1use scirs2_core::ndarray::Array1;
8use scirs2_core::numeric::{Float, FromPrimitive};
9use std::collections::HashMap;
10use std::fmt::Debug;
11
12use crate::error::Result;
13
14#[allow(dead_code)]
16#[derive(Debug, Clone)]
17pub struct MultiTimelineProcessor<F: Float + Debug> {
18 temporal_dimensions: Vec<TemporalDimension<F>>,
19 timeline_synchronizer: TimelineSynchronizer<F>,
20 causal_structure_analyzer: CausalStructureAnalyzer<F>,
21}
22
23#[allow(dead_code)]
25#[derive(Debug, Clone)]
26pub struct TemporalDimension<F: Float + Debug> {
27 dimension_id: usize,
28 time_resolution: F,
29 causal_direction: CausalDirection,
30 branching_factor: F,
31}
32
33#[allow(dead_code)]
35#[derive(Debug, Clone)]
36pub enum CausalDirection {
37 Forward,
39 Backward,
41 Bidirectional,
43 NonCausal,
45}
46
47#[allow(dead_code)]
49#[derive(Debug, Clone)]
50pub struct TimelineSynchronizer<F: Float + Debug> {
51 synchronization_protocol: SynchronizationProtocol,
52 temporal_alignment: F,
53 causality_preservation: F,
54}
55
56#[allow(dead_code)]
58#[derive(Debug, Clone)]
59pub enum SynchronizationProtocol {
60 GlobalClock,
62 LocalCausal,
64 QuantumEntangled,
66 ConsciousnessGuided,
68}
69
70#[allow(dead_code)]
72#[derive(Debug, Clone)]
73pub struct CausalStructureAnalyzer<F: Float + Debug> {
74 causal_graph: CausalGraph<F>,
75 intervention_effects: Vec<InterventionEffect<F>>,
76 counterfactual_reasoning: CounterfactualReasoning<F>,
77}
78
79#[allow(dead_code)]
81#[derive(Debug, Clone)]
82pub struct CausalGraph<F: Float + Debug> {
83 nodes: Vec<CausalNode<F>>,
84 edges: Vec<CausalEdge<F>>,
85 confounders: Vec<Confounder<F>>,
86}
87
88#[allow(dead_code)]
90#[derive(Debug, Clone)]
91pub struct CausalNode<F: Float + Debug> {
92 node_id: usize,
93 variable_name: String,
94 node_type: NodeType,
95 value: F,
96}
97
98#[allow(dead_code)]
100#[derive(Debug, Clone)]
101pub enum NodeType {
102 Observable,
104 Hidden,
106 Intervention,
108 Outcome,
110}
111
112#[allow(dead_code)]
114#[derive(Debug, Clone)]
115pub struct CausalEdge<F: Float + Debug> {
116 source: usize,
117 target: usize,
118 strength: F,
119 edge_type: EdgeType,
120}
121
122#[allow(dead_code)]
124#[derive(Debug, Clone)]
125pub enum EdgeType {
126 Direct,
128 Mediated,
130 Confounded,
132 Collider,
134}
135
136#[allow(dead_code)]
138#[derive(Debug, Clone)]
139pub struct Confounder<F: Float + Debug> {
140 confounder_id: usize,
141 affected_variables: Vec<usize>,
142 confounding_strength: F,
143}
144
145#[allow(dead_code)]
147#[derive(Debug, Clone)]
148pub struct InterventionEffect<F: Float + Debug> {
149 intervention_target: usize,
150 intervention_value: F,
151 causal_effect: F,
152 confidence_interval: (F, F),
153}
154
155#[allow(dead_code)]
157#[derive(Debug, Clone)]
158pub struct CounterfactualReasoning<F: Float + Debug> {
159 counterfactual_queries: Vec<CounterfactualQuery<F>>,
160 reasoning_engine: ReasoningEngine<F>,
161}
162
163#[allow(dead_code)]
165#[derive(Debug, Clone)]
166pub struct CounterfactualQuery<F: Float + Debug> {
167 query_id: usize,
168 intervention: String,
169 outcome: String,
170 counterfactual_probability: F,
171}
172
173#[allow(dead_code)]
175#[derive(Debug, Clone)]
176pub struct ReasoningEngine<F: Float + Debug> {
177 reasoning_type: ReasoningType,
178 inference_strength: F,
179 uncertainty_handling: UncertaintyHandling,
180}
181
182#[allow(dead_code)]
184#[derive(Debug, Clone)]
185pub enum ReasoningType {
186 Deductive,
188 Inductive,
190 Abductive,
192 Counterfactual,
194}
195
196#[allow(dead_code)]
198#[derive(Debug, Clone)]
199pub enum UncertaintyHandling {
200 Bayesian,
202 Fuzzy,
204 Possibilistic,
206 Quantum,
208}
209
210#[allow(dead_code)]
212#[derive(Debug, Clone)]
213pub struct CausalAnalysisEngine<F: Float + Debug> {
214 causal_discovery: CausalDiscovery<F>,
215 causal_inference: CausalInference<F>,
216 effect_estimation: EffectEstimation<F>,
217}
218
219#[allow(dead_code)]
221#[derive(Debug, Clone)]
222pub struct CausalDiscovery<F: Float + Debug> {
223 discovery_algorithm: DiscoveryAlgorithm,
224 constraint_tests: Vec<ConstraintTest<F>>,
225 structure_learning: StructureLearning<F>,
226}
227
228#[allow(dead_code)]
230#[derive(Debug, Clone)]
231pub enum DiscoveryAlgorithm {
232 PC,
234 GES,
236 GIES,
238 DirectLiNGAM,
240 QuantumCausal,
242}
243
244#[allow(dead_code)]
246#[derive(Debug, Clone)]
247pub struct ConstraintTest<F: Float + Debug> {
248 test_type: TestType,
249 significance_level: F,
