimelineSynchronizer<F> {
806    fn default() -> Self {
807        Self::new()
808    }
809}
810
811impl<F: Float + Debug + Clone + FromPrimitive> TimelineSynchronizer<F> {
812    /// Create new timeline synchronizer
813    pub fn new() -> Self {
814        TimelineSynchronizer {
815            synchronization_protocol: SynchronizationProtocol::GlobalClock,
816            temporal_alignment: F::from_f64(0.95).unwrap(),
817            causality_preservation: F::from_f64(0.9).unwrap(),
818        }
819    }
820
821    /// Synchronize multiple timelines
822    pub fn synchronize_timelines(&mut self, timelines: &[Array1<F>]) -> Result<Array1<F>> {
823        if timelines.is_empty() {
824            return Ok(Array1::zeros(0));
825        }
826
827        match self.synchronization_protocol {
828            SynchronizationProtocol::GlobalClock => self.global_clock_sync(timelines),
829            SynchronizationProtocol::LocalCausal => self.local_causal_sync(timelines),
830            SynchronizationProtocol::QuantumEntangled => self.quantum_entangled_sync(timelines),
831            SynchronizationProtocol::ConsciousnessGuided => {
832                self.consciousness_guided_sync(timelines)
833            }
834        }
835    }
836
837    /// Global clock synchronization
838    fn global_clock_sync(&self, timelines: &[Array1<F>]) -> Result<Array1<F>> {
839        // Find minimum length across all timelines
840        let min_len = timelines.iter().map(|t| t.len()).min().unwrap_or(0);
841        let mut synchronized = Array1::zeros(min_len);
842
843        // Average across timelines
844        for i in 0..min_len {
845            let mut sum = F::zero();
846            for timeline in timelines {
847                if i < timeline.len() {
848                    sum = sum + timeline[i];
849                }
850            }
851            synchronized[i] = sum / F::from_usize(timelines.len()).unwrap();
852        }
853
854        Ok(synchronized)
855    }
856
857    /// Local causal synchronization
858    fn local_causal_sync(&self, timelines: &[Array1<F>]) -> Result<Array1<F>> {
859        // Apply causal ordering constraints
860        let min_len = timelines.iter().map(|t| t.len()).min().unwrap_or(0);
861        let mut synchronized = Array1::zeros(min_len);
862
863        for i in 0..min_len {
864            let mut weighted_sum = F::zero();
865            let mut total_weight = F::zero();
866
867            for (j, timeline) in timelines.iter().enumerate() {
868                if i < timeline.len() {
869                    // Weight by causal relevance (simplified)
870                    let causal_weight = F::from_f64(1.0).unwrap() / (F::from_usize(j + 1).unwrap());
871                    weighted_sum = weighted_sum + timeline[i] * causal_weight;
872                    total_weight = total_weight + causal_weight;
873                }
874            }
875
876            if total_weight > F::zero() {
877                synchronized[i] = weighted_sum / total_weight;
878            }
879        }
880
881        Ok(synchronized)
882    }
883
884    /// Quantum entangled synchronization
885    fn quantum_entangled_sync(&self, timelines: &[Array1<F>]) -> Result<Array1<F>> {
886        // Apply quantum entanglement principles
887        let min_len = timelines.iter().map(|t| t.len()).min().unwrap_or(0);
888        let mut synchronized = Array1::zeros(min_len);
889
890        for i in 0..min_len {
891            // Quantum superposition of timeline states
892            let mut entangled_state = F::zero();
893            for timeline in timelines {
894                if i < timeline.len() {
895                    // Apply quantum phase factors
896                    let phase_factor =
897                        F::from_f64((i as f64 * std::f64::consts::PI / 4.0).cos()).unwrap();
898                    entangled_state = entangled_state + timeline[i] * phase_factor;
899                }
900            }
901
902            // Normalize by square root of number of timelines (quantum normalization)
903            let normalization = F::from_usize(timelines.len()).unwrap().sqrt();
904            synchronized[i] = entangled_state / normalization;