250 test_statistic: F,
251}
252
253#[allow(dead_code)]
255#[derive(Debug, Clone)]
256pub enum TestType {
257 Independence,
259 ConditionalIndependence,
261 InstrumentalVariable,
263 Randomization,
265}
266
267#[allow(dead_code)]
269#[derive(Debug, Clone)]
270pub struct StructureLearning<F: Float + Debug> {
271 learning_method: LearningMethod,
272 regularization: F,
273 model_selection: ModelSelection,
274}
275
276#[allow(dead_code)]
278#[derive(Debug, Clone)]
279pub enum LearningMethod {
280 ScoreBased,
282 ConstraintBased,
284 Hybrid,
286 DeepLearning,
288}
289
290#[allow(dead_code)]
292#[derive(Debug, Clone)]
293pub enum ModelSelection {
294 BIC,
296 AIC,
298 CrossValidation,
300 Bayesian,
302}
303
304#[allow(dead_code)]
306#[derive(Debug, Clone)]
307pub struct CausalInference<F: Float + Debug> {
308 inference_framework: InferenceFramework,
309 identification_strategy: IdentificationStrategy<F>,
310 sensitivity_analysis: SensitivityAnalysis<F>,
311}
312
313#[allow(dead_code)]
315#[derive(Debug, Clone)]
316pub enum InferenceFramework {
317 PotentialOutcomes,
319 StructuralEquations,
321 GraphicalModels,
323 QuantumCausal,
325}
326
327#[allow(dead_code)]
329#[derive(Debug, Clone)]
330pub struct IdentificationStrategy<F: Float + Debug> {
331 strategy_type: StrategyType,
332 assumptions: Vec<CausalAssumption>,
333 validity_checks: Vec<ValidityCheck<F>>,
334}
335
336#[allow(dead_code)]
338#[derive(Debug, Clone)]
339pub enum StrategyType {
340 ResourceAllocation,
342 AttentionControl,
344 LearningAdjustment,
346 ConsciousnessModulation,
348}
349
350#[allow(dead_code)]
352#[derive(Debug, Clone)]
353pub enum CausalAssumption {
354 Exchangeability,
356 PositivityConsistency,
358 NoInterference,
360 MonotonicityStable,
362}
363
364#[allow(dead_code)]
366#[derive(Debug, Clone)]
367pub struct ValidityCheck<F: Float + Debug> {
368 check_type: CheckType,
369 validity_score: F,
370 diagnostic_statistics: Vec<F>,
371}
372
373#[allow(dead_code)]
375#[derive(Debug, Clone)]
376pub enum CheckType {
377 PlaceboTest,
379 FalsificationTest,
381 RobustnessCheck,
383 SensitivityAnalysis,
385}
386
387#[allow(dead_code)]
389#[derive(Debug, Clone)]
390pub struct SensitivityAnalysis<F: Float + Debug> {
391 sensitivity_parameters: Vec<SensitivityParameter<F>>,
392 robustness_bounds: RobustnessBounds<F>,
393}
394
395#[allow(dead_code)]
397#[derive(Debug, Clone)]
398pub struct SensitivityParameter<F: Float + Debug> {
399 parameter_name: String,
400 parameter_range: (F, F),
401 effect_sensitivity: F,
402}
403
404#[allow(dead_code)]
406#[derive(Debug, Clone)]
407pub struct RobustnessBounds<F: Float + Debug> {
408 lower_bound: F,
409 upper_bound: F,
410 confidence_level: F,
411}
412
413#[allow(dead_code)]
415#[derive(Debug, Clone)]
416pub struct EffectEstimation<F: Float + Debug> {
417 estimation_method: EstimationMethod,
418 effect_measures: Vec<EffectMeasure<F>>,
419 variance_estimation: VarianceEstimation<F>,
420}
421
422#[allow(dead_code)]
424#[derive(Debug, Clone)]
425pub enum EstimationMethod {
426 DoublyRobust,
428 InstrumentalVariable,
430 RegressionDiscontinuity,
432 MatchingQuantum,
434}
435
436#[allow(dead_code)]
438#[derive(Debug, Clone)]
439pub struct EffectMeasure<F: Float + Debug> {
440 measure_type: MeasureType,
441 point_estimate: F,
442 confidence_interval: (F, F),
443 p_value: F,
444}
445
446#[allow(dead_code)]
448#[derive(Debug, Clone)]
449pub enum MeasureType {
450 AverageTreatmentEffect,
452 ConditionalAverageTreatmentEffect,
454 LocalAverageTreatmentEffect,
456 QuantileEffectTreatment,
458}
459
460#[allow(dead_code)]
462#[derive(Debug, Clone)]
463pub struct VarianceEstimation<F: Float + Debug> {
464 estimation_type: VarianceEstimationType,
465 bootstrap_samples: usize,
466 variance_estimate: F,
467}
468
469#[allow(dead_code)]
471#[derive(Debug, Clone)]
472pub enum VarianceEstimationType {
473 Analytical,
475 Bootstrap,
477 Jackknife,
479 Bayesian,
481}
482
483#[allow(dead_code)]
485#[derive(Debug, Clone)]
486pub struct TemporalParadoxResolver<F: Float + Debug> {
487 paradox_detection: ParadoxDetection<F>,
488 resolution_strategies: Vec<ResolutionStrategy<F>>,
489 consistency_maintenance: ConsistencyMaintenance<F>,
490}
491
492#[allow(dead_code)]
494#[derive(Debug, Clone)]
495pub struct ParadoxDetection<F: Float + Debug> {
496 paradox_types: Vec<ParadoxType>,
497 detection_algorithms: Vec<DetectionAlgorithm<F>>,
498 severity_assessment: SeverityAssessment<F>,
499}
500
501#[allow(dead_code)]
503#[derive(Debug, Clone)]
504pub enum ParadoxType {
505 Grandfather,
507 Bootstrap,
509 Information,
511 Causal,
513}
514
515#[allow(dead_code)]
517#[derive(Debug, Clone)]
518pub struct DetectionAlgorithm<F: Float + Debug> {
519 algorithm_name: String,
520 detection_sensitivity: F,
521 false_positive_rate: F,
522}
523
524#[allow(dead_code)]
526#[derive(Debug, Clone)]
527pub struct SeverityAssessment<F: Float + Debug> {
528 severity_metrics: Vec<SeverityMetric<F>>,
529 impact_analysis: ImpactAnalysis<F>,
530}
531
532#[allow(dead_code)]
534#[derive(Debug, Clone)]
535pub struct SeverityMetric<F: Float + Debug> {
536 metric_name: String,
537 severity_score: F,
538 confidence: F,
539}
540
541#[allow(dead_code)]
543#[derive(Debug, Clone)]
544pub struct ImpactAnalysis<F: Float + Debug> {
545 temporal_impact: F,
546 causal_impact: F,
547 information_impact: F,
548}
549
550#[allow(dead_code)]
552#[derive(Debug, Clone)]
553pub struct ResolutionStrategy<F: Float + Debug> {
554 strategy_name: String,
555 resolution_method: ResolutionMethod,
556 success_probability: F,
557 computational_cost: F,
558}
559
560#[allow(dead_code)]
562#[derive(Debug, Clone)]
563pub enum ResolutionMethod {
564 NovikOffPrinciple,
566 ManyWorlds,
568 SelfConsistency,
570 QuantumSuperposition,
572}
573
574#[allow(dead_code)]
576#[derive(Debug, Clone)]
577pub struct ConsistencyMaintenance<F: Float + Debug> {
578 consistency_checks: Vec<ConsistencyCheck<F>>,
579 repair_mechanisms: Vec<RepairMechanism<F>>,
580}
581
582#[allow(dead_code)]
584#[derive(Debug, Clone)]
585pub struct ConsistencyCheck<F: Float + Debug> {
586 check_name: String,
587 consistency_level: F,
588 violation_tolerance: F,
589}
590
591#[allow(dead_code)]
593#[derive(Debug, Clone)]
594pub struct RepairMechanism<F: Float + Debug> {
595 mechanism_name: String,
596 repair_strength: F,
597 side_effects: F,
598}
599
600#[allow(dead_code)]
602#[derive(Debug, Clone)]
603pub struct SpacetimeMapper<F: Float + Debug> {
604 spacetime_model: SpacetimeModel<F>,
605 dimensional_analysis: DimensionalAnalysis<F>,
606 metric_tensor: MetricTensor<F>,
607}
608
609#[allow(dead_code)]
611#[derive(Debug, Clone)]
612pub struct SpacetimeModel<F: Float + Debug> {
613 dimensions: usize,
614 curvature: F,
615 topology: TopologyType,
616 metric_signature: Vec<i8>,
617}
618
619#[allow(dead_code)]
621#[derive(Debug, Clone)]
622pub enum TopologyType {
623 Euclidean,
625 Minkowski,
627 Riemannian,
629 LorentzianQuantum,
631}
632
633#[allow(dead_code)]
635#[derive(Debug, Clone)]
636pub struct DimensionalAnalysis<F: Float + Debug> {
637 spatial_dimensions: usize,
638 temporal_dimensions: usize,
639 compactified_dimensions: usize,
640 extra_dimensions: Vec<ExtraDimension<F>>,
641}
642
643#[allow(dead_code)]
645#[derive(Debug, Clone)]
646pub struct ExtraDimension<F: Float + Debug> {
647 dimension_type: DimensionType,
648 compactification_scale: F,
649 accessibility: F,
650}
651
652#[allow(dead_code)]
654#[derive(Debug, Clone)]
655pub enum DimensionType {
656 Spatial,
658 Temporal,
660 Quantum,
662 Information,
664}
665
666#[allow(dead_code)]
668#[derive(Debug, Clone)]
669pub struct MetricTensor<F: Float + Debug> {
670 tensor_components: Vec<Vec<F>>,
671 determinant: F,
672 signature: Vec<i8>,
673 curvature_scalar: F,
674}
675
676impl<F: Float + Debug + Clone + FromPrimitive> MultiTimelineProcessor<F> {
677 pub fn new(num_dimensions: usize) -> Self {
679 let mut temporal_dimensions = Vec::new();
680
681 for i in 0..num_dimensions {
682 let dimension = TemporalDimension {
683 dimension_id: i,
684 time_resolution: F::from_f64(0.001).unwrap(), causal_direction: CausalDirection::Forward,
686 branching_factor: F::from_f64(1.0).unwrap(),
687 };
688 temporal_dimensions.push(dimension);
689 }
690
691 MultiTimelineProcessor {
692 temporal_dimensions,
693 timeline_synchronizer: TimelineSynchronizer::new(),
694 causal_structure_analyzer: CausalStructureAnalyzer::new(),
695 }
696 }
697
698 pub fn process_temporal_data(&mut self, temporal_data: &[Array1<F>]) -> Result<Array1<F>> {
700 if temporal_data.is_empty() {
701 return Ok(Array1::zeros(0));
702 }
703
704 let synchronized_data = self
706 .timeline_synchronizer
707 .synchronize_timelines(temporal_data)?;
708
709 let causal_analysis = self
711 .causal_structure_analyzer
712 .analyze_causality(&synchronized_data)?;
713
714 let integrated_result = self.integrate_temporal_dimensions(&causal_analysis)?;
716
717 Ok(integrated_result)
718 }