905        }
906
907        Ok(synchronized)
908    }
909
910    /// Consciousness-guided synchronization
911    fn consciousness_guided_sync(&self, timelines: &[Array1<F>]) -> Result<Array1<F>> {
912        // Apply consciousness principles for synchronization
913        let min_len = timelines.iter().map(|t| t.len()).min().unwrap_or(0);
914        let mut synchronized = Array1::zeros(min_len);
915
916        for i in 0..min_len {
917            // Consciousness-weighted integration
918            let mut consciousness_sum = F::zero();
919            let mut consciousness_weight_total = F::zero();
920
921            for timeline in timelines {
922                if i < timeline.len() {
923                    // Consciousness weight based on timeline coherence
924                    let coherence = self.calculate_timeline_coherence(timeline)?;
925                    consciousness_sum = consciousness_sum + timeline[i] * coherence;
926                    consciousness_weight_total = consciousness_weight_total + coherence;
927                }
928            }
929
930            if consciousness_weight_total > F::zero() {
931                synchronized[i] = consciousness_sum / consciousness_weight_total;
932            }
933        }
934
935        Ok(synchronized)
936    }
937
938    /// Calculate coherence of a timeline
939    fn calculate_timeline_coherence(&self, timeline: &Array1<F>) -> Result<F> {
940        if timeline.len() < 2 {
941            return Ok(F::from_f64(1.0).unwrap());
942        }
943
944        // Calculate coherence as inverse of variance
945        let mean = timeline.iter().fold(F::zero(), |acc, &x| acc + x)
946            / F::from_usize(timeline.len()).unwrap();
947        let variance = timeline
948            .iter()
949            .fold(F::zero(), |acc, &x| acc + (x - mean) * (x - mean))
950            / F::from_usize(timeline.len()).unwrap();
951
952        let coherence = F::from_f64(1.0).unwrap() / (F::from_f64(1.0).unwrap() + variance);
953        Ok(coherence)
954    }
955}
956
957impl<F: Float + Debug + Clone + FromPrimitive> Default for CausalStructureAnalyzer<F> {
958    fn default() -> Self {
959        Self::new()
960    }
961}
962
963impl<F: Float + Debug + Clone + FromPrimitive> CausalStructureAnalyzer<F> {
964    /// Create new causal structure analyzer
965    pub fn new() -> Self {
966        CausalStructureAnalyzer {
967            causal_graph: CausalGraph::new(),
968            intervention_effects: Vec::new(),
969            counterfactual_reasoning: CounterfactualReasoning::new(),
970        }
971    }
972
973    /// Analyze causality in temporal data
974    pub fn analyze_causality(&mut self, data: &Array1<F>) -> Result<Array1<F>> {
975        // Build causal graph from data
976        self.causal_graph.build_from_data(data)?;
977
978        // Compute intervention effects
979        self.compute_intervention_effects(data)?;
980
981        // Apply counterfactual reasoning
982        let counterfactual_result = self.counterfactual_reasoning.reason_about_data(data)?;
983
984        Ok(counterfactual_result)
985    }
986
987    /// Compute effects of hypothetical interventions
988    fn compute_intervention_effects(&mut self, data: &Array1<F>) -> Result<()> {
989        self.intervention_effects.clear();
990
991        // Compute intervention effects for each node
992        for (i, _) in data.iter().enumerate() {
993            let intervention_effect = InterventionEffect {
994                intervention_target: i,
995                intervention_value: F::from_f64(1.0).unwrap(),
996                causal_effect: F::from_f64(0.5).unwrap(), // Simplified calculation
997                confidence_interval: (F::from_f64(0.3).unwrap(), F::from_f64(0.7).unwrap()),
998            };
999            self.intervention_effects.push(intervention_effect);
1000        }
1001
1002        Ok(())
1003    }
1004
1005    /// Get causal strength between variables
1006    pub fn get_causal_strength(&self, source: usize, target: usize) -> Result<F> {
1007        for edge in &self.causal_graph.edges {
1008            if edge.source == source && edge.target == target {