719
720 fn integrate_temporal_dimensions(&self, data: &Array1<F>) -> Result<Array1<F>> {
722 let mut integrated = data.clone();
723
724 for dimension in &self.temporal_dimensions {
726 integrated = dimension.process_temporal_data(&integrated)?;
727 }
728
729 Ok(integrated)
730 }
731
732 pub fn detect_temporal_anomalies(&self, data: &Array1<F>) -> Result<Vec<F>> {
734 let mut anomalies = Vec::new();
735
736 for (i, &value) in data.iter().enumerate() {
737 let expected_value = F::from_f64(0.5).unwrap(); let deviation = (value - expected_value).abs();
740 let threshold = F::from_f64(2.0).unwrap();
741
742 if deviation > threshold {
743 anomalies.push(F::from_usize(i).unwrap());
744 }
745 }
746
747 Ok(anomalies)
748 }
749}
750
751impl<F: Float + Debug + Clone + FromPrimitive> TemporalDimension<F> {
752 pub fn process_temporal_data(&self, data: &Array1<F>) -> Result<Array1<F>> {
754 let mut processed = data.clone();
755
756 match self.causal_direction {
758 CausalDirection::Forward => {
759 for i in 1..processed.len() {
761 processed[i] = processed[i] + processed[i - 1] * F::from_f64(0.1).unwrap();
762 }
763 }
764 CausalDirection::Backward => {
765 for i in (0..processed.len() - 1).rev() {
767 processed[i] = processed[i] + processed[i + 1] * F::from_f64(0.1).unwrap();
768 }
769 }
770 CausalDirection::Bidirectional => {
771 let forward = self.process_forward(&processed)?;
773 let backward = self.process_backward(&processed)?;
774 for i in 0..processed.len() {
775 processed[i] = (forward[i] + backward[i]) / F::from_f64(2.0).unwrap();
776 }
777 }
778 CausalDirection::NonCausal => {
779 }
781 }
782
783 Ok(processed)
784 }
785
786 fn process_forward(&self, data: &Array1<F>) -> Result<Array1<F>> {
788 let mut forward = data.clone();
789 for i in 1..forward.len() {
790 forward[i] = forward[i] + forward[i - 1] * F::from_f64(0.05).unwrap();
791 }
792 Ok(forward)
793 }
794
795 fn process_backward(&self, data: &Array1<F>) -> Result<Array1<F>> {
797 let mut backward = data.clone();
798 for i in (0..backward.len() - 1).rev() {
799 backward[i] = backward[i] + backward[i + 1] * F::from_f64(0.05).unwrap();
800 }
801 Ok(backward)
802 }
803}
804
805impl<F: Float + Debug + Clone + FromPrimitive> Default for TimelineSynchronizer<F> {
806 fn default() -> Self {
807 Self::new()
808 }
809}
810
811impl<F: Float + Debug + Clone + FromPrimitive> TimelineSynchronizer<F> {
812 pub fn new() -> Self {
814 TimelineSynchronizer {
815 synchronization_protocol: SynchronizationProtocol::GlobalClock,
816 temporal_alignment: F::from_f64(0.95).unwrap(),
817 causality_preservation: F::from_f64(0.9).unwrap(),
818 }
819 }
820
821 pub fn synchronize_timelines(&mut self, timelines: &[Array1<F>]) -> Result<Array1<F>> {
823 if timelines.is_empty() {
824 return Ok(Array1::zeros(0));
825 }
826
827 match self.synchronization_protocol {
828 SynchronizationProtocol::GlobalClock => self.global_clock_sync(timelines),
829 SynchronizationProtocol::LocalCausal => self.local_causal_sync(timelines),
830 SynchronizationProtocol::QuantumEntangled => self.quantum_entangled_sync(timelines),
831 SynchronizationProtocol::ConsciousnessGuided => {
832 self.consciousness_guided_sync(timelines)
833 }
834 }
835 }
836
837 fn global_clock_sync(&self, timelines: &[Array1<F>]) -> Result<Array1<F>> {
839 let min_len = timelines.iter().map(|t| t.len()).min().unwrap_or(0);
841 let mut synchronized = Array1::zeros(min_len);
842
843 for i in 0..min_len {
845 let mut sum = F::zero();
846 for timeline in timelines {
847 if i < timeline.len() {
848 sum = sum + timeline[i];
849 }
850 }
851 synchronized[i] = sum / F::from_usize(timelines.len()).unwrap();
852 }
853
854 Ok(synchronized)
855 }
856
857 fn local_causal_sync(&self, timelines: &[Array1<F>]) -> Result<Array1<F>> {
859 let min_len = timelines.iter().map(|t| t.len()).min().unwrap_or(0);
861 let mut synchronized = Array1::zeros(min_len);
862
863 for i in 0..min_len {
864 let mut weighted_sum = F::zero();
865 let mut total_weight = F::zero();
866
867 for (j, timeline) in timelines.iter().enumerate() {
868 if i < timeline.len() {
869 let causal_weight = F::from_f64(1.0).unwrap() / (F::from_usize(j + 1).unwrap());
871 weighted_sum = weighted_sum + timeline[i] * causal_weight;
872 total_weight = total_weight + causal_weight;
873 }
874 }
875
876 if total_weight > F::zero() {
877 synchronized[i] = weighted_sum / total_weight;
878 }
879 }
880
881 Ok(synchronized)
882 }
883
884 fn quantum_entangled_sync(&self, timelines: &[Array1<F>]) -> Result<Array1<F>> {
886 let min_len = timelines.iter().map(|t| t.len()).min().unwrap_or(0);
888 let mut synchronized = Array1::zeros(min_len);
889
890 for i in 0..min_len {
891 let mut entangled_state = F::zero();
893 for timeline in timelines {
894 if i < timeline.len() {
895 let phase_factor =
897 F::from_f64((i as f64 * std::f64::consts::PI / 4.0).cos()).unwrap();
898 entangled_state = entangled_state + timeline[i] * phase_factor;
899 }
900 }
901
902 let normalization = F::from_usize(timelines.len()).unwrap().sqrt();
904 synchronized[i] = entangled_state / normalization;
905 }
906
907 Ok(synchronized)
908 }
909
910 fn consciousness_guided_sync(&self, timelines: &[Array1<F>]) -> Result<Array1<F>> {
912 let min_len = timelines.iter().map(|t| t.len()).min().unwrap_or(0);
914 let mut synchronized = Array1::zeros(min_len);
915
916 for i in 0..min_len {
917 let mut consciousness_sum = F::zero();
919 let mut consciousness_weight_total = F::zero();
920
921 for timeline in timelines {
922 if i < timeline.len() {
923 let coherence = self.calculate_timeline_coherence(timeline)?;
925 consciousness_sum = consciousness_sum + timeline[i] * coherence;
926 consciousness_weight_total = consciousness_weight_total + coherence;
927 }
928 }
929
930 if consciousness_weight_total > F::zero() {
931 synchronized[i] = consciousness_sum / consciousness_weight_total;
932 }
933 }
934
935 Ok(synchronized)
936 }
937
938 fn calculate_timeline_coherence(&self, timeline: &Array1<F>) -> Result<F> {
940 if timeline.len() < 2 {
941 return Ok(F::from_f64(1.0).unwrap());
942 }
943
944 let mean = timeline.iter().fold(F::zero(), |acc, &x| acc + x)
946 / F::from_usize(timeline.len()).unwrap();
947 let variance = timeline
948 .iter()
949 .fold(F::zero(), |acc, &x| acc + (x - mean) * (x - mean))
950 / F::from_usize(timeline.len()).unwrap();
951
952 let coherence = F::from_f64(1.0).unwrap() / (F::from_f64(1.0).unwrap() + variance);
953 Ok(coherence)
954 }
955}
956
957impl<F: Float + Debug + Clone + FromPrimitive> Default for CausalStructureAnalyzer<F> {
958 fn default() -> Self {
959 Self::new()
960 }
961}
962
963impl<F: Float + Debug + Clone + FromPrimitive> CausalStructureAnalyzer<F> {
964 pub fn new() -> Self {
966 CausalStructureAnalyzer {
967 causal_graph: CausalGraph::new(),
968 intervention_effects: Vec::new(),
969 counterfactual_reasoning: CounterfactualReasoning::new(),
970 }
971 }
972
973 pub fn analyze_causality(&mut self, data: &Array1<F>) -> Result<Array1<F>> {
975 self.causal_graph.build_from_data(data)?;
977
978 self.compute_intervention_effects(data)?;
980
981 let counterfactual_result = self.counterfactual_reasoning.reason_about_data(data)?;
983
984 Ok(counterfactual_result)
985 }
986
987 fn compute_intervention_effects(&mut self, data: &Array1<F>) -> Result<()> {
989 self.intervention_effects.clear();
990
991 for (i, _) in data.iter().enumerate() {
993 let intervention_effect = InterventionEffect {
994 intervention_target: i,
995 intervention_value: F::from_f64(1.0).unwrap(),
996 causal_effect: F::from_f64(0.5).unwrap(), confidence_interval: (F::from_f64(0.3).unwrap(), F::from_f64(0.7).unwrap()),
998 };
999 self.intervention_effects.push(intervention_effect);
1000 }
1001
1002 Ok(())
1003 }
1004
1005 pub fn get_causal_strength(&self, source: usize, target: usize) -> Result<F> {
1007 for edge in &self.causal_graph.edges {
1008 if edge.source == source && edge.target == target {
1009 return Ok(edge.strength);
1010 }
1011 }
1012 Ok(F::zero())
1013 }
1014}
1015
1016impl<F: Float + Debug + Clone + FromPrimitive> Default for CausalGraph<F> {
1017 fn default() -> Self {
1018 Self::new()
1019 }
1020}
1021
1022impl<F: Float + Debug + Clone + FromPrimitive> CausalGraph<F> {
1023 pub fn new() -> Self {
1025 CausalGraph {
1026 nodes: Vec::new(),
1027 edges: Vec::new(),
1028 confounders: Vec::new(),
1029 }
1030 }
1031
1032 pub fn build_from_data(&mut self, data: &Array1<F>) -> Result<()> {
1034 self.nodes.clear();
1036 for (i, &value) in data.iter().enumerate() {
1037 let node = CausalNode {
1038 node_id: i,
1039 variable_name: format!("var_{}", i),
1040 node_type: NodeType::Observable,
1041 value,
1042 };
1043 self.nodes.push(node);
1044 }
1045
1046 self.edges.clear();
1048 for i in 0..data.len().saturating_sub(1) {
1049 let correlation = self.calculate_correlation(data[i], data[i + 1])?;
1050 let edge = CausalEdge {
1051 source: i,
1052 target: i + 1,
1053 strength: correlation,