1009                return Ok(edge.strength);
1010            }
1011        }
1012        Ok(F::zero())
1013    }
1014}
1015
1016impl<F: Float + Debug + Clone + FromPrimitive> Default for CausalGraph<F> {
1017    fn default() -> Self {
1018        Self::new()
1019    }
1020}
1021
1022impl<F: Float + Debug + Clone + FromPrimitive> CausalGraph<F> {
1023    /// Create new causal graph
1024    pub fn new() -> Self {
1025        CausalGraph {
1026            nodes: Vec::new(),
1027            edges: Vec::new(),
1028            confounders: Vec::new(),
1029        }
1030    }
1031
1032    /// Build causal graph from data
1033    pub fn build_from_data(&mut self, data: &Array1<F>) -> Result<()> {
1034        // Create nodes for each data point
1035        self.nodes.clear();
1036        for (i, &value) in data.iter().enumerate() {
1037            let node = CausalNode {
1038                node_id: i,
1039                variable_name: format!("var_{}", i),
1040                node_type: NodeType::Observable,
1041                value,
1042            };
1043            self.nodes.push(node);
1044        }
1045
1046        // Create edges based on temporal ordering and correlation
1047        self.edges.clear();
1048        for i in 0..data.len().saturating_sub(1) {
1049            let correlation = self.calculate_correlation(data[i], data[i + 1])?;
1050            let edge = CausalEdge {
1051                source: i,
1052                target: i + 1,
1053                strength: correlation,
1054                edge_type: EdgeType::Direct,
1055            };
1056            self.edges.push(edge);
1057        }
1058
1059        Ok(())
1060    }
1061
1062    /// Calculate correlation between two values
1063    fn calculate_correlation(&self, value1: F, value2: F) -> Result<F> {
1064        // Simplified correlation calculation
1065        let diff = (value1 - value2).abs();
1066        let max_val = value1.max(value2);
1067
1068        if max_val > F::zero() {
1069            Ok(F::from_f64(1.0).unwrap() - diff / max_val)
1070        } else {
1071            Ok(F::from_f64(1.0).unwrap())
1072        }
1073    }
1074}
1075
1076impl<F: Float + Debug + Clone + FromPrimitive> Default for CounterfactualReasoning<F> {
1077    fn default() -> Self {
1078        Self::new()
1079    }
1080}
1081
1082impl<F: Float + Debug + Clone + FromPrimitive> CounterfactualReasoning<F> {
1083    /// Create new counterfactual reasoning system
1084    pub fn new() -> Self {
1085        CounterfactualReasoning {
1086            counterfactual_queries: Vec::new(),
1087            reasoning_engine: ReasoningEngine::new(),
1088        }
1089    }
1090
1091    /// Reason about counterfactual scenarios
1092    pub fn reason_about_data(&mut self, data: &Array1<F>) -> Result<Array1<F>> {
1093        let mut counterfactual_result = data.clone();
1094
1095        // Apply counterfactual transformations
1096        for (i, value) in counterfactual_result.iter_mut().enumerate() {
1097            // Generate counterfactual query
1098            let query = CounterfactualQuery {
1099                query_id: i,
1100                intervention: format!("set_var_{}_to_zero", i),
1101                outcome: format!("observe_var_{}", i),
1102                counterfactual_probability: F::from_f64(0.5).unwrap(),
1103            };
1104            self.counterfactual_queries.push(query);
1105
1106            // Apply counterfactual reasoning
1107            let counterfactual_adjustment = self.reasoning_engine.compute_counterfactual(*value)?;
1108            *value = *value + counterfactual_adjustment;
1109        }
1110
1111        Ok(counterfactual_result)
1112    }
1113}
1114
1115impl<F: Float + Debug + Clone + FromPrimitive> Default for ReasoningEngine<F> {
1116    fn default() -> Self {
1117        Self::new()
1118    }
1119}
1120
1121impl<F: Float + Debug + Clone + FromPrimitive> ReasoningEngine<F> {
1122    /// Create new reasoning engine
1123    pub fn new() -> Self {
1124        ReasoningEngine {
1125            reasoning_type: ReasoningType::Counterfactual,
1126            inference_strength: F::from_f64(0.8).unwrap(),
1127            uncertainty_handling: UncertaintyHandling::Bayesian,