1054 edge_type: EdgeType::Direct,
1055 };
1056 self.edges.push(edge);
1057 }
1058
1059 Ok(())
1060 }
1061
1062 fn calculate_correlation(&self, value1: F, value2: F) -> Result<F> {
1064 let diff = (value1 - value2).abs();
1066 let max_val = value1.max(value2);
1067
1068 if max_val > F::zero() {
1069 Ok(F::from_f64(1.0).unwrap() - diff / max_val)
1070 } else {
1071 Ok(F::from_f64(1.0).unwrap())
1072 }
1073 }
1074}
1075
1076impl<F: Float + Debug + Clone + FromPrimitive> Default for CounterfactualReasoning<F> {
1077 fn default() -> Self {
1078 Self::new()
1079 }
1080}
1081
1082impl<F: Float + Debug + Clone + FromPrimitive> CounterfactualReasoning<F> {
1083 pub fn new() -> Self {
1085 CounterfactualReasoning {
1086 counterfactual_queries: Vec::new(),
1087 reasoning_engine: ReasoningEngine::new(),
1088 }
1089 }
1090
1091 pub fn reason_about_data(&mut self, data: &Array1<F>) -> Result<Array1<F>> {
1093 let mut counterfactual_result = data.clone();
1094
1095 for (i, value) in counterfactual_result.iter_mut().enumerate() {
1097 let query = CounterfactualQuery {
1099 query_id: i,
1100 intervention: format!("set_var_{}_to_zero", i),
1101 outcome: format!("observe_var_{}", i),
1102 counterfactual_probability: F::from_f64(0.5).unwrap(),
1103 };
1104 self.counterfactual_queries.push(query);
1105
1106 let counterfactual_adjustment = self.reasoning_engine.compute_counterfactual(*value)?;
1108 *value = *value + counterfactual_adjustment;
1109 }
1110
1111 Ok(counterfactual_result)
1112 }
1113}
1114
1115impl<F: Float + Debug + Clone + FromPrimitive> Default for ReasoningEngine<F> {
1116 fn default() -> Self {
1117 Self::new()
1118 }
1119}
1120
1121impl<F: Float + Debug + Clone + FromPrimitive> ReasoningEngine<F> {
1122 pub fn new() -> Self {
1124 ReasoningEngine {
1125 reasoning_type: ReasoningType::Counterfactual,
1126 inference_strength: F::from_f64(0.8).unwrap(),
1127 uncertainty_handling: UncertaintyHandling::Bayesian,
1128 }
1129 }
1130
1131 pub fn compute_counterfactual(&self, observed_value: F) -> Result<F> {
1133 match self.reasoning_type {
1134 ReasoningType::Counterfactual => {
1135 let adjustment =
1137 observed_value * F::from_f64(0.1).unwrap() * self.inference_strength;
1138 Ok(adjustment)
1139 }
1140 _ => Ok(F::zero()),
1141 }
1142 }
1143}
1144
1145impl<F: Float + Debug + Clone + FromPrimitive> Default for TemporalParadoxResolver<F> {
1146 fn default() -> Self {
1147 Self::new()
1148 }
1149}
1150
1151impl<F: Float + Debug + Clone + FromPrimitive> TemporalParadoxResolver<F> {
1152 pub fn new() -> Self {
1154 TemporalParadoxResolver {
1155 paradox_detection: ParadoxDetection::new(),
1156 resolution_strategies: vec![
1157 ResolutionStrategy::new(
1158 "self_consistency".to_string(),
1159 ResolutionMethod::SelfConsistency,
1160 ),
1161 ResolutionStrategy::new("many_worlds".to_string(), ResolutionMethod::ManyWorlds),
1162 ],
1163 consistency_maintenance: ConsistencyMaintenance::new(),
1164 }
1165 }
1166
1167 pub fn resolve_paradoxes(&mut self, temporal_data: &Array1<F>) -> Result<Array1<F>> {
1169 let paradoxes = self.paradox_detection.detect_paradoxes(temporal_data)?;
1171
1172 if paradoxes.is_empty() {
1173 return Ok(temporal_data.clone());
1174 }
1175
1176 let mut resolved_data = temporal_data.clone();
1178 for strategy in &self.resolution_strategies {
1179 resolved_data = strategy.apply_resolution(&resolved_data)?;
1180 }
1181
1182 resolved_data = self
1184 .consistency_maintenance
1185 .maintain_consistency(&resolved_data)?;
1186
1187 Ok(resolved_data)
1188 }
1189}
1190
1191impl<F: Float + Debug + Clone + FromPrimitive> Default for ParadoxDetection<F> {
1192 fn default() -> Self {
1193 Self::new()
1194 }
1195}
1196
1197impl<F: Float + Debug + Clone + FromPrimitive> ParadoxDetection<F> {
1198 pub fn new() -> Self {
1200 ParadoxDetection {
1201 paradox_types: vec![
1202 ParadoxType::Grandfather,
1203 ParadoxType::Bootstrap,
1204 ParadoxType::Information,
1205 ParadoxType::Causal,
1206 ],
1207 detection_algorithms: vec![DetectionAlgorithm {
1208 algorithm_name: "causal_loop_detector".to_string(),
1209 detection_sensitivity: F::from_f64(0.9).unwrap(),
1210 false_positive_rate: F::from_f64(0.05).unwrap(),
1211 }],
1212 severity_assessment: SeverityAssessment::new(),
1213 }
1214 }
1215
1216 pub fn detect_paradoxes(&mut self, data: &Array1<F>) -> Result<Vec<usize>> {
1218 let mut detected_paradoxes = Vec::new();
1219
1220 for i in 1..data.len() {
1222 if data[i] > data[i - 1] * F::from_f64(2.0).unwrap() {
1224 detected_paradoxes.push(i);
1225 }
1226 }
1227
1228 Ok(detected_paradoxes)
1229 }
1230}
1231
1232impl<F: Float + Debug + Clone + FromPrimitive> Default for SeverityAssessment<F> {
1233 fn default() -> Self {
1234 Self::new()
1235 }
1236}
1237
1238impl<F: Float + Debug + Clone + FromPrimitive> SeverityAssessment<F> {
1239 pub fn new() -> Self {
1241 SeverityAssessment {
1242 severity_metrics: vec![SeverityMetric {
1243 metric_name: "temporal_disruption".to_string(),
1244 severity_score: F::from_f64(0.5).unwrap(),
1245 confidence: F::from_f64(0.8).unwrap(),
1246 }],
1247 impact_analysis: ImpactAnalysis {
1248 temporal_impact: F::from_f64(0.3).unwrap(),
1249 causal_impact: F::from_f64(0.4).unwrap(),
1250 information_impact: F::from_f64(0.2).unwrap(),
1251 },
1252 }
1253 }
1254}
1255
1256impl<F: Float + Debug + Clone + FromPrimitive> ResolutionStrategy<F> {
1257 pub fn new(name: String, method: ResolutionMethod) -> Self {
1259 ResolutionStrategy {
1260 strategy_name: name,
1261 resolution_method: method,
1262 success_probability: F::from_f64(0.8).unwrap(),
1263 computational_cost: F::from_f64(0.5).unwrap(),
1264 }
1265 }
1266
1267 pub fn apply_resolution(&self, data: &Array1<F>) -> Result<Array1<F>> {
1269 match self.resolution_method {
1270 ResolutionMethod::SelfConsistency => self.apply_self_consistency(data),
1271 ResolutionMethod::ManyWorlds => self.apply_many_worlds(data),
1272 ResolutionMethod::QuantumSuperposition => self.apply_quantum_superposition(data),
1273 ResolutionMethod::NovikOffPrinciple => self.apply_novikov_principle(data),
1274 }
1275 }
1276
1277 fn apply_self_consistency(&self, data: &Array1<F>) -> Result<Array1<F>> {
1279 let mut consistent_data = data.clone();
1280
1281 for iteration in 0..10 {
1283 let mut adjusted = false;
1284
1285 for i in 1..consistent_data.len() {
1286 if consistent_data[i] < consistent_data[i - 1] {
1288 consistent_data[i] = consistent_data[i - 1] * F::from_f64(1.01).unwrap();
1290 adjusted = true;
1291 }
1292 }
1293
1294 if !adjusted {
1295 break;
1296 }
1297 }
1298
1299 Ok(consistent_data)
1300 }
1301
1302 fn apply_many_worlds(&self, data: &Array1<F>) -> Result<Array1<F>> {
1304 let mut many_worlds_data = data.clone();
1306
1307 for value in many_worlds_data.iter_mut() {
1308 let world_1 = *value;
1310 let world_2 = *value * F::from_f64(1.1).unwrap();
1311 let world_3 = *value * F::from_f64(0.9).unwrap();
1312
1313 *value = (world_1 + world_2 + world_3) / F::from_f64(3.0).unwrap();
1315 }
1316
1317 Ok(many_worlds_data)
1318 }
1319
1320 fn apply_quantum_superposition(&self, data: &Array1<F>) -> Result<Array1<F>> {
1322 let mut superposition_data = data.clone();
1323
1324 for (i, value) in superposition_data.iter_mut().enumerate() {
1325 let phase = F::from_f64(i as f64 * std::f64::consts::PI / 4.0).unwrap();
1327 let amplitude = F::from_f64(0.8).unwrap();
1328
1329 *value = *value * amplitude * phase.cos();
1330 }
1331
1332 Ok(superposition_data)
1333 }
1334
1335 fn apply_novikov_principle(&self, data: &Array1<F>) -> Result<Array1<F>> {
1337 let mut novikov_data = data.clone();
1339
1340 for _ in 0..5 {
1342 for i in 1..novikov_data.len() {
1343 if novikov_data[i] > novikov_data[i - 1] * F::from_f64(1.5).unwrap() {
1345 novikov_data[i] = novikov_data[i - 1] * F::from_f64(1.2).unwrap();
1347 }
1348 }
1349 }
1350
1351 Ok(novikov_data)
1352 }
1353}
1354
1355impl<F: Float + Debug + Clone + FromPrimitive> Default for ConsistencyMaintenance<F> {
1356 fn default() -> Self {
1357 Self::new()
1358 }
1359}
1360
1361impl<F: Float + Debug + Clone + FromPrimitive> ConsistencyMaintenance<F> {
1362 pub fn new() -> Self {
1364 ConsistencyMaintenance {
1365 consistency_checks: vec![ConsistencyCheck {
1366 check_name: "causal_ordering".to_string(),
1367 consistency_level: F::from_f64(0.9).unwrap(),
1368 violation_tolerance: F::from_f64(0.1).unwrap(),
1369 }],
1370 repair_mechanisms: vec![RepairMechanism {
1371 mechanism_name: "gradient_smoothing".to_string(),
1372 repair_strength: F::from_f64(0.8).unwrap(),
1373 side_effects: F::from_f64(0.1).unwrap(),
1374 }],
1375 }
1376 }
1377
1378 pub fn maintain_consistency(&mut self, data: &Array1<F>) -> Result<Array1<F>> {
1380 let mut consistent_data = data.clone();
1381
1382 for check in &self.consistency_checks {
1384 if !self.check_consistency(&consistent_data, check)? {
1385 for mechanism in &self.repair_mechanisms {
1387 consistent_data = mechanism.apply_repair(&consistent_data)?;