1128        }
1129    }
1130
1131    /// Compute counterfactual adjustment
1132    pub fn compute_counterfactual(&self, observed_value: F) -> Result<F> {
1133        match self.reasoning_type {
1134            ReasoningType::Counterfactual => {
1135                // Simple counterfactual adjustment
1136                let adjustment =
1137                    observed_value * F::from_f64(0.1).unwrap() * self.inference_strength;
1138                Ok(adjustment)
1139            }
1140            _ => Ok(F::zero()),
1141        }
1142    }
1143}
1144
1145impl<F: Float + Debug + Clone + FromPrimitive> Default for TemporalParadoxResolver<F> {
1146    fn default() -> Self {
1147        Self::new()
1148    }
1149}
1150
1151impl<F: Float + Debug + Clone + FromPrimitive> TemporalParadoxResolver<F> {
1152    /// Create new temporal paradox resolver
1153    pub fn new() -> Self {
1154        TemporalParadoxResolver {
1155            paradox_detection: ParadoxDetection::new(),
1156            resolution_strategies: vec![
1157                ResolutionStrategy::new(
1158                    "self_consistency".to_string(),
1159                    ResolutionMethod::SelfConsistency,
1160                ),
1161                ResolutionStrategy::new("many_worlds".to_string(), ResolutionMethod::ManyWorlds),
1162            ],
1163            consistency_maintenance: ConsistencyMaintenance::new(),
1164        }
1165    }
1166
1167    /// Resolve temporal paradoxes in data
1168    pub fn resolve_paradoxes(&mut self, temporal_data: &Array1<F>) -> Result<Array1<F>> {
1169        // Detect paradoxes
1170        let paradoxes = self.paradox_detection.detect_paradoxes(temporal_data)?;
1171
1172        if paradoxes.is_empty() {
1173            return Ok(temporal_data.clone());
1174        }
1175
1176        // Apply resolution strategies
1177        let mut resolved_data = temporal_data.clone();
1178        for strategy in &self.resolution_strategies {
1179            resolved_data = strategy.apply_resolution(&resolved_data)?;
1180        }
1181
1182        // Maintain consistency
1183        resolved_data = self
1184            .consistency_maintenance
1185            .maintain_consistency(&resolved_data)?;
1186
1187        Ok(resolved_data)
1188    }
1189}
1190
1191impl<F: Float + Debug + Clone + FromPrimitive> Default for ParadoxDetection<F> {
1192    fn default() -> Self {
1193        Self::new()
1194    }
1195}
1196
1197impl<F: Float + Debug + Clone + FromPrimitive> ParadoxDetection<F> {
1198    /// Create new paradox detection system
1199    pub fn new() -> Self {
1200        ParadoxDetection {
1201            paradox_types: vec![
1202                ParadoxType::Grandfather,
1203                ParadoxType::Bootstrap,
1204                ParadoxType::Information,
1205                ParadoxType::Causal,
1206            ],
1207            detection_algorithms: vec![DetectionAlgorithm {
1208                algorithm_name: "causal_loop_detector".to_string(),
1209                detection_sensitivity: F::from_f64(0.9).unwrap(),
1210                false_positive_rate: F::from_f64(0.05).unwrap(),
1211            }],
1212            severity_assessment: SeverityAssessment::new(),
1213        }
1214    }
1215
1216    /// Detect paradoxes in temporal data
1217    pub fn detect_paradoxes(&mut self, data: &Array1<F>) -> Result<Vec<usize>> {
1218        let mut detected_paradoxes = Vec::new();
1219
1220        // Simple paradox detection based on causal violations
1221        for i in 1..data.len() {
1222            // Check for causal violations (effect before cause)
1223            if data[i] > data[i - 1] * F::from_f64(2.0).unwrap() {
1224                detected_paradoxes.push(i);
1225            }
1226        }
1227
1228        Ok(detected_paradoxes)
1229    }
1230}
1231
1232impl<F: Float + Debug + Clone + FromPrimitive> Default for SeverityAssessment<F> {
1233    fn default() -> Self {
1234        Self::new()
1235    }
1236}
1237
1238impl<F: Float + Debug + Clone + FromPrimitive> SeverityAssessment<F> {
1239    /// Create new severity assessment system
1240    pub fn new() -> Self {
1241        SeverityAssessment {
1242            severity_metrics: vec![SeverityMetric {
1243                metric_name: "temporal_disruption".to_string(),
1244                severity_score: F::from_f64(0.5).unwrap(),
1245                confidence: F::from_f64(0.8).unwrap(),
1246            }],
1247            impact_analysis: ImpactAnalysis {
1248                temporal_impact: F::from_f64(0.3).unwrap(),
1249                causal_impact: F::from_f64(0.4).unwrap(),
1250                information_impact: F::from_f64(0.2).unwrap(),
1251            },
1252        }
1253    }
1254}
1255
1256impl<F: Float + Debug + Clone + FromPrimitive> ResolutionStrategy<F> {
1257    /// Create new resolution strategy
1258    pub fn new(name: String, method: ResolutionMethod) -> Self {
1259        ResolutionStrategy {
1260            strategy_name: name,
1261            resolution_method: method,
1262            success_probability: F::from_f64(0.8).unwrap(),
1263            computational_cost: F::from_f64(0.5).unwrap(),
1264        }
1265    }
1266
1267    /// Apply resolution strategy to data
1268    pub fn apply_resolution(&self, data: &Array1<F>) -> Result<Array1<F>> {
1269        match self.resolution_method {
1270            ResolutionMethod::SelfConsistency => self.apply_self_consistency(data),
1271            ResolutionMethod::ManyWorlds => self.apply_many_worlds(data),
1272            ResolutionMethod::QuantumSuperposition => self.apply_quantum_superposition(data),
1273            ResolutionMethod::NovikOffPrinciple => self.apply_novikov_principle(data),
1274        }
1275    }
1276
1277    /// Apply self-consistency principle
1278    fn apply_self_consistency(&self, data: &Array1<F>) -> Result<Array1<F>> {
1279        let mut consistent_data = data.clone();
1280
1281        // Enforce self-consistency through iterative adjustment
1282        for iteration in 0..10 {
1283            let mut adjusted = false;
1284
1285            for i in 1..consistent_data.len() {
1286                // Check consistency constraint
1287                if consistent_data[i] < consistent_data[i - 1] {
1288                    // Adjust to maintain consistency
1289                    consistent_data[i] = consistent_data[i - 1] * F::from_f64(1.01).unwrap();
1290                    adjusted = true;
1291                }
1292            }
1293
1294            if !adjusted {
1295                break;
1296            }
1297        }
1298
1299        Ok(consistent_data)
1300    }
1301
1302    /// Apply many-worlds interpretation
1303    fn apply_many_worlds(&self, data: &Array1<F>) -> Result<Array1<F>> {
1304        // Create superposition of possible worlds
1305        let mut many_worlds_data = data.clone();
1306
1307        for value in many_worlds_data.iter_mut() {
1308            // Superposition of multiple world states
1309            let world_1 = *value;
1310            let world_2 = *value * F::from_f64(1.1).unwrap();
1311            let world_3 = *value * F::from_f64(0.9).unwrap();
1312
1313            // Probabilistic combination
1314            *value = (world_1 + world_2 + world_3) / F::from_f64(3.0).unwrap();
1315        }
1316
1317        Ok(many_worlds_data)
1318    }
1319
1320    /// Apply quantum superposition
1321    fn apply_quantum_superposition(&self, data: &Array1<F>) -> Result<Array1<F>> {
1322        let mut superposition_data = data.clone();
1323
1324        for (i, value) in superposition_data.iter_mut().enumerate() {
1325            // Quantum phase modulation
1326            let phase = F::from_f64(i as f64 * std::f64::consts::PI / 4.0).unwrap();
1327            let amplitude = F::from_f64(0.8).unwrap();
1328
1329            *value = *value * amplitude * phase.cos();
1330        }
1331
1332        Ok(superposition_data)
1333    }
1334
1335    /// Apply Novikov self-consistency principle
1336    fn apply_novikov_principle(&self, data: &Array1<F>) -> Result<Array1<F>> {
1337        // Ensure causal consistency through the Novikov principle
1338        let mut novikov_data = data.clone();
1339
1340        // Iteratively adjust to prevent paradoxes
1341        for _ in 0..5 {
1342            for i in 1..novikov_data.len() {
1343                // Ensure causal ordering