1388 }
1389 }
1390 }
1391
1392 Ok(consistent_data)
1393 }
1394
1395 fn check_consistency(&self, data: &Array1<F>, check: &ConsistencyCheck<F>) -> Result<bool> {
1397 match check.check_name.as_str() {
1398 "causal_ordering" => {
1399 for i in 1..data.len() {
1401 let ratio = data[i] / data[i - 1];
1402 if ratio > F::from_f64(2.0).unwrap() {
1403 return Ok(false);
1405 }
1406 }
1407 Ok(true)
1408 }
1409 _ => Ok(true),
1410 }
1411 }
1412}
1413
1414impl<F: Float + Debug + Clone + FromPrimitive> RepairMechanism<F> {
1415 pub fn apply_repair(&self, data: &Array1<F>) -> Result<Array1<F>> {
1417 match self.mechanism_name.as_str() {
1418 "gradient_smoothing" => {
1419 let mut repaired_data = data.clone();
1420
1421 for i in 1..repaired_data.len() - 1 {
1423 let gradient_left = repaired_data[i] - repaired_data[i - 1];
1424 let gradient_right = repaired_data[i + 1] - repaired_data[i];
1425
1426 if (gradient_right - gradient_left).abs() > F::from_f64(1.0).unwrap() {
1428 let smoothed_value = (repaired_data[i - 1] + repaired_data[i + 1])
1429 / F::from_f64(2.0).unwrap();
1430 repaired_data[i] = repaired_data[i]
1431 * (F::from_f64(1.0).unwrap() - self.repair_strength)
1432 + smoothed_value * self.repair_strength;
1433 }
1434 }
1435
1436 Ok(repaired_data)
1437 }
1438 _ => Ok(data.clone()),
1439 }
1440 }
1441}
1442
1443impl<F: Float + Debug + Clone + FromPrimitive> Default for SpacetimeMapper<F> {
1444 fn default() -> Self {
1445 Self::new()
1446 }
1447}
1448
1449impl<F: Float + Debug + Clone + FromPrimitive> SpacetimeMapper<F> {
1450 pub fn new() -> Self {
1452 SpacetimeMapper {
1453 spacetime_model: SpacetimeModel::new(),
1454 dimensional_analysis: DimensionalAnalysis::new(),
1455 metric_tensor: MetricTensor::new(),
1456 }
1457 }
1458
1459 pub fn map_to_spacetime(&self, data: &Array1<F>) -> Result<Array1<F>> {
1461 let mut spacetime_data = data.clone();
1463
1464 spacetime_data = self.metric_tensor.transform(&spacetime_data)?;
1466
1467 spacetime_data = self
1469 .dimensional_analysis
1470 .analyze_dimensions(&spacetime_data)?;
1471
1472 Ok(spacetime_data)
1473 }
1474}
1475
1476impl<F: Float + Debug + Clone + FromPrimitive> Default for SpacetimeModel<F> {
1477 fn default() -> Self {
1478 Self::new()
1479 }
1480}
1481
1482impl<F: Float + Debug + Clone + FromPrimitive> SpacetimeModel<F> {
1483 pub fn new() -> Self {
1485 SpacetimeModel {
1486 dimensions: 4, curvature: F::from_f64(0.01).unwrap(),
1488 topology: TopologyType::Minkowski,
1489 metric_signature: vec![1, -1, -1, -1], }
1491 }
1492}
1493
1494impl<F: Float + Debug + Clone + FromPrimitive> Default for DimensionalAnalysis<F> {
1495 fn default() -> Self {
1496 Self::new()
1497 }
1498}
1499
1500impl<F: Float + Debug + Clone + FromPrimitive> DimensionalAnalysis<F> {
1501 pub fn new() -> Self {
1503 DimensionalAnalysis {
1504 spatial_dimensions: 3,
1505 temporal_dimensions: 1,
1506 compactified_dimensions: 0,
1507 extra_dimensions: Vec::new(),
1508 }
1509 }
1510
1511 pub fn analyze_dimensions(&self, data: &Array1<F>) -> Result<Array1<F>> {
1513 let mut dimensional_data = data.clone();
1514
1515 let dimension_factor =
1517 F::from_usize(self.spatial_dimensions + self.temporal_dimensions).unwrap();
1518 dimensional_data.mapv_inplace(|x| x / dimension_factor.sqrt());
1519
1520 Ok(dimensional_data)
1521 }
1522}
1523
1524impl<F: Float + Debug + Clone + FromPrimitive> Default for MetricTensor<F> {
1525 fn default() -> Self {
1526 Self::new()
1527 }
1528}
1529
1530impl<F: Float + Debug + Clone + FromPrimitive> MetricTensor<F> {
1531 pub fn new() -> Self {
1533 let mut tensor_components = vec![vec![F::zero(); 4]; 4];
1535 tensor_components[0][0] = F::from_f64(1.0).unwrap(); tensor_components[1][1] = F::from_f64(-1.0).unwrap(); tensor_components[2][2] = F::from_f64(-1.0).unwrap(); tensor_components[3][3] = F::from_f64(-1.0).unwrap(); MetricTensor {
1541 tensor_components,
1542 determinant: F::from_f64(-1.0).unwrap(),
1543 signature: vec![1, -1, -1, -1],
1544 curvature_scalar: F::zero(),
1545 }
1546 }
1547
1548 pub fn transform(&self, data: &Array1<F>) -> Result<Array1<F>> {
1550 let mut transformed_data = data.clone();
1551
1552 for (i, value) in transformed_data.iter_mut().enumerate() {
1554 let metric_component = if i < self.tensor_components.len() {
1555 self.tensor_components[i % 4][i % 4]
1556 } else {
1557 F::from_f64(1.0).unwrap()
1558 };
1559
1560 *value = *value * metric_component;
1561 }
1562
1563 Ok(transformed_data)
1564 }
1565}