1344                if novikov_data[i] > novikov_data[i - 1] * F::from_f64(1.5).unwrap() {
1345                    // Reduce to maintain causal consistency
1346                    novikov_data[i] = novikov_data[i - 1] * F::from_f64(1.2).unwrap();
1347                }
1348            }
1349        }
1350
1351        Ok(novikov_data)
1352    }
1353}
1354
1355impl<F: Float + Debug + Clone + FromPrimitive> Default for ConsistencyMaintenance<F> {
1356    fn default() -> Self {
1357        Self::new()
1358    }
1359}
1360
1361impl<F: Float + Debug + Clone + FromPrimitive> ConsistencyMaintenance<F> {
1362    /// Create new consistency maintenance system
1363    pub fn new() -> Self {
1364        ConsistencyMaintenance {
1365            consistency_checks: vec![ConsistencyCheck {
1366                check_name: "causal_ordering".to_string(),
1367                consistency_level: F::from_f64(0.9).unwrap(),
1368                violation_tolerance: F::from_f64(0.1).unwrap(),
1369            }],
1370            repair_mechanisms: vec![RepairMechanism {
1371                mechanism_name: "gradient_smoothing".to_string(),
1372                repair_strength: F::from_f64(0.8).unwrap(),
1373                side_effects: F::from_f64(0.1).unwrap(),
1374            }],
1375        }
1376    }
1377
1378    /// Maintain consistency in temporal data
1379    pub fn maintain_consistency(&mut self, data: &Array1<F>) -> Result<Array1<F>> {
1380        let mut consistent_data = data.clone();
1381
1382        // Apply consistency checks
1383        for check in &self.consistency_checks {
1384            if !self.check_consistency(&consistent_data, check)? {
1385                // Apply repair mechanisms
1386                for mechanism in &self.repair_mechanisms {
1387                    consistent_data = mechanism.apply_repair(&consistent_data)?;
1388                }
1389            }
1390        }
1391
1392        Ok(consistent_data)
1393    }
1394
1395    /// Check if data satisfies consistency requirements
1396    fn check_consistency(&self, data: &Array1<F>, check: &ConsistencyCheck<F>) -> Result<bool> {
1397        match check.check_name.as_str() {
1398            "causal_ordering" => {
1399                // Check causal ordering consistency
1400                for i in 1..data.len() {
1401                    let ratio = data[i] / data[i - 1];
1402                    if ratio > F::from_f64(2.0).unwrap() {
1403                        // Arbitrary threshold
1404                        return Ok(false);
1405                    }
1406                }
1407                Ok(true)
1408            }
1409            _ => Ok(true),
1410        }
1411    }
1412}
1413
1414impl<F: Float + Debug + Clone + FromPrimitive> RepairMechanism<F> {
1415    /// Apply repair mechanism to data
1416    pub fn apply_repair(&self, data: &Array1<F>) -> Result<Array1<F>> {
1417        match self.mechanism_name.as_str() {
1418            "gradient_smoothing" => {
1419                let mut repaired_data = data.clone();
1420
1421                // Apply gradient smoothing
1422                for i in 1..repaired_data.len() - 1 {
1423                    let gradient_left = repaired_data[i] - repaired_data[i - 1];
1424                    let gradient_right = repaired_data[i + 1] - repaired_data[i];
1425
1426                    // Smooth large gradient changes
1427                    if (gradient_right - gradient_left).abs() > F::from_f64(1.0).unwrap() {
1428                        let smoothed_value = (repaired_data[i - 1] + repaired_data[i + 1])
1429                            / F::from_f64(2.0).unwrap();
1430                        repaired_data[i] = repaired_data[i]
1431                            * (F::from_f64(1.0).unwrap() - self.repair_strength)
1432                            + smoothed_value * self.repair_strength;
1433                    }
1434                }
1435
1436                Ok(repaired_data)
1437            }
1438            _ => Ok(data.clone()),
1439        }
1440    }
1441}
1442
1443impl<F: Float + Debug + Clone + FromPrimitive> Default for SpacetimeMapper<F> {
1444    fn default() -> Self {
1445        Self::new()
1446    }
1447}
1448
1449impl<F: Float + Debug + Clone + FromPrimitive> SpacetimeMapper<F> {
1450    /// Create new spacetime mapper
1451    pub fn new() -> Self {
1452        SpacetimeMapper {
1453            spacetime_model: SpacetimeModel::new(),
1454            dimensional_analysis: DimensionalAnalysis::new(),
1455            metric_tensor: MetricTensor::new(),
1456        }
1457    }
1458
1459    /// Map data onto spacetime structure
1460    pub fn map_to_spacetime(&self, data: &Array1<F>) -> Result<Array1<F>> {
1461        // Apply spacetime transformation
1462        let mut spacetime_data = data.clone();
1463
1464        // Apply metric tensor transformation
1465        spacetime_data = self.metric_tensor.transform(&spacetime_data)?;
1466
1467        // Apply dimensional analysis
1468        spacetime_data = self
1469            .dimensional_analysis
1470            .analyze_dimensions(&spacetime_data)?;
1471
1472        Ok(spacetime_data)
1473    }
1474}
1475
1476impl<F: Float + Debug + Clone + FromPrimitive> Default for SpacetimeModel<F> {
1477    fn default() -> Self {
1478        Self::new()
1479    }
1480}
1481
1482impl<F: Float + Debug + Clone + FromPrimitive> SpacetimeModel<F> {
1483    /// Create new spacetime model
1484    pub fn new() -> Self {
1485        SpacetimeModel {
1486            dimensions: 4, // 3 spatial + 1 temporal
1487            curvature: F::from_f64(0.01).unwrap(),
1488            topology: TopologyType::Minkowski,
1489            metric_signature: vec![1, -1, -1, -1], // Minkowski signature
1490        }
1491    }
1492}
1493
1494impl<F: Float + Debug + Clone + FromPrimitive> Default for DimensionalAnalysis<F> {
1495    fn default() -> Self {
1496        Self::new()
1497    }
1498}
1499
1500impl<F: Float + Debug + Clone + FromPrimitive> DimensionalAnalysis<F> {
1501    /// Create new dimensional analysis
1502    pub fn new() -> Self {
1503        DimensionalAnalysis {
1504            spatial_dimensions: 3,
1505            temporal_dimensions: 1,
1506            compactified_dimensions: 0,
1507            extra_dimensions: Vec::new(),
1508        }
1509    }
1510
1511    /// Analyze dimensional structure of data
1512    pub fn analyze_dimensions(&self, data: &Array1<F>) -> Result<Array1<F>> {
1513        let mut dimensional_data = data.clone();
1514
1515        // Apply dimensional scaling
1516        let dimension_factor =
1517            F::from_usize(self.spatial_dimensions + self.temporal_dimensions).unwrap();
1518        dimensional_data.mapv_inplace(|x| x / dimension_factor.sqrt());
1519
1520        Ok(dimensional_data)
1521    }
1522}
1523
1524impl<F: Float + Debug + Clone + FromPrimitive> Default for MetricTensor<F> {
1525    fn default() -> Self {
1526        Self::new()
1527    }
1528}
1529
1530impl<F: Float + Debug + Clone + FromPrimitive> MetricTensor<F> {
1531    /// Create new metric tensor
1532    pub fn new() -> Self {
1533        // 4x4 Minkowski metric tensor
1534        let mut tensor_components = vec![vec![F::zero(); 4]; 4];
1535        tensor_components[0][0] = F::from_f64(1.0).unwrap(); // time-time
1536        tensor_components[1][1] = F::from_f64(-1.0).unwrap(); // x-x
1537        tensor_components[2][2] = F::from_f64(-1.0).unwrap(); // y-y
1538        tensor_components[3][3] = F::from_f64(-1.0).unwrap(); // z-z
1539
1540        MetricTensor {
1541            tensor_components,
1542            determinant: F::from_f64(-1.0).unwrap(),
1543            signature: vec![1, -1, -1, -1],
1544            curvature_scalar: F::zero(),
1545        }
1546    }
1547
1548    /// Transform data using metric tensor
1549    pub fn transform(&self, data: &Array1<F>) -> Result<Array1<F>> {
1550        let mut transformed_data = data.clone();
1551
1552        // Apply metric transformation (simplified)
1553        for (i, value) in transformed_data.iter_mut().enumerate() {
1554            let metric_component = if i < self.tensor_components.len() {
1555                self.tensor_components[i % 4][i % 4]
1556            } else {
1557                F::from_f64(1.0).unwrap()
1558            };
1559
1560            *value = *value * metric_component;
1561        }
1562
1563        Ok(transformed_data)
1564    }
1565}